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a b s t r a c t

Techniques for mapping and monitoring wetland species are critical for their sustainable management.
Papyrus (Cyperus papyrus L.) is one of the most important species-rich habitats that characterize the
Greater St. LuciaWetlands Park (GSWP) in South Africa. This paper investigates whether papyrus could be
discriminated from its co-existing species using ASD field spectrometer data ranging from300 nm to 2500
nm, yielding a total of 2151 bands. Canopy spectral measurements from papyrus and three other species
were collected in situ in the Greater St. Lucia Wetlands Park, South Africa. A new hierarchical method
based on three integrated analysis levels was proposed and implemented to spectrally discriminate
papyrus from other species as well as to reduce and subsequently select optimal bands for the potential
discrimination of papyrus. In the first level of the analysis using ANOVA, we found that there were
statistically significant differences in spectral reflectance between papyrus and other species on 412
wavelengths located in different portions of the electromagnetic spectrum. Using the selected 412 bands,
we further investigated the use of classification and regression trees (CART) in the second level of analysis
to identify the most sensitive bands for spectral discrimination. This analysis yielded eight bands which
are considered to be practical for upscaling to airborne or space borne sensors for mapping papyrus
vegetation. The final sensitivity analysis level involved the application of Jeffries-Matusita (JM) distance
to assess the relative importance of the selected eight bands in discriminating papyrus from other species.
The results indicate that the best discrimination of papyrus from its co-existing species is possible with
six bands located in the red-edge and near-infrared regions of the electromagnetic spectrum. Overall, the
study concluded that spectral reflectance of papyrus and its co-existing species is statistically different,
a promising result for the use of airborne and satellite sensors for mapping papyrus. The three-step
hierarchical approach employed in this study could systematically reduce the dimensionality of bands
to manageable levels, a move towards operational implementation with band specific sensors.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Papyrus swamps (Cyperus papyrus L.) characterize most wet-
land areas of eastern and central tropical Africa (Bemigisha, 2004).
Specifically, the swamp covers great areas in Uganda and Sudan
around the Lake Victoria and Nile basins (Beadle, 1974). Other ex-
tensive areas are in the Upemba basin, Zaire, and the Okavango
Delta, Botswana (Thompson et al., 1979). Papyrus swamps usually
create a buffer zone between terrestrial and aquatic ecosystems
and play hydrological, ecological, and economic roles in the aquatic
systems (Gaudet, 1980; Mafabi, 2000).
Previous studies found that tropical papyrus swamps are

characterized by a tremendous amount of combined nitrogen
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(Mwaura and Widdowson, 1992; Muthuri and Kinyamario, 1989)
and a high rate of biomass production (Muthuri and Kinyamario,
1989). In this regard, papyrus plays a vital role in hosting habitats
for wildlife species such as the sitatunga antelope (Tragelaphus
spekei) and African python (Python sebae) (Owino and Ryan, 2007).
Papyrus also has some grazing potential and could be used as
fodder with high nutritive value especially in the dry season
when other forage is limited (Muthuri and Kinyamario, 1989).
Further, studies found that the highest species richness of birds
in marshland was associated with the areas where papyrus and
natural vegetation were plentiful (Harper, 1992; Owino and Ryan,
2007). In addition to providing habitat for wildlife, the high
biomass production characterising papyrus swamps has seen it
being widely used for paper making. The Egyptians for example,
were the first people who used papyrus to make paper more than
five thousand years ago (Bucci, 2001). Recently, promising results
have been obtained in using papyrus as an alternative source of fuel
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in many countries in central Africa such as Rwanda (Jones, 1983;
Muthuri and Kinyamario, 1989).
Despite its relative importance, human encroachment and

intensified agricultural activities in many parts of Africa have
threatened the existence of papyrus (Mafabi, 2000; Owino and
Ryan, 2007; Maclean et al., 2006). The continued degradation
in papyrus habitat represents a significant threat to biodiversity
conservation particularly for papyrus-specialist birds and other
papyrus-reliant species in many African countries (Owino and
Ryan, 2007; Maclean et al., 2006).
To establish sustainable management of such important

species, up-to-date spatial information about the magnitude and
distribution of papyrus at several scales is essentially required
(Schmidt and Skidmore, 2003; Nagendra, 2001). This can be achi-
eved through remote sensing techniques that can monitor the
change in papyrus areas and assessing the species’ percentage
cover as compared to the other species.
Traditionally, species discrimination for floristicmapping needs

intensive field work, including taxonomical information and the
visual estimation of percentage cover for each species which are
costly and time consuming and sometimes inapplicable due to the
poor accessibility (Kent and Coker, 1992; Lee and Lunetta, 1995).
Remote sensing, on the other hand, is a technique that gathers
data regularly about the earth’s features without actually being
in direct contact with those features. The main advantages that
make remote sensing preferable to field-based methods in land-
cover classification, are that it has repeat coverage which allows
continuousmonitoring, and its digital data can be easily integrated
into a geographic information system (GIS) formore analysiswhich
is less costly and less time-consuming (Shaikh et al., 2001; Ozesmi
and Bauer, 2002; Mironga, 2004; Schmidt and Skidmore, 2003).
Both multispectral and hyperspectral remote sensing tech-

niques have been used to discriminate and map wetland species.
Multispectral data such as Landsat TMand SPOT imagery have been
used to identify general vegetation classes or to attempt to discrim-
inate just broad vegetation communities (May et al., 1997; Har-
vey and Hill, 2001; Li et al., 2005), while hyperspectral data have
been successful inmappingwetland vegetation at the species level
(Schmidt and Skidmore, 2003; Belluco et al., 2006; Brown, 2004;
Rosso et al., 2005; Pengra et al., 2007; Vaiphasa et al., 2005; En-
rica et al., 2006). Hyperspectral data has also been used to study
vegetation health, water content in vegetation, biomass, and other
physico-chemical properties (e.g. Mutanga and Skidmore, 2004;
Mutanga et al., 2003; Green et al., 1998; Zarco-Tejada et al., 2005).
In general, the use of multi-spectral data in discriminating and

mapping wetlands species is challenging due to spectral overlap
between the wetlands species and due to the lack of spectral and
spatial resolution of the multi-spectral data (Rosso et al., 2005).
On the other hand, hyperspectral data often consist of over 100
contiguous bands of 10 nm or less bandwidth. These contiguous
bands and narrow ranges lead to the possibility of discriminating
and mapping vegetation species more accurately and precisely
than the standard multispectral bands (Ustin et al., 2004; Schmidt
and Skidmore, 2003; Borges et al., 2007).
A few previous attempts at using multispectral remote sensing

in studies of papyrus swamps have been concentrated mainly on
economic benefit and management scenarios of papyrus swamps
and promising results have been obtained (Bemigisha, 2004;
Owino and Ryan, 2007). However, the spectral discrimination of
papyrus (Cyperus papyrus L.) has been overlooked in scientific
research. No attempt, to our knowledge, has been made to
discriminate papyrus swamps using field spectrometry, let alone
in South Africa where only a handful of studies have used
hyperspectral data to characterize vegetation in general due to
high cost and poor accessibility (Ismail et al., 2007; Mutanga et al.,
2004).
Although hyperspectral data are critical in discriminating
species, its high spectral resolution contains redundant informa-
tion at band level (Bajwa et al., 2004; Kokaly et al., 2003). This high-
dimensional complexity of hyperspectral data can be problematic
in terms of image processing algorithms, an excessive demand for
sufficient field samples, high cost, and overfitting when usingmul-
tivariate statistical techniques (Borges et al., 2007; Vaiphasa et al.,
2007; Bajcsy and Groves, 2004; Goetz, 1991) Mutanga and Kumar
(2007). It is therefore imperative to identify the optimal bands re-
quired for discriminating and mapping wetland species without
losing any important information. Different univariate and mul-
tivariate techniques for dimensionality reduction and band selec-
tion with different performance levels have been developed, such
as canonical analysis, classification and regression tree (CART), dis-
criminant analysis, principal component analysis, artificial neural
network and Jeffries-Matusita (JM) (Vaiphasa et al., 2005; Milton
et al., in press; Cochrane, 2000; Schmidt and Skidmore, 2003; Sat-
terwhite and Ponder Henley, 1987). However, inconsistent results
have been obtained for different species and environments and the
use of a single technique in reducing data dimensionality to accept-
able operational levels has not been very successful.
This study aimed to investigatewhether field spectrometry data

could be used effectively to discriminate papyrus swamps from
other species occurring in the swampy wetlands of South Africa.
In other words, spectral separability analysis was used to exam-
ine whether papyrus swamps could spectrally be discriminated
from the other species using field spectrometer measurements at
canopy level aswell as reducing spectral data dimensionality.More
specifically, the objectives of this study were: (1) to determine
whether there is a significant difference between the mean re-
flectance at each measured wavelength (from 350 to 2500 nm) for
Cyperus papyrus L. and the other co-existing three species (Phrag-
mites australis, Echinochloa pyramidalis, and Thelypteris interrupta).
(2) To identify key wavelengths that are most sensitive in discrim-
inating Cyperus papyrus from the other three species. In order to
achieve this, we used a field spectrometer to measure the spec-
tral reflectance from papyrus swamps and the associated species
in Greater St. Lucia Wetland Park in South Africa. To achieve an
efficient optimal selection of bands, we propose a new hierarchi-
cal method that integrates analysis of variance (first level), classifi-
cation regression trees (second level) and finally Jeffries-Matusita
distance analysis (third level) to assess the relative importance of
the selected bands.

2. Material and methods

2.1. Study area

The study area was the Greater St Lucia Wetlands Park (GSWP)
which covers about 3,000,000 ha along the eastern coast of
South Africa in the Province of KwaZulu-Natal, between longitudes
32◦ 21

′

E and 32◦ 34
′

E and latitudes 27◦ 34
′

S and 28◦ 24
′

S. The
GSWP which includes the Futululu natural forest is considered to
be the largest estuarine system in Africa (Taylor, 1995). The climate
is sub-tropical. The mean annual rainfall varies from 1500 mm in
the eastern shore to 700 mm in the western shore of the lake. It is
characterized by a high diversity of ecosystems including, marine,
inland lake, estuarine, forested dunes, mangrove, and coastal and
swamp forest ecosystems. Therefore, it is recognized as both a
UNESCO World Heritage Site and a Ramsar wetland of global
significance. The papyrus (Cyperus papyrus) occurswith P. australis,
E. pyramidalis, and T. interrupta in the large area between forested
dunes and plantation forest. The area is either wet or flooded
permanently with freshwater throughout the year.
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Table 1
The papyrus swamp and its associated species, the number of sample plots and the
total number of measurements collected.

Species name Type code No of plots No of measurements

Cyperus papyrus CP 15 134
Phragmites australis PA 9 111
Echinochloa pyramidalis EP 7 101
Thelypteris interrupta TI 10 113

2.2. Field data collection

2.2.1. The identification of papyrus and its associated species
The most common plant species associated with papyrus

swamps in the area were identified in the field in the summer of
2007 under the supervision of an experienced ecologist using field
observation techniques. These species were then recorded based
on their density and estimation of percentage cover (covering at
least 40% of the area). In total three specieswere identified as being
the most co-existent species with papyrus. These were P. australis,
E. pyramidalis, and T. interrupta (Table 1).

2.2.2. Spectral data acquisition
The Analytical Spectral Devices (ASD) FieldSpec r©3 spectrom-

eter was used to measure the spectral reflectance from papyrus
and the other species. This spectrometer has a wavelength rang-
ing from 350 to 2500 nm with a sampling interval of 1.4 nm for
the spectral region 350–1000 nm and, 2.0 nm for the spectral re-
gion 1000–2500 nm, and a spectral resolution of 3–10 nm (ASD,
Analytical Spectral Devices, Inc., 2005).
A combination of random sampling and purposive sampling

was used to select field sites. Hawth’s Analysis Tool extension
for ArcMap designed to perform spatial analysis, was used to
generate random points in a land cover map developed using an
ASTER image. These points were then input in GPS to navigate to
the field sites. Purposive sampling was done when the random
point was not accessible, or to increase the variation of reflectance
measurements of the species. Once the sampling location was
identified, a vegetation plot was defined to cover 3 by 3 m in
area of each species; then a total of 10–15 field spectrometer
measurements were taken randomly from the nadir at about 1.5
m and with a 5◦ field of view above the vegetation species on
each plot. This resulted in a ground field of view of about 13 cm
in diameter, which was large enough to cover a cluster of species
and to reduce the effects of background such as soil and water in
the in situ spectral measurement (Table 1). All the measurements
were collected in December 2007 between 10:00 am and 02:00
pm under sunny and cloudless conditions. A white reference
Spectralon calibration panel was used every 10–15 measurements
to offset any change in the atmospheric condition and irradiance
of the sun. Metadata such as the site description (coordinates and
altitude, land cover class), and general weather conditions were
also recorded accompanying field spectral measurements on each
measured point (Milton et al., in press). Due to the atmospheric
water absorption noise in the reflectance spectra, a number of
bands around 1420 nm, 1940 nm, and 2400 nm were excluded
from the analysis.

2.3. Data processing

It was difficult to use one technique to identify a reasonable
number of wavelengths that are most sensitive from 350 to 2500
nm (n = 2151). This was because the dimensionality still
remained high when one technique was used (412 wavelengths
from analysis of variance). Moreover, there is no single technique
that has universally proven to be superior for the optimal feature
selection (Yang et al., 2005), and it is quite possible that more than
one subset of wavelengths can discriminate the data equally well
(Yeung et al., 2005). We therefore innovated a new hierarchical
method for spectral analysis based on three integrated levels. In
the first level, we used one-way ANOVA to test if the differences
in the mean reflectance between papyrus swamps and the other
three species were statistically significant. We tested the research
hypothesis that the means of the reflectance between the pairs of
papyrus swamp and each one of the co-existing species (PA, EP,
and TI) were significantly different at each measured wavelength,
from 350 to 2500 nm, viz. the null hypothesis Ho:µ1 = µ2, µ1 =
µ3, µ1 = µ4 versus the alternate hypothesis Ha:µ1 6= µ2, µ1 6=
µ3, µ1 6= µ4 where: µ1, is the mean reflectance values from
papyrus and µ2, µ3, µ4 the mean reflectance values from P.
australis, E. pyramidalis, and T. interrupta respectively.
One-way ANOVA was used with a post-hoc Scheffé test at each

measuredwavelength for the individual class pair (CP vs. PA, CP vs.
EP, and CP vs. TI). We tested ANOVA with two confidence levels:
a 99% confidence level (p < 0.01), and a 95% confidence level
(p < 0.05).

2.3.1. Classification and regression trees (CART)
We used CART in this second level of the hierarchical

method to further reduce the number of significant wavelengths
obtained from ANOVA analysis, with the purpose of reducing data
dimensionality. CART, which was developed by Breiman et al.
(1984), is a nonparametric statistical model that can select from
a large dataset of explanatory variables (x) those that are best for
the response variables (y) (Yang et al., 2003; Questier et al., 2005).
CARTwas preferred in our study because the values of the predictor
variables (spectral reflectance) are a continuous, as opposed to
categorical target (plant species).
The CART model is built in accordance with the splitting rule.

This rule performs the function of splitting the data into smaller
parts according to the reduction of the deviance from the mean of
the target variable (Ybar ) (or corrected total sum of the squares).
(Yi) is the target variable of each dataset. The decision tree begins a
search from a root node (parent node) derived from all the predic-
tors, and possible split points such that the reduction in deviance,
D (total), is maximized (terminal node) as follows (Breiman et al.,
1984).

D(total) =
∑

(Yi − Ybar)2. (1)

The cut point, or value, always splits the data into two child nodes,
the left node and the right node with maximum homogeneity. The
reduction in deviance is as shown in the following equation:

1j,total = D(total)− (D(L)+ D(R)) (2)

where D(L) and D(R) are the deviances of the left and right nodes.
Hence, the algorithmbegins searching for themaximized1j,total

over all the predictor variables and the cut points subject to the
constraint that the number of the members in the left and right
nodes are larger than some criterion set by the user. The algorithm
repeats the procedure of binary splitting for each node (left and
right nodes) by treating each child node as a parent node splitting
until the tree has a maximum size (Yang et al., 2003).
In this study, we used CART as the second level of the hier-

archical method to select the most sensitive wavelengths from
the number of significant wavelengths selected in the first level
(ANOVA). Therefore, CART generated the optimal bands by select-
ing only the spectral bands that result in small misclassification
rates to discriminate each class pair (CP vs. PA, CP vs. EP, and
CP vs. TI) individually. The bands which were common in each
class pair were then selected to get the optimal bands for all class
pairs.
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2.3.2. Distance analysis
Afterwehad the optimal bands selected from the CART analysis,

additional analysis was needed to identify the best band or band
combinations that could be used for the best spectral separability
between papyrus and each one of the three species. Hence,
we tested the hypothesis that some bands are relatively more
important than others in discriminating papyrus. The separability
index used in this level of hierarchical method was JM distance
analysis (Schmidt and Skidmore, 2003; Ismail et al., 2007; Vaiphasa
et al., 2007). It was impossible to run JM distance analysis on all
the significant bands (n = 412) from ANOVA analysis because of
the singularity problem of matrix inversion (Vaiphasa et al., 2005;
Ismail et al., 2007). Moreover, this high-dimensional complexity
is very costly, time-consuming, and beyond the capacity of the
common image processing algorithms (Schmidt and Skidmore,
2003; Vaiphasa et al., 2007; Borges et al., 2007). We therefore,
used the bands derived from CART. The JM distance between a
pair of probability functions is seen as a quantification of the mean
distance between the two class density functions (Richards, 1993).
When classes are normally distributed, this distance turns out to
be the Bhattacharyya (BH) distance (Richards, 1993; Schmidt and
Skidmore, 2003). The JM distance has upper and lower bounds
that vary between 0 and

√
2 (≈1.414), with the higher values

indicating the total separability of the class pairs in the bands
being used (Richards, 1993; ERDAS Field Guide, 2005). In this
study we decided to use higher separability values ≥97% as a
JM distance threshold to identify the most important band or
band combinations for best discrimination of papyrus swamp. The
formula for computing JM distance is as follows (ERDAS Field
Guide, 2005):

α =
1
8

(
µi − µj

)T (Ci + Cj
2

)−1 (
µi − µj

)
+
1
2
ln

(∣∣Ci + Cj/2∣∣)√
|Ci| ∗

∣∣Cj∣∣
 (3)

JMij =
√
2 (1− eα) (4)

where: i and j = the two classes being compared, Ci = the
covariancematrix of signature i,µi = themean vector of signature
i, ln= the natural logarithm function, |Ci| = the determinant of Ci
(matrix algebra).

3. Results

3.1. First level: ANOVA test

ANOVA results indicate that there is no significant difference
between the two class pairs (CP vs. EP, and CP vs. TI) when a 99%
confidence level (p < 0.01) is used. However, the 95% confidence
level (p < 0.05) indicates that there is a statistically significant
difference in the spectral reflectance between all the class pairs
(CP vs. PA, CP vs EP, and CP vs. TI) at n = 412 wavelengths.
These significant wavelengths were highlighted using a histogram
for every individual class pair. The results of the ANOVA test for
each class pair (CP vs. PA, CP vs EP, and CP vs. TI) are shown in
Fig. 1(a, b, and c). The shaded areas show the wavelengths where
the spectral reflectance from the papyrus swamp is statistically
different from the other three species, with a 95% confidence level
(p-value < 0.05).
The conclusions from the ANOVA test are that the mean re-

flectance between papyrus and the other three species is signifi-
cantly different in many measured wavelengths. These significant
wavelengths are located in three different regions of the electro-
magnetic spectrum (red-edge, near-infrared, and mid-infrared).
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Fig. 1. ANOVA results for each class pair (a) CP vs. PA, (b) CP vs. EP, and (c) CP
vs. TI The grey areas show the wavebands where there are significant differences
between the class pairs within the electromagnetic spectrum.

Table 2 shows the frequency of the significant bands adapted
into the four spectral domains which is widely used in the hyper-
spectral remote sensing of vegetation (Kumar et al., 2001). The ta-
ble shows that there are no statistically significant wavelengths
located in the visible region for the class pairs CP vs. EP, and CP
vs. TI. However, the class pair CP vs. PA has more significant wave-
lengths located all over the spectral regions than any other class
pair (CP vs. EP, and CP vs. TI). All the wavelengths from 350 to 1300
(n = 950) are significant for CP vs. PA as well as 49.95% (n = 600)
ofwavelengths located in themid-infrared region,whereas the sta-
tistically significant wavelengths for the pair CP vs. TI are located
only in the red-edge and near-infrared portions of the electromag-
netic spectrum (n = 449). It can also be seen from Table 2 that the
red-edge and near-infrared are the most important regions where
each class pair has the most statistically significant wavelengths.
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Table 2
Frequency of significant bands for each class pair adapted into the four spectral domains defined by Kumar et al. (2001).

Wavelength region (nm) Description Number of bands Significant bands
CP vs. PA % CP vs. EP % CP vs. TI %

350–700 Visible 351 351 100.00 0 0.00 0 0.00
680–750 Red-edge 71 71 100.00 10 14.08 45 63.38
700–1300 Near-infrared 601 601 100.00 560 93.18 451 74. 04
1300–2500 Mid-infrared 1201 600 49.95 367 30.55 0 0.00
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Fig. 2. Frequency of statistical difference using ANOVA with 95% confidence
level (P < 0.05) between the mean reflectance of papyrus and all other
species.The maximum grey shading shows the wavelengths where papyrus could
be discriminated from all the other three species.

The results can be clearly seen in the histogram in Fig. 2 which
shows by maximum grey shading the wavelengths with the max-
imum frequency. These significant wavelengths have the poten-
tial to discriminate papyrus swamps from all other species (PA, EP,
and TI).
Results of frequency analysis (Fig. 2) reveal that there is no

wavelength that maximized the discrimination of papyrus from
the other species in the visible region. There are however, a few
significant wavelengths located in the red-edge (741–746) nm =
(n = 6) and amajority of wavelengths located in the near-infrared
part of the electromagnetic spectrum (982–1297) nm = (n =
406). Further analysis was then conducted to reduce the number
of these significant wavelengths (n = 412).

3.2. Second level: CART results

CART analysis was applied to reduce the numbers of significant
bands (n = 412) selected by ANOVA analysis to fewer bands
that could optimally discriminate the papyrus from the other three
species. The selection of the optimal wavelengths was done for
each individual class pair; CP vs. PA (n = 17), CP vs. EP (n = 13),
and CP vs. TI (n = 15). The misclassification rate was 0.014, 0.014,
and 0.029 for each class respectively. The results are shown in
Table 3. The common wavelengths among all class pairs: (CP vs.
PA, CP vs. EP, and CP vs. TI) were then selected to find the optimal
wavelengths for all class pairs. It also interesting to note that in
Table 3 there are eight spectral bands that appeared commonly in
every class pair. These spectral bands are: 745 nm, 746 nm, 892
nm, 932 nm, 934 nm, 958 nm, 961 nm, and 989 nm. From this
analysis, these eight wavelengths could potentially discriminate
papyrus swamps from all the three species.

3.3. Third level: Distance analysis results

The Table 4 shows the results of JM distance. The band located
at 892 nm appeared to be the best single band because it produces
best separability when used individually with a JM value of
Table 3
Wavelengths selected by CART for each individual class pair and the misclassifi-
cation rate. Wavelengths that were able to differentiate between all three pairs of
classes are highlighted in grey.

Class
pair

Wavelengths (nm)
selected

No of
wavelengths
(nm)

Misclassification
rate

CP vs. PA 741, 745, 746, 892, 932, 17 0.014

934, 958, 961, 985, 989,
1037, 1107, 1120, 1125, 1130,
1153, 1291.

CP vs. EP 745, 746, 892, 932, 934, 13 0.014

958, 961, 989, 1056, 1119,
1123, 1124, 1153.

CP vs. TI 741, 745, 746, 892, 932, 15 0.029

934, 958, 961, 989, 1010,
1038, 1056, 1119, 1130, 1146.

1.342 (94.91%). Furthermore, it has the highest frequency (100%)
by appearing in every best band combination. The table also
reveals that the use of more bands improves the separability
of the papyrus. Whereas the single band (892 nm) produces an
unacceptable JM value of 1.342, the acceptable average JM values
(≥97%) are reached when using three band combinations, which
achieved 97.45%. The JM value then is improved considerably until
it reaches the best value with the best eight band combinations.
Table 5 shows the JM distance values for each individual class

pair (CP vs. PA, CP vs. EP, and CP vs. TI) within each best band
combination. For the class pairs, CP vs. PA and CP vs. TI, a single
band located at 892 nm produced an acceptable JM distance value.
However, the class pair, CP vs. EP, reached the acceptable value
of JM distance (≥97%) only when using six band combinations
located at 745 nm, 746 nm, 892 nm, 934 nm, 958 nm, and 961 nm,
where the other two class pairs (CP vs. PA and CP vs. TI) reached
total separability of 100% (upper JM value). Unlike the other two
class pairs (CP vs. PA and CP vs. TI), the CP vs. EP pair does not reach
the total separability even when using all eight bands (JM distance
value 1.405). However, total separability starts for the other two
class pairs (CP vs. PA and CP vs. TI) from using the best four band
combinations located at 892 nm, 934 nm, 958 nm, and 961 nm.

4. Discussion

The use of field spectrometry for species discrimination is
widespread at both field measurement and laboratory level
(Skidmore et al., 1988; Schmidt and Skidmore, 2003; Belluco et al.,
2006; Brown, 2004; Rosso et al., 2005; Pengra et al., 2007; Vaiphasa
et al., 2005; Enrica et al., 2006). The removal of redundant data
and relevant data identification are critical considerations in field
spectrometry data processing. One should seek to ensure that this
dimensionality reduction would not cause any loss of important
information relevant to the object under study. Various researchers
have used different techniques to identify important bands of the
electromagnetic spectrum for discriminating vegetation species
with inconsistent results.
In this paper, it was difficult to use one technique to identify

a reasonable number of wavelengths that are most sensitive from
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Table 4
The averages of JM distance analysis for all the three class pair (CP vs PA, CP vs. EP, and CP vs. TI). The symbol (X) indicates the selection of optimal bands in each band
combination.

Best band combinations 745 746 892 932 934 958 961 989 JM value %

Single band X 1.342 94.91
Two bands X X 1.362 96.32
Three bands X X X 1.378 97.45
Four bands X X X X 1.386 98.01
Five bands X X X X X 1.393 98.51
Six bands X X X X X X 1.402 99.15
Seven bands X X X X X X X 1.409 99.65
Eight bands X X X X X X X X 1.411 99.79
Table 5
The values of JM distance for each individual class pair within the selected best band combinations.

Best combination CP vs. PA CP vs. EP CP vs. TI
J-M value % J-M value % J-M value %

892 1.409 99.64 1.210 85.57 1.408 99.58
892, 934. 1.412 99.86 1.263 89.32 1.410 99.72
892, 934, 898. 1.413 99.93 1.308 92.50 1.413 99.93
892, 934, 958, 961, 1.414 100.00 1.329 93.99 1.414 100.00
745, 745, 892, 958, 961. 1.414 100.00 1.351 95.55 1.414 100.00
745, 745, 892, 934, 958, 961. 1.414 100.00 1.379 97.52 1.414 100.00
745, 746, 892, 932, 958, 961, 989. 1.414 100.00 1.399 98.94 1.414 100.00
745, 746, 892, 932, 934, 958, 961, 989. 1.414 100.00 1.405 99.36 1.414 100.00
2150 bands, because the dimensionality remained still high when
only one technique was used (412 wavelengths from analysis
of variance). This could be explained by firstly the agreement
that there is no single technique that has universally proven
superior for the optimal feature selection (Yang et al., 2005), and
secondly, the possible existence of a different subset of features
that discriminates the data equally well (Yeung et al., 2005).
Hence, a new hierarchical method was developed based on the
integration of three analysis levels (ANOVA, CART, and JM) to
reduce the dimensionality in the field spectrometry measurement
data conducted to discriminate papyrus from three other species.
This is an important prerequisite for mapping papyrus swamps
using airborne and satellite hyperspectral sensors. Results of this
study show that the discrimination of papyrus from its associated
species is possible at the field level using field spectrometry.

4.1. Differences in mean reflectance between papyrus and its
associated species

Our results from the ANOVA test presented in Fig. 1 and Table 2
have shown that there is a significant difference in the mean
reflectance between papyrus and each of the three species studied
(PA, EP, and TI) in the red-edge, near-infrared, and mid-infrared
regions. The wavelength regions with the greatest frequency of
significant differences between papyrus and other species can be
seen in a histogram in Fig. 2. These significant wavelengths are
located in the red-edge region from 741 to 746 nm (n = 6) and
in the near-infrared region from 892 to 1297 nm (n = 406).
This confirms the results of previous studies that state that green
leaves have greatest variation in the near-infrared and red-edge
regions (Asner, 1998; Cochrane, 2000; Thenkabail et al., 2004;
Daughtry and Walthall, 1998; Vaiphasa et al., 2005; Schmidt and
Skidmore, 2003). Although no leaf biochemical properties were
directly measured in this study, it is likely that the occurrence
of significant wavelengths in the red-edge region (680–750 nm)
is due to the variation between papyrus and other species
on chlorophyll concentration, nitrogen concentration, and water
content, (Mutanga and Skidmore, 2007; Curran et al., 1990, 1991;
Fillella and Penuelas, 1994). This is because of the physiological
evidence that papyrus is characterized by a tremendous amount of
combined nitrogen, higher chlorophyll concentration, and higher
rates in biomass production than most other wetland species
(Muthuri and Kinyamario, 1989; Mwaura and Widdowson, 1992).
Unlike the other species, papyrus is basically restricted to the
area that is permanently either wet or flooded throughout the
year. This results in a higher water content in a papyrus leaf
compared to the other species. It is therefore assumed that the
chlorophyll and nitrogen concentrations and water content vary
significantly between papyrus and other species. The significant
wavelengths in the near-infrared region, on the other hand,may be
due to variation between papyrus and other species in the canopy
structure (Kumar et al., 2001; Schmidt and Skidmore, 2003). The
differences in canopy and leaf structure of the different species are
shown in Fig. 3.

4.2. Band selection using classification and regression trees (CART)

CART has helped to reduce dimensionality in the significant
wavelengths (n = 412) obtained fromANOVA aswell as to identify
the most sensitive wavelengths to discriminate papyrus (Questier
et al., 2005; De’ath and Fabricius, 2000; Breiman et al., 1984; Van
Aardt and Norris-Rogers, 2008). As we aimed to discriminate only
papyrus swamp, CART was applied for each class pair individually
(CP vs. PA, CP vs. EP, and CP vs. TI). Table 3 shows the bands selected
and the misclassification error rate. Relative to other studies; the
misclassification error rate of this study is very low (Questier
et al., 2005; De’ath and Fabricius, 2000; Van Aardt and Norris-
Rogers, 2008). Therefore we conclude that the selected bands in
this analysis level are optimal bands for discriminating papyrus.
The selected wavelengths were compared to wavelengths selected
in the other previous studies as shown in Table 6. From Table 6 one
can note that the bands selected not only in this study but also in
the previous studies do not totally coincide with one other. This
is explained mainly by the variation in concentration of pigments
and the other optical properties and biochemical contents of the
leaves between species, which leads to the different interactions
within wavelengths of the electromagnetic regions (Asner, 1998;
Schmidt and Skidmore, 2003; Kumar et al., 2001).
However, the general trend, especially within the red-edge

and near-infrared regions, does exist between the studies which
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Table 6
Frequency of wavelengths selected for species discrimination adapted into the four spectral domains defined by Kumar et al. (2001).

Wavelength regions (nm) Reference Selected bands (nm)

Visible (400–700) Daughtry and Walthall (1998) 550, 670
Schmidt and Skidmore (2003) 404, 628
Vaiphasa et al. (2005) 0
Thenkabail et al. (2002) 490, 520, 550, 575, 660, 675
Thenkabail et al. (2004) 495, 555, 655, 675
This study 0

Red-edge (680–750) Daughtry and Walthall (1998) 720
Schmidt and Skidmore (2003) 0
Vaiphasa et al. (2005) 720
Thenkabail et al. (2002) 700, 720
Thenkabail et al. (2004) 705, 735
This study 745, 746

Near-infrared (700–1300) Daughtry and Walthall (1998) 800
Schmidt and Skidmore (2003) 771
Vaiphasa et al. (2005) 1277
Thenkabail et al. (2002) 845, 905, 920, 975
Thenkabail et al. (2004) 885, 915, 985, 1085, 1135, 1215, 1245, 1285
This study 892, 932, 934, 958, 961, 989

Mid-infrared (1300–2500) Daughtry and Walthall (1998) 0
Schmidt and Skidmore (2003) 1398, 1803, 2183
Vaiphasa et al. (2005) 1415, 1644
Thenkabail et al. (2002) 0
Thenkabail et al. (2004) 1445, 1675, 1725, 2005, 2035, 2235, 2295, 2345
This study 0
Fig. 3. Variations on canopy and leaf structure between the four species:
(a) Cyperus papyrus, (b) Thelypteris interrupta, (c) Phragmites australis, and (d)
Echinochloa pyramidalis. Surface leaf structure in Cyperus papyrus is relatively
different from the other species.

reveal the relative importance of using different wavelengths of
electromagnetic spectrum for species discrimination.
The study also confirms the advantages of CART as mentioned

by De’ath and Fabricius (2000) which can be summarized as being:
(1) a simple, easy, and fast nonparametric method regarding the
input data and output, (2) in variance tomonotonic transformation
of the explanatory variables, (3) flexible in handling different
dependent variables and highly discriminatory data. This data
can be easily separated into individual classes or ignored without
influencing the predication.

4.3. JM distance analysis

The JM distance analysis was used to assess the relative im-
portance of band combinations in discriminating between papyrus
and other species (CP vs. PA, CP vs. EP, and CP vs. TI) using selected
bands by CART.We opted to use higher acceptable separability val-
ues (≥97%) rather than ≥95% which was used by Vaiphasa et al.
(2005). This was done in order to achieve a precise selection of the
most sensitive bands to discriminate papyrus.We found that some
bands have more power for discriminating between papyrus and
the other three species by having higher values of JM distance. This
is clearly shown in Table 4, which shows that three bands located
at 892 nm, 934 nm, and 989 nm can produce acceptable average
separability (97.45%). The two class pairs CP vs. PA, and CP vs. TI
are spectrally more distant than the other class pair (CP vs. EP) as
is shown in Table 5. Papyrus, therefore, has greater potential of be-
ing separable from these two species (PA and TI) even with a sin-
gle band located at 892 nm. This is explained by the differences
in the distance separability between the vegetation species (Skid-
more et al., 1988). As shown in Table 5, increasing the number of
bands leads to an increase in the distance between the class pairs.
For example, the four bands located at 892 nm, 934 nm, 958 nm,
and 961 nm show maximum JM values for the two class pairs (CP
vs. PA, and CP vs. TI). These maximum values (as measured using
the JM distance) indicate best discrimination between papyrus and
the two species at these selected bands. CP and EP are similar in
spectra. Therefore, only six band combinations located at 961 nm,
745 nm, 934 nm, 746 nm, 892 nm, and 958 nm have the accept-
able separability for the class pair, CP vs. EP. These six bands have
the potential to discriminate papyrus from its entire co-existing
species. These numbers of bands are consistentwith previous stud-
ies that state that the best six band combinations have the greatest
potential for better species discrimination (Schmidt and Skidmore,
2003). The results from this distance analysis predict the potential
of correct discrimination of papyrus from its co-existing species us-
ing hyperspectral remote sensing (Schmidt and Skidmore, 2003;
Vaiphasa et al., 2005).

5. Conclusions

From this study we can conclude that:
1. Field spectrometermeasurements at canopy level can beused

to discriminate Cyperus papyrus from P. australis, E. pyramidalis,
and T. interrupta. This implies that the mean spectral reflectance
of Cyperus papyrus is different from the other species associated
with it in the same ecosystem (swamp wetlands).
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2. Classification and regression trees (CART) can be used to
reduce considerably the dimensionality and to select the most
important bands for discriminating papyrus from the other species
with a low rate of misclassification.
3. The use of CART has revealed that the greatest discrimination

power for papyrus is located in the red-edge and near-infrared
regions, specifically at 745 nm, 746 nm, 892 nm, 932 nm, 934
nm, 958 nm, 961 nm, and 989 nm. This shows the importance of
the red-edge and near-infrared regions in species discrimination,
thereby confirming previous studies that found strong spectral
variation among the vegetation species in these regions of the
electromagnetic spectrum.
4. Although a single band located at 892 nm can discriminate

Cyperus papyrus from P. australis and T. interrupta, only six bands
located at 745 nm, 746 nm, 892 nm, 934 nm, 958 nm, and 961
nm, show the potential to discriminate Cyperus papyrus from E.
pyramidalis.
Overall, results of this study offer the possibility of extending

field measurements at canopy level to airborne and satellite
hyperspectral sensor data for discriminating Cyperus papyrus in
swamp wetlands in South Africa.
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