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Abstract 

Several alternative approaches for estimating maize yields have been proposed in the last decade, to assist 
food (security) planners in Zimbabwe.  These were mainly aimed at improving crop status reports and 
used various techniques, each with its merits and limitations.  In view of the country’s limited resources, 
development of an accurate yield-forecasting framework that makes use of readily available data and tech-
nology poses a formidable challenge.   
 

The first yield-forecasting framework considered in this study elaborates on the Crop Growth Monitoring 
System (CGMS) developed by the Joint Research Center of the European Union (EU).  This system is 
currently used in crop yield forecasting at European level.  The computed (water-limited) potential pro-
duction can be reached, in theory, under optimum conditions of nutrient supply and weeds, pest and dis-
ease control, and is therefore not yet an accurate indicator of actual future yield levels.  After aggregation 
to a smaller spatial scale, the model’s output is entered in a regression equation of historical real-world and 
modeled yields to forecast the current season’s yield level. The procedure regresses historical yield as a 
dependent variable with historical time trend and a model generated crop growth indicator as independent 
variables.  The time trend is introduced to account for gradual, structural changes in yield that are brought 
about by technological or socio-economic changes.  The model generated crop growth indicator accounts 
for year-specific weather effects.  The indicator can be the standing biomass, the Leaf Area Index (LAI), 
etc.  The yield-forecast relation obtained is then evaluated using a relative error technique.  The equation 
with the highest accuracy for a specific period is used for forecasting purposes.  
 

The second yield-forecasting framework considered in this study is largely based on the same principles.  
It uses the same crop growth model as the first one, but it incorporates also the links between El 
Niño/Southern Oscillation (ENSO) and rainfall anomalies in its crop yield predictions.  To better esti-
mate the further course of the current season’s weather after the moment of prediction, it uses current 
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SOI patterns to improve on the straightforward synoptic weather patterns as used in short-term forecasts.  
The ENSO index employed are the SOI Phases as developed by Roger Stone.  Non-parametric testing of 
twenty-three weather stations suggested that rainfall probability distributions for different Phases differ 
significantly.  To limit the workload, only the 25, 50, and 75% percentiles of the cumulative rainfall distri-
bution functions are retained as surrogate rainfall data.  This tacitly assumes that the forecast part of the 
growing season is characterized by a weather pattern that lies between the lower and upper percentile.  
The thus derived surrogate weather data permit to complete crop growth simulation for the remainder of 
the season.   
 
Evaluating the relationship by matching records of reported and predicted yields for a period of 9 years 
made it possible to successfully perform statistical correction of the predicted yields.  The good correla-
tion (R2adj. = 0.84) between observed and modeled yields is proof of this.  Although the present exercise 
availed of insufficient data to test this statistically, it is tentatively concluded that the second approach is 
outperformed by the first one in terms of accuracy.  Under relative normal conditions, simulation results 
based on CGMS showed very high prediction accuracy, with a long-term average error of 9.4 %.  
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1 Introduction 

Since the 1960s, growing demand for food and fibber products have been met through substantial in-
creases in both area and per hectare yield (FAO, 1992).  Agricultural planners face huge challenges, since 
nearly all land suitable for agricultural use has already been allocated.  Moreover, the total area is expected 
to decrease in size due to depletion of land resources beyond their recovery.  In addition, agricultural pro-
duction especially in underdeveloped countries is variable due to inconstant availability of natural re-
sources such as water.  Since it is hard to keep food availability up with current and expected population 
increase and per capita consumption level, food security management is becoming increasingly important. 
 
To cater for these problems many attempts have been made to evaluate and finally model land use and 
environmental processes that determine the suitability of land for defined uses (FAO, 1978).  These mod-
els ultimately serve decision-making processes, notably the allocation of land to uses that provide the 
greatest sustainable benefits.  Although there remains doubt whether processes of such complexity can be 
understood and modeled, progress has undeniably been made over the last decade. Before the ‘90s, the 
predictive strength of such models was limited since comprehensive evaluations of varying climatic-soil-
crop conditions were lacking and processes were incompletely understood.  Now they are better under-
stood and can be partly modeled.  As interest in automated data processing and analysis increased during 
the last two decades, tools such as Geographic Information Systems (GIS), Remote Sensing (RS), auto-
mated land evaluation systems (ALES) and digital databases have become generally available.  This devel-
opment has altered land use planning since simulation models facilitate multiple-objective ‘what if?’ sce-
nario building.  A most promising development is that of the quantified models.  Many of such models 
are under development or have already been developed and simulate expected plant or animal growth and 
yields under varying circumstances.  Examples are models developed by the FAO, or the PS12(3) model 
described by Driessen and Konijn (1992). 
 
If confidence in simulation modelling increases, i.e. if conditions can be adequately modeled, crop growth 
simulation holds promise for early-warning applications.  A reliable forecast system would reduce risks in 
potentially 'bad' years and maximize returns in potentially ‘good years’.  Such a framework for monitoring 
and forecasting yield would be useful to a broad range of users.  Possible beneficiaries are grain producers 
and traders; particularly those involved in import and export, governments, financiers, farmers or farming 
co-operatives and production input suppliers, milling companies, extension services, and state planners, 
policy- and decision-makers.  Decision-makers in South Africa already make use of maize yield forecasts 
to fix the maize price in March for bad seasons or farmers are advised to change their crops to more wa-
ter-stress tolerant ones.  In cases of ‘good’ seasons, milling activities are planned accordingly as well as 
arrangements for transport and silo storage and production loans.  This has resulted in decreased risks 
and overall greater profits (de Jager et al., 1998).   
 
Although attempts are currently under development, a reliable framework for crop yield forecasting is not 
available for Zimbabwe.  Some of the questions that may arise when such a system will be developed are: 
“For what crop?” and; “What framework should be used?”.  The answer to the first question is relatively 
simple.  Although not particularity suitable to the Zimbabwean climate, maize is the main staple crop and 
is used for a variety of uses, e.g. for human consumption (raw grain, crop residues for fuel or further 
processed to e.g. beverages), as a base for industrial products (oils, syrup and starch) or animal consump-
tion (fodder, bedding).  It contributes on average 40% of the calories needed in peoples’ diets.  
 
Since there are strong reasons to believe that a maize forecasting framework could yield valuable informa-
tion, the second question “What framework should be used?” deserves more attention.  There are many 
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different approaches to forecasting yield, each having its merits and weak points.  Different approaches 
classified according to the information they use are given in Appendix IV.  Most promising are methods 
that integrate weather forecasting with a crop growth model.  The methods described vary in complexity 
but have in common that they forecast a season’s climatic patterns with the implicit assumption that the 
variability of future climate will be similar to that of historical records.  At best such an analysis of anoma-
lies in historical climatic conditions can provide an envelope in which season forecasts can be fitted; the 
direction and extend of the variance cannot be predicted.  Hence, modeled yields may prove inaccurate. 
 
At the same time, Vossen and Rijks (1995) proposed to combine a linear time trend with the results of 
crop growth simulation to explain the annual variation of yield per hectare.  The Crop Growth Monitor-
ing System (CGMS) at the Joint Research Center of the European Union is based on this premise.  Statis-
tical analysis is used to select the most robust predictor of yield for different stages in the growing season.  
To accomplish this, four indicators of modeled yields are regressed against historical yields, and the most 
significant one is used to forecast yield.  These model results reflect the compound effect of soil-weather 
conditions throughout the growing season on crop growth.  To account for the influence of increasing 
farmers’ skill and use of technology a fifth predictor, the so-called ‘time trend’, is used.  This trend of ris-
ing yields can be observed in official yields (Hooijer and van der Wall, 1994). 
 
Amidst all the complexities, soil and crop input variables could be considered relatively constant; the de-
termining, variable force in crop growth simulation for early-warning applications remains the weather 
(Sharifi et al., 1997).  As described above, CGMS is not based on weather forecasts.  Instead, it uses model 
predictors that differ in nature and accuracy as the season develops.  In this manner, it avoids some of the 
difficulties as experienced in the traditional methods are described in Appendix IV.  At approximately the 
same time, but very different in nature, another framework for predicting yield was developed.  This ap-
proach does not attempt to ‘avoid’ forecasting weather by using statistics and interpreting indirectly 
weather variables, but it attempts to improve the ‘robustness’ of weather forecasting itself.  Indeed, better 
results have been reported by researchers basing their forecast weather data on the findings of Stone et al. 
(1996) who showed that southern oscillation index (SOI) phase system provides an accurate predictor of 
rainfall in certain regions of the world.  The SOI method considers 'phases' of the SOI; that is, the 
method uses both change and value of the SOI to derive cumulative rainfall probability distributions for 
any location.  Because every month for every year can be placed into a particular analogue of months, 
those months can be placed together to take out daily rainfall, evaporation, temperature, and radiation.  
These data can be used as input for a crop simulation model.  Consequently, the system provides both 
probability distributions of rainfall and potential yield.  Justification of this technique can be found in 
Meinke and Hammer (1998) who demonstrated that highly significant differences in peanut yields in Aus-
tralia exist among seasons grouped according to the SOI phases of Stone.  De Jager et al. based their 
weather forecast component of a calibrated CERES—maize model on this same principle, with the inten-
tion to forecast the extent and severity of drought in maize in the Free State Province of South Africa one 
month before the growing season started.  The accuracy of this type of forecasting system is yet uncertain 
but the high correlation value (r²=0.86) for simulated versus actual yields is an encouraging sign (de Jager 
et al. 1998).  A formidable challenge lies in applying both of these promising methods to a study area in 
Zimbabwe and comparing their results. 
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2 Objectives 

The main aim of this research is to contribute to the development of a framework for maize yield fore-
casting by setting up and testing the relative usefulness of two approaches.  This is done for a pilot area in 
Zimbabwe detailed in the sub-section Study area, Chapter Research Approach.  
 
The two yield-forecasting frameworks are briefly introduced here and are further detailed under sub-
section Methods and materials, Chapter Research Approach.  With soil and crop input variables relatively 
constant, the determining factor for yield forecasting is the climate-soil interaction (Sharifi et al., 1997).  
Therefore, the frameworks should differ significantly, in how they address the interaction between climate 
and soil.   
 
The first yield-forecasting framework, referred to as YFF1, uses CGMS as introduced in Chapter 1.  This 
method was selected because its output is a reflection; inter alia, effect of climate conditions throughout a 
growing season on crop growth.  CGMS uses a linear regression equation to forecast maize yield that may 
vary for different stages in the growing season for different regions.  The regression equation includes the 
average actual (statistical) yield as the dependent variable and a model indicator to account for the year-
specific weather effects, with or without a time trend for yearly increases or decreases of yield observed as 
a result of technological or possible socio-economical changes.  This can be biomass, Leaf Area Index 
(LAI), etc., as the independent variables.  After this, the prediction errors for all these equations are com-
pared quantitatively.  The elementary predictor with the highest accuracy is used for the forecasting pur-
poses.  The method has the potential of giving accurate (maize) yield predictions and is therefore selected 
for comparison.  
 
The second yield-forecasting framework, referred to as YFF2 hereafter, is largely based on the same 
premises.  It uses the same crop growth model and regression equation as YFF1, but for yield forecasting 
it also uses the alleged links between El Niño/Southern Oscillation (ENSO) and rainfall as introduced in 
Chapter 1.  Note that the forecasting method does not look at synoptic weather patterns to give short-
term forecasts.  Instead, it uses current SOI patterns and suggests future rainfall probabilities based on 
lag-relationships derived from historical SOI patterns to predict the further course of the current season’s 
weather.  With this surrogate weather data, the crop simulation can be completed for a season.  Both sys-
tems are further detailed in the following Chapters. 
 
Since the usefulness of yield indications increases as they come available earlier and with more accuracy, 
the prediction error and the time of forecasting are used to compare the two frameworks.  The prediction 
error is the relative error in the prediction of a yield forecast expressed in percentages by taking the differ-
ence between simulated and actual maize yield relative to the actual maize yield.  This is done on a 
monthly basis for the forecasting period.  The forecasting period is defined as the growing season, which 
is generally equivalent to the period November to May.   
 
Although it cannot be proven a priori, it is expected that the relative usefulness of YFF1 is less than that of 
YFF2.  This is because accurate predictions of maize yield earlier in the season are valued higher and the 
accuracy of YFF1 is expected to increase only halfway the growing season as more accurate model indica-
tors of climate-soil interaction come available, e.g. water-limited storage organ yield.  The weather fore-
casting of YFF2 allows regression of more trustworthy model indicators of a further or even fully devel-
oped crop, even though at the time of forecasting not physically present.  In addition, the weather fore-
casting power itself is also expected to improve as the season progresses as it benefit from updated infor-
mation on the state of El Niño.  
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2.1 Assumptions 

For the feasibility of the research, assumptions have to be made.  The following assumptions hold for 
both frameworks in general. 
 

(a) Literature indicates that cultivation in the communal lands of Zimbabwe is characterized by small, 
irregularly shaped fields, which are inter-cropped and scattered across a vast expanse of bush and 
trees (Rugege, 1998).  The area under maize is therefore estimated by a land classification module as 
part of CGMS, which is based on an evaluation of soil properties.  Assumed is that this generalization 
does not affect the accuracy of the production estimates.   

 

(b) The reliability of the official maize yield statistics is an important factor.  The accuracy of official 
yields is unknown.  This makes it difficult to separate the effects of simulation results from errors in 
the official statistics.  Therefore, historical maize yield statistics are assumed accurate. 

 

(c) The (water-limited) production maximum that will be obtained using the crop growth model can be 
reached under optimum conditions of nutrient supply, weed, pest and disease control, etc. and is 
therefore not yet an accurate indication of future yield.  After aggregation to higher spatial scale, the 
model indicator is entered in a regression equation based on historical relationships (nine-year trend) 
between actual and modeled yield to arrive at a yield forecast for the current season.  The assumption 
made here is that future farming practices only vary according to this trend.   

 
Assumptions made with respect to the yield-forecast procedure of YFF2: 
 

(a) To limit the workload, the testing of this yield-forecast framework will be limited to three weather 
scenarios per season.  From the analogue years based on the current SOI phase the 25, 50 and 75% 
percentiles are selected to extrapolate the current season's weather.  Therefore, an implicit assumption 
is that the forecast part of the growing season receives weather lying between the lower and upper 
rainfall totals head from the cumulative probability distribution. 

 

(b) Since differences in rainfall probability distribution are tested for significance for only twenty-three 
locations, there is of course a possibility that significant differences identified are there by chance.  It 
is an arguable assumption that the sample, i.e. the meteorological stations tested, is representative of 
the whole study area. 
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3 Research approach 

The following Chapter describes the approach taken to test the two yield-forecasting frameworks for their 
relative usefulness. 

3.1 Research questions 

Research questions have been formulated to guide the research and permit a differentiation between pri-
mary and secondary issues.  They relate to yet unknown or not fully understood underlying mechanisms 
of the two yield-forecasting frameworks under comparison.  

3.1.1 Common issues 

The first research question relates to the regression analyses of observed yields against model outputs.  
When actual yields do not show good correlation with modeled yields, changing the degree of aggregation 
up to levels with more reliable yield statistics does not always solve this problem.  Possible introduction of 
new variables could improve the regression analyses. 
 
At present, a limited number of model output variables, e.g. crop development stage, biomass, and mod-
eled grain dry matter (‘yield’) are used with or without a possible existing time trend to relate yields of an-
nual crops to the crop simulation model outputs.  This rigid approach for selecting variables is imposed 
by the fact that most of the crop model inputs and outputs that may significantly account for inter-annual 
yield variability are strongly cross-correlated.  It is on the other hand possible that some variables not used 
to avoid data redundancy may still, from a common sense point of view, significantly contribute to an im-
proved explanation of yield variability.  Rainfall is for example strongly related to soil moisture reserve, 
itself related to dry matter and grain production.  But rainfall more than the simulated water requirements 
during part of the growing cycle might be useful to explain unexpectedly low yields of certain crops in 
certain regions or during certain years (Vossen, 1994).  The possible number of variables here is almost 
unlimited and the selection must be careful and based upon objective considerations reflecting real con-
straints to crop production.   
 
For example, excess rainfall during the flowering stage and/or water logging may be relevant to include, 
considering the agro-meteorological problems of the region, also observed in the last couple of years.  
The rainy season in Zimbabwe, especially in the northern areas, is not continuous from November to 
April.  In general, it consists of alternating periods of relatively wet and dry spells lasting about 6 days 
which increases the change of water logging. 

3.1.2 Framework-specific issues 

The following research questions are listed separately, since mutually exclusive for both yield-forecast 
frameworks. 

3.1.2.1 YFF2 

Research has shown that the behavior of the Southern Oscillation is a useful indicator of summer rainfall 
over Zimbabwe (ZIMMET, 1998).  However, to justify feeding a cop growth model with surrogate 
weather data generated and based on this premise an in-depth analysis of the impact of El Niño on the 
region is needed first.  The temporal and spatial characterization of El Niño for rainfall estimation detailed 
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in the sub-section Surrogate meteorological data and their processing: YFF2 was required to address the following 
research questions: 
 
(1) YFF2, which is based on the alleged links between ENSO and rainfall anomalies, assumes that signifi-

cant differences in seasonal rainfall exist in the study area and affect maize crop seasons grouped ac-
cording to Stone’s SOI phases (Stone et al., 1996).  Since this assumption needs verification, a non-
parametric test (Kruskal-Wallis) has been applied for several seasons and for several meteorological 
stations in the area.  The relating sub-hypothesis can be extracted as follows: 

 
The null hypothesis (Ho) for research is that there is no systematic difference in forecast period (FP) 
rainfall totals between the seasons grouped according to the different SOI phases; versus the alterna-
tive hypothesis (Ha) for research, that there is systematic difference in FP rainfall totals between the 
seasons grouped according to the different SOI phases. 

 
(2) El Niño/Southern Oscillation (ENSO) derived weather outlooks are based on the assumption that 

the atmosphere is the best model of itself (Unganai, 1998).  In view of the profound role of historical 
rainfall data in these models and the vast amounts of data required, a question to be answered is 
whether rainfall patterns in the recent past are as strong directed by ENSO as observed in earlier 
times.  I.e., when historical rainfall data are stronger correlated with the state of El Niño than recent 
rainfall data, it is also not likely that El Niño will have a major impact on future rainfall patterns ei-
ther.  Thus, it becomes less suitable for forecasting purposes.  Furthermore, it would greatly compli-
cate the technical applicability of the indicator as the number of relevant observations would then be-
come limited to those observed in the time-period of strong impact.  The robustness of the statistical 
analysis would suffer correspondingly. 

 
(3) The nature of weather forecasts currently provided by the Meteorological Department of Zimbabwe 

does not fully comply with user demands.  For regional priority management in malaria control or, as 
in our case, crop growth modelling, quantified rainfall estimates are required.  Preferably at a high spa-
tial detail, rather than the national estimates that are expressed in such terms as “ 70% chance of re-
ceiving above average rainfall”.  This confronts us with another question for research: “Are there dif-
ferences between weather stations in how they are affected by ENSO and does this result in spatially 
different weather outlooks?”  Another question in this context is whether it is possible to produce 
quantified rainfall forecasts within a reasonable error margin using a model based on the ENSO prin-
ciple.  Although statistical significance, i.e. a comparison of medians, is a useful measure to justify or 
deny an indicator to be used for modelling, it is not conclusive as such as a component of forecasting.  
Ultimately, the error observed in forecasts is of greater value since it indicates the amount of variation 
in rainfall totals that can be explained. 

 
(4) The scale at which crop performance is monitored is fit for the analysis of a region whereas the 

ENSO rainfall estimation is on a point basis.  To justify interpolation of these point estimates, geo-
statistical analysis of the phenomena involved is required.  Only if the significance of the predictor is 
sufficient and spatially structured, regionalisation of ENSO weather outlooks are justified. 

3.2 Methods and materials 

This Chapter describes the methods used to test the hypothesis and to answer the research questions 
stated in the preceding Chapter.  Firstly, the study area and the criteria that have been used to select this 
area are summarized.  This is followed by an explanation of the research methods and materials used in 
this comparative analysis. 
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3.2.1 Study area 

In this sub-section, the area for study is briefly described and an explanation is provided for its selection.  
Availability of historical weather data and yield statistics were the main criteria for selecting an appropriate 
study area for this research.  Zimbabwe is endowed with a relatively dense and well-maintained network 
of meteorological stations.  Zimbabwe also has a National Early Warning Unit (NEWU) in the depart-
ment of Agricultural Technical and Extension services (AGRITEX) that collects yield statistics in a rela-
tive objective manner since 1989, when the Food and Agricultural Organization (FAO) provided technical 
assistance in setting up an improved crop monitoring methodology.  Therefore, the study area was se-
lected within this country.  The study area itself is Mashonaland West Province, located in the northern 
part of Zimbabwe extending from the communal area of the Zambezi Valley in the north to the (semi) 
commercial areas in the south.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1, Location Map Study Area 
 

Geographically this area extends from 15º 30’ - 18º 50’ S, 28º 00’  -31º 00’ E. Physiographically, most of 
the area belongs to the Middle-veld relief region with altitudes varying from 450 to 1200 m. 
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3.2.2 Research methods 

In this sub-section, the methods and materials used to test the hypothesis and to answer the research 
question have been described. 

3.2.2.1 Yield forecasting 

Since actual land use systems are very complex, modelling them in a realistic manner is not possible or not 
practicable (Driessen and Konijn, 1992).  Therefore, the research reported here addresses singular land-
use systems.  The following system components are more or less common for both yield-forecast frame-
works under comparison.   
 

Basic data input at the first hierarchical level comprises weather data, soil data, farm management data, 
and crop information.  Predefined crop growth simulation and forecasting procedures generate crop yield 
per land unit.  Basic data are stored in a GIS and the structure of this system is presented in Figure 2. 

 

Figure 2, Flowchart General Yield Forecasting Pathway 
 

To improve the objectiveness of the comparison of the two yield-forecasting frameworks discussed in this 
study, its components are processed in a possibly similar manner.  The main difference between the two 
approaches is in the forecast procedure itself.  Therefore, only when system components related to YFF1 
and YFF2 differ significantly they are treated separately. 

3.2.2.2 YFF1 and YFF2 

The following section describes the two yield-forecast frameworks under comparison.  Both are based on 
the CGMS model, developed in the framework of the MARS (Monitoring of Agriculture by Remote Sens-
ing) project of the Joint Research Center (JRC) of the Commission of the European Communities.  
CGMS is developed around the model WOFOST 6.0, a crop growth model developed by the DLO–
Winand Staring Center (SC–DLO) in collaboration with the Research Institute for Agro biology and Soil 
Fertility (AB-DLO), both located in Wageningen, The Netherlands.  WOFOST is a dynamic explanatory 
model.  It simulates crop growth based on different sets of crop parameters at a lower level of integration.  
It takes account of certain soil characteristics and uses daily meteorological data that can be assumed to be 
homogeneous within the land mapping unit area.  WOFOST could be described as a ‘point’ model in the 
sense that it performs calculations for one single point in space/time.  WOFOST is incorporated in 
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CGMS and to allow the application of the model on a larger scale, there is a need for the identification of 
areas where the meteorological data and the soil characteristics can be assumed to be homogenous. 
 
The CGMS aims to monitor agricultural season conditions and make the yield forecasts at sub-regional, 
regional, and national level.  To arrive at these forecasts, the system combines crop growth simulation 
with interpolation algorithms, data handling functions and statistical procedures.  Operationally, the model 
is run approximately every ten days to simulate crop yields for several crop varieties in various farming 
environments, but uses daily meteorological data as input.  
 
The CGMS system is founded on the notion that agricultural production is the result of interaction be-
tween weather, crop, soil and farm management.  Within a given region, crop and soil characteristics and 
farm management are assumed relatively constant over years.  Variation in agricultural yield can be ex-
plained by variation in weather conditions. 
 
CGMS is being used at JRC for regional crop state monitoring and yield forecasting at regional and na-
tional scales on individual years.  The area for which these calculations are being performed covers all of 
Europe.  The extension beyond the members’ states of the EU is a recent one, and most experience has 
actually been gathered with the operation of the system for the countries of the EU.  
  
The meteorological data (and their pre-processing), the soils database, the crop knowledge and the model 
themselves are integrated in one single system, composed of 2 main modules: 
 

(1) The module processing daily meteorological data: quality control, formatting and patching of data 
gaps/missing values; calculation of derived parameters such as solar radiation (from cloud cover or 
sunshine duration), vapor pressure and potential evapotranspiration; all interpolated to a regular grid. 

 

(2) The agro-meteorological crop growth simulation.  Since various soil types coexist in a grid, outputs 
for a basic square are produced for each of the major soil types and profile available water capacities, 
to reach a representativity of approx. 80% of the suitable soil coverage. 

 

The following module has been added by the author of this research: 
 

(3) A statistical module, relating the model outputs, through a regression analysis and possibly in combi-
nation with a technological time trend function based on historical yield data, to series of observed 
(sub) regional yields 

Module One: weather data 

The generation/identification of weather data follows the same procedure for YFF1 and YFF2, with this 
difference, that YFF2 uses not only available actual meteorological data, but accepts and processes surro-
gate weather data as well. 

Actual meteorological data and their processing: YFF1 and YFF2 

Figure 3 gives the network of the major meteorological stations for Mashonaland West Province and 
neighboring regions from which both the historical and current data are used for interpolation to 50 x 50 
km grid cells.  Only those stations are depicted from which on a daily basis, on or more of the input pa-
rameters required for running the models are available.  In practice, it represents the WMO network man-
aged by the Zimbabwean Meteorological Services.  In addition, stations recording only rainfall data are 
included to improve the interpolation of this parameter.  Although the number of stations that has data to 
calculate additional parameters, e.g. radiation, is not evaluated by the model, there is a need for a geo-
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graphically well-distributed network of these critical weather stations.  In total 40 stations are used for 
crop growth modelling as listed in Appendix I.   
 

Stations recording one or more of the necessary parameters are used, after decoding, filing, quality evalua-
tion, and replacement of missing values for calculation of derived parameters (e.g., potential evapotranspi-
ration and estimated global radiation).   
 
The interpolation of daily meteorological data from the synoptic network of CGMS is largely left unmodi-
fied, with only a few adjustments to suit the use of the model to the less favorable conditions as observed 
in the study area.  The adjustment relates to the fact that not all weather stations have complete sets.   

Figure 3, Network of Meteorological Station and 50 X 50 km Grid 
 
Often, days are missing.  Some stations have for certain years very few data.  These stations should be 
avoided in further calculations.  Therefore, a check is performed on the number of daily values in a year.  
Each relevant variable is checked against the total number available records in that year.  Seven variables 
are taken into account for this analysis: wind speed at 10 meters height, sunshine duration and cloud 
cover, vapor pressure, minimum temperature, maximum temperature and rainfall.  The variables sunshine 
and cloud covers are cross-linked.  If one of them is available, the other one can be calculated.  The first 
check is based on a classification with respect to the type of data that station can deliver.  Three classes are 
distinguished: rainfall data, temperature data, and all other variables.  The second check is based on the 
temporal availability of the data in these classes.  The selection procedure determines for each weather 
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station if the availability for a class of data falls above a certain threshold.  If so, then the station will be 
marked as a valid station for that type of data.  The threshold value can be selected per station, but is ap-
plied to all three categories.  Appendix II gives an example of the scoring of weather stations per grid for 
this research. 
 
A typical example would be a threshold value of 80%, i.e. if the station data in a particular class are avail-
able for more than 80% of the time, the station will be used for the interpolation of the data in that class.  
The timeframe taken into account for the check is the total number of days in the year for past years (365 
days for normal years and 366 days for leap years) and the number of days up to the ‘end-of-simulation’ 
day in the current year.  This is where the adjustment is required.  The threshold determining the exclu-
sion of stations in the interpolation procedure required downward modification to arrive at an acceptable 
compromise solution, where the quality of interpolation procedure benefits from more stations with less 
accurate records than very few stations with good records.  The modified threshold is set to 50%.  Miss-
ing daily weather data on stations can be replaced by reference weather.  Reference weather is defined as 
daily long-term average values.   
 
The method for interpolation of the weather data is used to perform a point-to-point interpolation from a 
geographically irregularly distributed set of weather stations to a regular grid of 50 x 50 km.  This is based 
on a knowledge-based method that consists of selection of the optimum set of at most four stations used 
in the interpolation.  To determine which stations to use, and indeed how many stations to use, a combi-
nation score is used.  The interpolation is performed using the best possible station configuration for each 
grid and each year, based on the algorithm developed by Van der Voet et al. (1993).  A set of so-called 
‘best’ stations is selected from the set of all weather stations having sufficient data for a given year as ex-
plained before.  Thus, for different years different sets of stations can be selected for the calculation of 
the grid weather.  The actual interpolation, once this selection has been made, is in fact a simple average 
for most of the meteorological parameters, corrected for an altitude difference in case of temperature and 
vapour pressure.  The exception is rainfall data, which are not interpolated.  The rainfall for a grid is taken 
from the weather station(s) that is the most similar to the grid center in terms of altitude and distance to 
the coast. Presence of natural barriers is also evaluated.  The other weather variables are used for the in-
terpolation, which is done by averaging the observed daily data from the optimum (set of) weather sta-
tions, surrounding the center of the grid cell.  The interpolation algorithm used for the estimation of daily 
weather data on a regular grid is described in Appendix C of the User Manual for the CGMS Model (Mahal-
der and Sharifi, 1998).   

Surrogate meteorological data and their processing: YFF2 

In the following sub-section the method used to feed the crop growth model with surrogate weather data 
is detailed. Since no software is available for temporal and spatial characterization of El Niño for rainfall 
estimation to answer the research questions as stated in the section Research Questions, sub-section YFF2, 
the following model was prepared by the author. 

Agro meteorological ENSO Rainfall Analysis and Forecast Model 
The El Niño/Southern Oscillation (ENSO) Model prepared for this study uses a statistically based ap-
proach in producing seasonal weather outlooks based on the assumption that the atmosphere is the best 
model of itself.  The relationship between ocean surface temperature anomalies in the eastern Pacific and 
the occurrence of rainfall over Zimbabwe is one of them, also referred to as a tele-connection.  Tele-
connections represent a statistical relationship (i.e. correlation) from which causality cannot necessarily be 
inferred.  In analogue models, the predictand and predictor are determined first, to which a close analogue 
is sort from historical cases (Unganai, 1998).  El Niño is the ocean component and slight anomalies herein 
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(+/- 1 to 3 °C) can cause significant changes in the Southern Oscillation, which is the atmospheric com-
ponent.   
 
Since no tight boundaries between different 
regions exist in the atmosphere, changes in 
one of them can have noticeable effects in an-
other, even if far apart.  However, El Niño 
does have different impacts in different parts 
of the world and at different times of the year.  
During the northern hemisphere winter, El 
Niño’s expected impacts include drought in 
southern Africa, continuing drought in north-
ern Australia and Indonesia, high rainfall in 
three continents and unseasonably warm 
weather in parts of North America and eastern 
China.  Although the ENSO model was pre-
pared specifically for this research, it can be 
applied to any of the regions depicted in Figure 4.  Figure 4, Climatic impacts of warm El Niño events 
(Oct- Mar) Source: FAO website on El Nino. 

The predictor 
Literature suggests to use SOI phases to calculate future seasonal rainfall probabilities since it gives a more 
accurate result than using SOI averages (QDPI, 1995).  Therefore, recent trends in the SOI have been 
used to calculate the probabilities of receiving particular amounts of rainfall over a particular location.  A 
comparison with other monthly SOI values can be found in Allan et al. (1996b). 
 

The original index is calculated as follows (Troup et al., 1965): 
 

.difference the of deviation Standard the         isf.St.Dev.Dif
and; mean, term-long minus meanmonthly  anomaly  pressure the          is          PA()
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−
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A SOI of -10 means the SOI is 1 standard deviation on the negative side of the long-term mean for that 
month. Troup's monthly SOI (from the year 1876 onwards) is derived from normalized Tahiti minus 
Darwin mean sea level pressure.  The SOI Phase is determined by the change in average monthly SOI 
over the two previous months.  The phases of the SOI were defined by Dr Roger Stone, QDPI, who used 
cluster analysis to group all sequential two-month pairs of the SOI (from 1882 to 1999) into five clusters.  
The five SOI phases are defined as follows: Phase 1, consistently negative; Phase 2, consistently positive; 
Phase 3, rapidly falling; Phase 4, rapidly rising; and Phase 5, consistently near zero.  The boundaries be-
tween phases (clusters) were further developed by Dr Jeff Clewett, QDPI, who plotted the distribution of 
the clusters and mathematically defined boundary curves to minimize errors.  The SOI Phases were kindly 
provided by Queensland Department of Natural Resources and the Department of Primary Industries, 
Australia. 

The predictand 
The predictand is formed by summed rainfall figures that cover part or all of the growing season of a spe-
cific summer crop with a limit of six consecutive months.  Within this boundary, the period for which 



INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES 13 

rainfall totals are summed, i.e. the forecast period (FP), is dependent on the current date and the latest 
possible month within a crop specific growing season.  This is defined by the computer model, as more 
rainfall outlooks are possible starting from and within the actual growing season. 

Computer Model 
The computer model itself is a Microsoft Excel 2000  Template augmented with functionality and wiz-
ards programmed in Microsoft Visual Basic 6 .  The added functionality permits in-depth analysis and 
consists mainly of “SQL like” querying and filter commands and wizards.  The “open source” character 
of the template permits users to understand and question the procedures or to further tailor-make it to 
answer specific research questions.  This is not possible with any of the existing software such as 
RAINMAN.  The user is guided through the steps as outlined in the model structure in (semi) automated 
and user-friendly way (see Figure 5). 

Model Structure 
The model exist of the following two main components: 
 

(1) Statistical Component, consisting of: 
i. Data Exploration Tool, and; 
ii. Kruskal-Wallis Rank Test, and; 
iii. Tool to assess usefulness of Kruskal-Wallace results. 

 

(2) Seasonal Weather Forecast Component 
i. Quantified Rainfall Forecast, and; 
ii. Season Similarity Tool. 

 

The Data Exploration Tool was developed mainly to provide information about the populations under 
comparison, i.e. historical FP rainfall totals grouped by SOI Phase similarity, by means of Box & Whisker 
Diagrams.  The Kruskal-Wallis Rank Test permits a first look at the impact that ENSO has on the prov-
ince, whereas the strength of the probability to receive a specific amount of rainfall in a FP is more con-
clusive in this matter.  This is provided by the tool under 1.iii.  In summary, the Statistical Component 
facilitates analysis of possible differences in the statistical correlation, in the probability to receive a spe-
cific amount of rainfall, and in absolute difference between a typical positive ENSO year and a typical 
negative ENSO year over different periods in history.  Based on these results, periods in the year, i.e. the 
months, which are well correlated with El Niño, can be isolated.   
 

There are two different model versions.  The first model version takes the predictor, i.e. the SOI phases, 
as they were calculated by Roger Stone and is called “Single Phased”.  The advantage of defining the pre-
dictor is this manner is that the characterization can be more specific.  Thus, the odds of being able to 
forecast more specific are greater.  However, this only holds if enough years with rainfall figures are on 
file.  The second model version, called “Double Phased”, was introduced since for some rainfall stations 
less than 40 years of recorded data are available, resulting in cumulative distribution functions (CDF) 
based on only two or three observations.  Statistically, this is insufficient and may result in very inaccurate 
weather outlooks.  Therefore, Phases of similar nature were merged.  Phase 1, consistently negative, and 
Phase 3, rapidly falling were merged to Phase 1/3, negative.  Phase 2, consistently positive, and Phase 4, 
rapidly rising were merged to Phase 2/4, positive and Phase 5, consistently near zero, remained unmodi-
fied.  Note that the predictive capability of this model version may suffer from this generalization.  
 

Once the results of the Statistical Component are analyzed from which the forecast strategy is determined 
for a specific rainfall station, the actual forecast can be prepared.  The Quantified Rainfall Forecast com-
ponent does this as follows.  Firstly, probability distributions, i.e. Cumulative probability Distribution 
Function (CDF), for each of the candidate FP rainfall totals have to be established for each SOI phase for 
each of stations in the study area based on the data available.  Each of the selected stations, 23 in total, has 
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data stretching for at least 30 years (up to 108 years).  When forecasts are made for a given station, the 
CDF corresponding to the current SOI phase is selected.  From this CDF the lower, upper and middle 
percentile are taken out and used as forecast rainfall totals (see Figure 7).  The years that correspond to 
these figures within a user-defined deviation are identified by the Season Similarity Tool to permit judi-
cious selection of surrogate daily rainfall figures.  This functionality is added since a specific season may 
have an intra-seasonal distributed rainfall that is rare and therefore less suitable to be used as input for 
crop growth modelling purposes. 
 

The input of the model consists mainly of rainfall data, SOI Phases, a crop calendar, and some user-
preferred model options prompted for by the included wizards (see the User Input symbols, Figure 5).  For 
one of the stations a detailed example is provided in the next sub-section to illustrate the model.  The 
processes and inputs/outputs of the Agrometeorological ENSO Rainfall Analysis and Forecast Model are 
described in Figure 5. 
 

 

Figure 5, Structure of Agrometeorological ENSO Rainfall Analysis and Forecast Model 

The case of Karoi 
For the following station an example is worked out in this sub section: 
 

TABLE 3-1 
Station Characteristics 

Name Karoi 
LAT Degree -16.500 
LONG Degree 29.370 
Elevation 1344 

Data

Predefined process

Output

User input

Intermediate Output

FLOWCHART LEGEND

Historical
Monthly

SOI Phases

Historical Monthly 
Rainfall Totals

Analogue Years
based on Phase

Similarity

Locking, i.e. current,
SOI Phase (s)

Sorting
Procedure (s)

Forecast Period
(FP) Definition

Lower, upper and
middle Percentile

Filter

Current
Date

Forecast
Method

Cumulative
Distribution Function

FP
Rainfall Totals

Cumulative
Rainfall

Long-term FP
Rainfall Totals

Ranking and
Scoring

Season Similarity
Selection

Crop
Calendar

Deviation
(max.)

Kruskal-Wallis
Test

Crop Specific,
Quantified Rainfall Forecast
& Corresponding Probability

Historical Seasons Similar P-value & automated
Hypothesis Testing

Significance
level

SOI
Phases

Rainfall
Figures

Data

Predefined process

Output

User input

Intermediate Output

FLOWCHART LEGEND

Data

Predefined process

Output

Data

Predefined process

Output

User input

Intermediate Output

FLOWCHART LEGEND

Historical
Monthly

SOI Phases

Historical Monthly 
Rainfall Totals

Analogue Years
based on Phase

Similarity

Locking, i.e. current,
SOI Phase (s)

Sorting
Procedure (s)

Forecast Period
(FP) Definition

Lower, upper and
middle Percentile

Filter

Current
Date

Forecast
Method

Cumulative
Distribution Function

FP
Rainfall Totals

Cumulative
Rainfall

Long-term FP
Rainfall Totals

Ranking and
Scoring

Season Similarity
Selection

Crop
Calendar

Deviation
(max.)

Kruskal-Wallis
Test

Crop Specific,
Quantified Rainfall Forecast
& Corresponding Probability

Historical Seasons Similar P-value & automated
Hypothesis Testing

Significance
level

SOI
Phases

Rainfall
Figures



INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES 15 

Internal # 2 
WMO_nr 67765020 

 

Forecast Strategy 
The forecast strategy for Karoi was determined as follows.  The model was initialized with input data 
comprising amongst others the month maize generally attains maturity (assumed similar for whole the 
province in this procedure) and by setting the significance level to a user-defined level for the Automated 
Hypothesis Test Tool.  In our case, this was set to 95% for all stations analyzed.  Hereafter, for each of 
the candidate months preceding their corresponding forecast periods the forecasting strength was identi-
fied.  This was done for both model versions separately.  “The forecasting strength” was defined by the 
statistical significance of the relationship and the observed long-term difference in FP rainfall totals be-
tween a Phase 1(/3) and Phase 2(/4) classified season.  Note that if absolute differences are large, chances 
of having a strong probability to receive a specific amount of rainfall are great as well.  In practice, “the 
forecasting strength” of a specific month is identified by means of Tables 3-2, 3-3, and Figures 6, and 7. 
 

TABLE 3-2 

 

From these CDFs all four percentiles are selected and used for further analysis.  An example of such a 
selection is given in Table 3-3.  In addition, absolute differences between a typical positive and a negative 
season, i.e. Phase 1(/3) and Phase 2(/4), are prepared also.  
 

TABLE 3-3 
 

October

FP_TOTAL A_YEAR FP_TOTAL A_YEAR FP_TOTAL A_YEAR FP_TOTAL A_YEAR FP_TOTAL A_YEAR
401 Nov-94 623 Nov-83 566 Nov-81 440 Nov-86 491 Nov-78
444 Nov-72 666 Nov-74 676 Nov-63 562 Nov-29 639 Nov-67
463 Nov-91 758 Nov-64 728 Nov-41 580 Nov-56 646 Nov-27
506 Nov-82 771 Nov-45 838 Nov-44 618 Nov-50 661 Nov-37
673 Nov-87 800 Nov-28 842 Nov-25 676 Nov-53 676 Nov-58
677 Nov-69 811 Nov-35 927 Nov-92 696 Nov-76 694 Nov-36
685 Nov-40 814 Nov-70 1002 Nov-47 716 Nov-48 719 Nov-90
699 Nov-46 837 Nov-71 739 Nov-30 735 Nov-95
734 Nov-32 867 Nov-89 914 Nov-34 745 Nov-49
761 Nov-93 942 Nov-55 949 Nov-57 754 Nov-59
771 Nov-97 1008 Nov-73 1016 Nov-52 786 Nov-85
798 Nov-65 1016 Nov-98 796 Nov-61
883 Nov-51 1019 Nov-43 832 Nov-79
946 Nov-77 1047 Nov-62 843 Nov-66
1173 Nov-39 1056 Nov-75 855 Nov-68

1085 Nov-96 862 Nov-26
1097 Nov-42 863 Nov-31

1142 Nov-88 905 Nov-33
1326 Nov-38 918 Nov-84

934 Nov-80
1003 Nov-60
1114 Nov-54

CDFs - Analogue Years Selected for Karoi Based upon  Stone's SOI Phase of

PHASE 3 PHASE 4 PHASE 5PHASE 1 PHASE 2

October

PERCENTILE PHASE PHASE PHASE PHASE PHASE ∆
1 2 3 4 5 1 - 2

q0 401 623 566 440 491
q1 590 805 702 599 700 215
q2 699 942 838 696 791 243
q3 785 1051 885 827 863 267
q4 1173 1326 1002 1016 1114

Percentiles for Karoi for LPM
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Before further analysis is done, possible outliers in this dataset are identified as follows. 
  

TABLE 3-4 

Remarks: The Inter-quartile Range (IQR) is defined as: IQR= q3 - q1.  Suspected outliers are defined as: < 1.5 x IQR - q1 or >1.5 x IQR + q3.  
 

Although several outliers were identified, there is no reason to believe these are the result of measurement 
or recording errors and are therefore not excluded from further analysis as described below. 
 

When displayed in a Box & Whisker Diagram, a better exploration of the spread within each Phase popu-
lation and the variability between these populations is possible. 

Figure 6, Box & Whisker Diagram for Karoi for LPM October 
 

When displayed in a graph, the upper, lower, and middle percentiles can be identified graphically by ar-
rows.  The corresponding figures can then be taken out as forecast figures. 

Figure 7, Method for Selecting Forecast Rainfall Data Series 
 

October

PHASE FP_TOTAL PHASE FP_TOTAL PHASE FP_TOTAL PHASE FP_TOTAL PHASE FP_TOTAL
IQR+q3 1 >979.25 2 >1297.4 3 >1067.05 4 >1054.05 5 >1025.65

IQR-q1 1 <395.15 2 <558.95 3 <519.7 4 <371.55 5 <537.475
Outliers (#,value) 1 1173 1 1326 0  0  2

Suspected Outliers for Karoi for LPM

OctoberBox & Whisker Diagram for Karoi for LPM
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Preferably, each line in the graph displaying the distribution of FP rainfall totals within a population 
should be vertical.  This would indicate that the characterization is specific and that a distinct pattern of 
rainfall follows a certain Phase.  Secondly, the lines should be wide apart indicating that each Phase repre-
sents different amounts of rainfall.  Also when reading from left to right, the line for Phase 1 should pref-
erably be positioned left, followed by the line of Phase 3, followed by that of Phase 5, followed by that of 
Phase 4 and the line of Phase 2 should be positioned on the most right side of the graph.  A preliminary 
conclusion from the above two figures is that these requirements are only partially met and that the odds 
of being able to predict weather with any degree of accuracy is not clear yet.  The disadvantage of any 
graphical method for exploring data sets is that these observations tend to be subjective.  Therefore, fur-
ther analysis is necessary. 
 
To quantify the phenomena a non-parametric test, i.e. Kruskal-Wallis Rank Test, was introduced.  The 
results for this case are presented in Table 3-5. 
  

TABLE 3-5 

 
This data permits us to test the hypothesis as stated under the sub section Research Questions.  

 

 
The high probability of 99.2% leads us to believe that the initial conclusion against the predictive strength 
of El Niño based on the graphical exploration may be incorrect, or, that at least further analysis is required 
to be conclusive.  Note that the disadvantage of a non-parametric test such as the one used here is that 
only measures of central tendencies of populations, i.e. medians, are compared.  The practical value is 
therefore limited, since forecast figures should be taken from the whole population to be more objective, 
taking into account the intra-distribution also.  Thus, a (even highly) significant statistical correlation does 
not necessarily imply that the prediction error also is low.   
 

As mentioned before, the probability associated with receiving a specific amount of rainfall is a useful in-
dicator in this matter.  A probability is the chance of an event happening expressed as a percentage.  A 

October

PHASE PHASE PHASE PHASE PHASE TOTAL
1 2 3 4 5

N 15 19 7 11 22 74
Mean Rank 27.7 51.8 37.1 27.5 37.0

Degrees of Freedom (df) 4
Squared Sum of Ranks 172225 968256 67600 91809 660969

H 13.897
P -value 0.008 99.2%

a' specified significance level 0.05

H-Test (Kruskal-Wallis) for Karoi for LPM

(  4  )     = 9.488
Now H  = 13.897 is greater than 9.488

Hypothesis Testing for Karoi

October

Therefore, I reject Ho at α = 0.05 and conclude
there is systematic difference in FP rainfall totals
between the SOI phases for this station for the

Locking Phase Month (LPM):

2
(0.05)χ
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probability of 70% means the event can be expected to occur in 7 out of 10 years.  If for a dry year, with 
Phase 1 (or 3), a low probability of exceeding the long-term medium corresponds and for a typical wet 
year, with a Phase 2 (or 4), a high probability of exceeding the long-term medium corresponds, forecasts 
are expected to make more sense than otherwise.  For this case, an example is given in Table 3-6. 
 

TABLE 3-6 

 
With high probabilities in the first en second quartile and the low probabilities in the third and fourth (the 
former two amounting to a total of 73%) this seems to be an argument in favor of the predictive strength 
of ENSO for this station.  
 

For reasons explained earlier in this sub-section, attention was also given to the total rainfall difference 
(RTD) between a typical negative year, with Phase 1 (or 3), and a typical positive year, with a Phase 2 (or 
4).  For the locking Phase month (LPM) October, this is listed in Table 3-3.  Since no general criteria are 
available to evaluate these figures, this procedure was followed for all candidate months to permit a rela-
tive comparison.  Figure 8 displays these averaged absolute differences (q1, q2 and q3) for Phase 1 vs. 
Phase 2 seasons per LPM.  The second y-axes displays the statistical relationship for each of these LPMs 
against their corresponding FP rainfall totals, which permits further comparative analysis. 

 

 

 

 

 

 
 

 

 

 

 

Figure 8, Average FP RTD for Phase 1 and Phase 2 Seasons for Karoi   
  

Clear is now that the LPM October is not only statistically strongly correlated with its FP rainfall totals, 
i.e. November to March, but that at least relative to the other LPM months, the absolute difference is 
considerable too.  Note that the graph also provides a more comprehensive look at the relationship be-
tween the two measures.  The P–value of LPM January is for instance 92.3 - 97.4 = 5.1% lower than that 
of February, whereas the absolute difference in rainfall totals between a typical negative year vs. a typical 
positive is 153 –111 = 42 mm higher for LPM January.  In these contradictory situations, preference is 
given to the absolute difference observed in rainfall totals since it implies a stronger characterization and 

November to  April

q0 rainfall FP 401 within 1st quartile 33%
q1 rainfall FP 677 within 2nd quartile 40%
q2 rainfall FP 791 within 3rd quartile 13%
q3 rainfall FP 925 within 4th quartile 13%
q4 rainfall FP 1326 > median 27%

Phase 1, consistently strongly negative;
Probability of receiving rainfall;

November Forecast - FP Rainfall Totals in Relation to Long-Term Indicators for Karoi
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is therefore of more practical value for forecasting purposes.  Finally, the performance of the model ver-
sions “Single Phase” vs. “Double Phased” was assessed.  In addition, it was also assessed whether rainfall 
patterns in the recent past are as strong influenced by ENSO as in earlier times.   
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Tables 3-7 and 3-8 and Figure 9 and 10 enable us to do this. 
 

Single Phased Model Version 
 

TABLE 3-7 

 
 
This is shown graphically in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9, LPMs and their Correlation with FP RT for Karoi – Single Phased 

 
Concluded can be that rainfall patterns in the recent past are directed stronger by ENSO than in earlier 
times, and hence, that the indicator is expected to be valid in the near future as well.  This view is strongly 
supported by comparison of absolute difference in rainfall totals (Figure 10). 
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Figure 10, FP RTD for Phase 1 & Phase 2 Seasons for Karoi - Historical vs. Current 

Double Phased Model Version 
 

TABLE 3-8 

 
This is graphically presented in Figure 11. 

Figure 11, LPMs and their Correlation with FP RTs for Karoi – Double Phased 
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For the “Double Phased” model version can also be concluded that rainfall patterns in the recent past are 
more strongly affected by ENSO than in earlier times, and hence, that the indicator is expected to be valid 
in the near future as well.  The same holds for the absolute difference observed in rainfall totals before 
1958 and after 1958 (Figure 12). 

Figure 12, FP RTD for Phase 1/3 and Phase 2/4 Seasons for Karoi - Historical vs. Current 
 

Single versus Double Phased Model Version       
 

Figure 13, Correlation with FP RTs for Karoi – Single vs. Double Phased 
 

Concluded can be that model version “Single Phased” yields better results than model version “Double 
Phased”.  This view is confirmed by comparison of absolute difference in rainfall totals (Figure 14). 
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Average Differences FP Rainfall Totals for Karoi
Comparison of Single vs. Double Phased model Versions
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 Figure 14, FP RTDs for Karoi  - Comparison of Single vs. Double Phased Model 

 

Forecast Strategy Conclusions 
In conclusion, it has been shown that to define the forecast strategy for a specific weather station a well 
balanced, combined look at the following elements was required: 
 

(1) The statistical significance, as preliminary, semi-quantified exploration of the influence of ENSO. The 
statistical significance explains the relative difference between the various populations, i.e. the ENSO 
Phases and their corresponding rainfall totals, without explaining the direction and extend of the ob-
served differences. 

(2) The qualitative Phase distributions. The direction and extend of these distributions can be graphical 
displayed by plotting the cumulative distribution functions.  

(3) The quantitative Phase distributions. The direction and extend of these distributions can be quantified 
by taking the absolute rainfall difference between typical positive and negative ENSO years, and, by 
analysis of the probability to receive an ENSO based rainfall forecast relative to station-specific long-
term trend indicators (below or above median). 

 

To ascertain the relevance of ENSO on future rainfall patterns to some extend, historical trends in the 
phenomenon were compared to recent trends, i.e. the impact of ENSO before 1958 vs. after 1958.  As 
mentioned earlier, for this particular weather station it is now clear that rainfall patterns in the recent past 
are affected more strongly by ENSO than in earlier times, and hence, that the indicator is expected to be 
valid in the near future as well.  In addition, the strength of the correlation of model version “Double 
Phased” before 1958 is so low that observations from this period should be excluded from the actual 
forecasting process.  Compared to the “Single Phased” model version this is a clear disadvantage, since 
the remaining observations may not be representative of the event.  As far as the predictive strength of 
the two is concerned, the analysis made clear that model version “Single Phased” yields better results than 
model version “Double Phased”.  Absolute difference in rainfall totals was of high importance in this 
matter for reasons explained earlier.  
 

Using the same criteria to identify temporal variability in ENSOs predictive strength, concluded can be 
that the most useful relationship is found between its pattern around October and January and the follow-
ing rainfall forecast period.  LPM September is also relatively strong but is out-performed by October.  
October is convenient because at that time it is generally early enough to adapt management decisions 
such as whether, when and how dense to plant and what fertilizer to apply, etc.  The February forecast 
permits to account for any changes in the predictor.  Hence, intra-seasonal dynamics can be modeled to 
provide updated forecast as the season progresses. 
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Quantified Rainfall Forecast 
Surrogate rainfall data assessment commences on 1 November using the SOI phase of the preceding 
month, i.e. October, to decide which past climate analogue to use as surrogate weather data.  Only when 
the SOI phase has changed, a new weather data analogue is selected; rainfall predictions are then repeated 
for each of the proceeding LPM months identified during the analysis (in this case only February).  Earlier 
predicted weather data are replaced with actual data up to the current date.  In this manner, the quality of 
the predictions during the season is expected to increase in accuracy.  In our case, the forecasts were made 
on November based on Phase 1, consistently strongly negative. As mentioned earlier, the October fore-
cast was skipped since the analysis revealed that this LPM is slightly less predictive.  Table 3-9 and 3-10 
below list the forecasts in more detail.  
 

TABLE 3-9 
 

 
 
 
 
 
 
 

The mean of the low, middle, and high rainfall forecast based on the state of ENSO in October is 691 – 
771 = 80 mm of from the actual total that was observed.  This is equivalent to a relative error of 11.6 %.  
In the course of the crop season, the state of ENSO altered from Phase 1, consistently negative, to Phase 
3, rapidly falling, which demanded for an update in February. 
 

TABLE 3-10 

  

The mean of the low, middle, and high rainfall forecast based on the state of ENSO in January is 335 – 
270 = 65 mm of from the actual total.  This is equivalent to a relative error of 19.4 %. 
 

Note that the above described analysis and forecasting was done for 23 rainfall recording meteorological 
stations in and near the province, resulting in two or three forecasts per year for the period 1991/92 to 
1998/1999.  In addition, 5 of these 23 analyses also investigated future relevance of the indicator; histori-
cal trends in the phenomena were compared to recent trends, i.e. the impact of ENSO before 1958 and 
after 1958. This resulted in app. 23 x 3 = 69 statistical analyses and in 23 x 3 x 9 = 621 pre-forecasts to 
define the station-specific forecast strategies.  This provided data to be conclusive about the strength of 
ENSO as indicator for seasonal weather forecasting and to permit further spatial analysis as described in 
the following sub-section. 
 

Spatial analysis of ENSO 
The spatial scale at which crop performance is monitored and forecasted is regional, whereas the ENSO 
rainfall estimation is performed on point basis.  Therefore, to justify interpolation of these estimates geo-
statistical analysis of the phenomena is required first.  I.e., only when spatially evenly or structurally dis-
tributed regionalization of the ENSO based rainfall outlooks is permitted.  This is assessed by means of 
map analysis. The maps have been produced with the Integrated Land and Water Information System 

February
February to  April

(AVERAGE)
FP Rainfall Total Based on Year FP Rainfall Total Based on Year FP Rainfall Total Based on Year FP Rainfall Total

272 1998 333 1971 400 1955 335

270 1947 329 1931 397 1980 (ACTUAL)
271 1988 335 1963 396 1981 FP Rainfall Total

334 1969 403 1990 270

Forecast - Analogue Years and Rainfall Totals for Karoi

LOW MIDDLE HIGH

Season Similarity figures below are based on a deviation of 5 mm

November
November to  April

(AVERAGE)
FP Rainfall Total Based on Year FP Rainfall Total Based on Year FP Rainfall Total Based on Year FP Rainfall Total

590 1982 699 1946 785 1997 691

580 1956 694 1936 786 1985 (ACTUAL)
FP Rainfall Total

696 1976
771

LOW MIDDLE HIGH

Forecast - Analogue Years and Rainfall Totals for Karoi

Season Similarity figures below are based on a deviation of 10 mm
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(ILWIS) GIS using the moving surface method for interpolating point data. Moving surface calculates a 
pixel value by fitting a surface for each output pixel through weighted point values (ITC, 1998). A 2nd de-
gree function was used to calculate the surfaces since this is advanced enough and yielded the best results. 
The weight factors for the points are calculated by the linear weight function since ENSO is rather a re-
gional than a local phenomenon.  The inverse distance function was rejected since it assigns relatively lar-
ger weights to points close to an output pixel and this would over-estimate the level of detail in the phe-
nomenon.  Furthermore, the weight functions are implemented in such a way that points farther away 
from an output pixel than a user-defined limiting distance, obtain weight zero; this speeds up the calcula-
tion and prevents artifacts. In view of the same regional aspect, the value for the limiting distance is set to 
a tolerant value, 185 km for all maps.  All maps are prepared in the UTM Coordinate System for Zone 36, 
since this projection permits relatively accurate area and distance estimation for Zimbabwe. 
 

Again, statistical significance and an analysis of the probability to receive relative high rainfall totals in 
typical positive ENSO years vs. relative low rainfall totals in typical negative ENSO years were used as 
performance indicators.  Model precision, stability, and the trustworthiness of the forecasts can also be 
evaluated with the technique of independent estimates.  Therefore, the long-term forecast error is also 
introduced as measure of the performance.  This is done at province level for all possible forecasts identi-
fied during the Forecast Strategy, i.e. the November forecast and the February forecast. 
 

November Forecast 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 15, Iso-Correlation Map for LPM October 
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Probabilities, i.e. P-values computed using Kruskal-Wallis statistics, are given for LPM October in Figure 
15.  This type of maps will be referred to as Iso-Correlation Map.  Polygons having more than 91% prob-
ability make up more than 80% of the total province for this LPM. Table 3-11 lists the map statistics in 
more detail. 
 

TABLE 3-11 
 
 
 
 
 
 
 
 
 
 
 
 

Note that areas lying in the upper-left corner of the province, i.e. north-western part of the district 
Kariba  
covering mainly Lake Kariba, should be excluded from this and any of the following map analyses since 
the artifacts observed here are the result of an error in the interpolation due to lack of meteorological sta-
tions.  The areas outside this region, having a probability lower than 91% are few, account for only one or 
two percent of the total.   
 

The areas having more than 91% probability consist of three classes: 91 – 95%, and 96 – 97%, and >98%.  
Covering more than 80% of the province, these three classes could provide us with more information on 
the intra-distribution.  However, from the number of unique island polygons can be seen that slight dif-
ferences in the point data may be overvalued if not recurrent and, hence, no specific intra-distribution or 
pattern may be identifiable.  If so, a weighted average of these three classes characterizes the situation bet-
ter.  This would amount to a probability of 95.1%, which implies that for more than 80% of Mashonaland 
West Province the following hypothesis as stated under the sub section Research Questions, can be answered 
positively.   

 
 
 
 
 
 
 
 
 
 
Based on the Iso-correlation map for LPM October, a preliminary conclusion would be that regionaliza-
tion of the rainfall forecasts based on this LPM is permitted and seems useful. 
 
The probability map (Figure 16) depicts areas having similar likelihood of receiving below median rainfall 
totals in November to April for the same LPM. 

PROBABILITY (%) AREA (km2) AREA (%)
< 50%          0 0%
51 - 55%       0 0%
56 - 60%       42674.25 0%
61 - 65%       585620.11 1%
66 - 70%       570276.62 1%
71 - 75%       1094834.69 2%
75 - 80%       1591349.17 3%
81 - 85%       2333933.18 4%
86 - 90%       4433338.91 8%
91 - 95%       23352777.2 41%
96 - 97%       15472353.1 27%
> 98%          7023283.92 12%

56500441.15 100%

Map Statistics for Iso-Correlation Map for LPM October

(  4  )     = 9.448
Now H  = 9.533 is greater than 9.448
Therefore, I reject Ho at a' = 0.05 and conclude there 
is systematic difference in FP rainfall totals between 
the SOI phases for this area for the Locking Phase 

Month (LPM):

Hypothesis Testing for LPM October

October

2
(0.05)χ
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Figure 16, Probability Map - Below Median RTs in Nov - Apr for LPM October 

 

Again, from the number of unique island polygons can be seen that slight difference in the point data may 
be overvalued if not recurrent and, hence, no specific inner-distribution or pattern could be identified.  A 
weighted average of the map classes may characterize the likelihood of receiving below median rainfall 
totals in November to April better (based on the state of ENSO in October).  This has been computed 
from the map statistics given in Table 3-12. 

TABLE 3-12 
 
 
 
 
 
 
 
 

 
From the weighted average of 72.7% can be concluded that roughly 7 out of 10 times below median rain-
fall can be expected.  Although this is not an extremely strong chance, it is reasonable. In this respect, the 
likelihood of receiving above median rainfall totals in November to April should be evaluated also. 
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2nd and 3rd order administrative boundaries taken from the Spatial Characterization Tool (Corbett and O'Brien, 1997).
[Original source Uwe Dicheman, UNEP-GRID, EROS Data Center] Scale: Unknown.
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Map Statistics for Probability Map for LPM October
Likelihood of receiving below median rainfall totals
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Figure 17, Probability Map, Above Median RTs in Nov - Apr for LPM October  

 

In this case, a weighted average of the map classes could also characterize the likelihood of receiving 
above median rainfall totals in November to April better (based on the state of ENSO in October).  This 
can be computed from the map statistics given in Table 3-13. 
  

TABLE 3-13 
 
 
 
 
 
 
 
 
 
 
 
 
From the weighted average of 72.8% can be concluded that roughly 7 out of 10 times above median rain-
falls can be expected.  Although this is not a very strong likelihood, it is still reasonable.  

PROBABILITY (%) AREA (km2) AREA (%)
< 45%       0 0.00%

46 - 50%       38051.41 0.07%
51 - 55%       216433.37 0.38%
56 - 60%       466615.46 0.83%
61 - 65%       3067942.87 5.43%
66 - 70%       13078131.7 23.15%
71 - 75%       26395322.1 46.72%
76 - 80%       7409734.1 13.11%
81 - 85%       5828765.59 10.32%
86 - 90%       0 0.00%
91 - 95%       57.3 0.0001%
96 - 100%      0 0%

56501053.9 100%

Map Statistics for Probability Map for LPM October
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Finally, the relative error in the rainfall forecast is averaged over the seasons 90/91 to 98/99 as indicator 
of the long-term accuracy of the system at provincial scale.  Note that this includes extreme weather con-
ditions such as the droughts of 1991/92 and 1994/95 as well as extreme wet years such as 1997/98. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18, Relative Error in November Forecast 

 

In this case, a weighted average of the map classes could characterize the relative error in the November 
rainfall forecast also better (based on the state of ENSO in October).  This can be computed from the 
1map statistics given in Table 3-14. 

TABLE 3-14 
 
 
 
 
 
 
 
 

                                                      
1 Note that areas lying in the upper-left corner of the province are excluded from this map analyses since the artifiactsobserved here are the result 
of an error in the interpolation due to a lack of meteorological stations.   
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From the weighted average of 25.8% can be concluded that roughly 75% of the variability in November 
to April rainfall totals can be explained when analyzed over a period of nine years.  
 
Conclusion November Forecast 
Taking into account the conclusions of the other map analyses described above we may state that region-
alization of the rainfall forecasts based on the state of El Niño in October is permitted.  Moreover, use of 
rainfall outlooks with this accuracy is expected to prove useful for maize yield forecasting.  However, 
from the number of unique island polygons and the fact that they differ for each of the three indicators 
investigated, we can conclude that slight differences in the point data should not be overvalued.  Hence, 
no specific structural regional differences can be identified within the region and a weighted average of 
map classes proved sufficient.   
 
February Forecast 

Figure 19, Iso-Correlation Map for LPM January 

 
In Figure 19 the probabilities, i.e. P-values computed using Kruskal-Wallis statistics, are given for LPM 
January.   
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Table 3-15 lists the map statistics in more detail. 
 

TABLE 3-15 
 
 
 
 
 
 
 
 
 
 
 
 
Again, from the number of unique island polygons may be concluded that slight differences in the point 
data are overvalued.  Especially if non-recurrent in the indicators assessed below, no specific intra-
distribution or spatial pattern can be identified.  A weighted average of these classes characterizes the 
situation better.  This amounts to a probability of 78.7%, which implies that for Mashonaland West Prov-
ince the hypothesis as stated under the sub section Research Questions, should be answered negatively.   
 
 
 
 
 
 
 
 
 
 
Based on the Iso-correlation map for LPM January, a preliminary conclusion would be that regionaliza-
tion of the rainfall forecasts based on this LPM is permitted but may not prove useful considering the 
relatively low weighted average probability. 
 
Below the probability map depicts areas having similar likelihood of receiving below median rainfall totals 
in February to April for the same LPM. 
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< 45%       1949258.89 3.4%

46 - 50%       2621613.11 4.6%
51 - 55%       3947827.97 7.0%
56 - 60%       3804247.96 6.7%
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Figure 20, Probability Map, Below Median RTs in Feb - Apr for LPM January 

 

A weighted average of the map classes may characterize the likelihood of receiving below median rainfall 
totals in February to April better (based on the state of ENSO in January).  This can be computed from 
the map statistics given in Table 3-16. 
 

TABLE 3-16 
 
  
 
 
 
 
 
 
 
 
 
 
 
From the weighted average of 69.3% can be concluded that roughly 7 out of 10 times below median rain-
fall can be expected.  Although this is not a very strong likelihood, it is still reasonable. In this respect, the 
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likelihood of receiving above median rainfall totals in February to April should be evaluated also (Figure 
21). 

Figure 21, Probability Map, Above Median RTs in Feb - Apr for LPM January  

 

Again, a weighted average of the map classes may characterize the likelihood of receiving above median 
rainfall totals in February to April better (based on the state of ENSO in January).  This can be computed 
from the map statistics given in Table 3-17. 
  

TABLE 3-17 
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From the weighted average of 76.6% can be concluded that roughly 7 to 8 out of 10 times above median 
rainfall can be expected.  Although this is not a very strong likelihood, it is reasonable.  
 
Finally, the relative error in the rainfall forecast is averaged over the seasons 90/91 to 98/99 as indicator 
of the long-term accuracy of the system at provincial scale (Figure 22).  Note that this includes extreme 
weather conditions such as the droughts of 1991/92 and 1994/95 as well as extremely wet years such as 
1997/98. 

Figure 22, Relative Error in February Forecast 

 

In this case, a weighted average of the map classes characterizes the relative error in the February rainfall 
forecast also better (based on the state of ENSO in January).  This can be computed from the 2map statis-
tics given in Table 3-18. 
 
 
 
 
 
 

                                                      
2 Note that areas lying in the upper-left corner of the province are excluded from this map analyses since the probabilities observed here are the 
result of an error in the interpolation due to a lack of meteorological stations.   
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TABLE 3-18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the weighted average of 55.7% can be concluded that roughly 45% of the variability in February to 
April rainfall totals can be explained when analyzed over a period of nine years. 
 
Conclusion February forecast 
Taking into account the conclusions of the other map analyses described above, we conclude that region-
alization of the rainfall forecasts based on the state of El Niño in January is permitted.  However, from 
the three indicators investigated, we can also observe that below the 8.100.000 (UTM) latitude, the statisti-
cal significance, probability analysis and the long-term forecast error indicated that ENSO is less strongly 
correlated with rainfall patterns than in areas lying above this latitude.  Therefore, if Hurungwe and Kariba 
district were treated separately, another 10% of the variability in seasonal rainfall totals could be explained 
here.  Even then, use of the rainfall outlook with this accuracy may not prove useful for maize yield fore-
casting.  However, since the relationship between weather forecast accuracy and maize forecast accuracy is 
unknown, maize yield is still forecasted using the February weather outlook. 
 
Surrogate Rainfall Data as input for the Crop Growth Model 
To limit the workload, the mean of the low, middle, and high forecast figure is computed. These figures 
are not yet used as surrogate rainfall data.  The Season Similarity Tool first assists in the task of finding 
years on file that have similar FP rainfall totals within a user-specified range for reasons explained earlier 
(page 14).  The deviation introduces an error and should therefore be carefully selected, resulting in suffi-
cient similar seasons from which to head appropriate weather data with an as small as possible deviation.   
Weather data from one of these years are appended to the current season weather data available up to the 
current date.  Note that other parameters than rainfall required for the crop growth model should be de-
rived from these proposed years as well since some of them are cross-linked.  I.e., cloud cover and maxi-
mum temperature are related to the amount of rainfall a specific day receives.  Due to time constraints, it 
was decided that other parameters except rainfall could be taken from the actual data series for the peri-
ods rainfall was predicted without jeopardizing the objectiveness of the research.  
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Weather Data as input for the Crop Growth Model 
Daily weather data for each weather element for each GIS grid-point are interpolated from the station 
values using the method fully described in the common weather section of YYF1 and YFF2.  These data 
are then used as input for the WOFOST model.  
 
In conclusion, the weather module of CGMS for YFF1 and YFF2 can be described graphically.  The ma-
jor processes and important inputs and outputs of the weather data interpolation are described in Figure 
23.  

 
Figure 23, Flow Diagram of Weather Data Processing and Interpolation 

Source: Modified from User Manual for the CGMS Model (Mahalder and Sharifi, 1998) 
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Module Two: agro-meteorological crop growth simulation 

For the crop growth simulation, a regionalized version of the WOFOST model as described by Supit et al. 
(1994), as part of the Crop Growth Monitoring System (CGMS) has been used.  The heart of the system 
is the geographical information system, around which the various databases, software modules and user-
interfaces are constructed and which is the driver of crop growth simulation. 
 
The model is driven by a combined energy balance/water balance module which compares actual transpi-
ration with calculated potential transpiration through a light interception/CO2 -assimilation/water re-
quirements/water availability module.  The model uses only those daily meteorological data that can be 
made available: rainfall, temperature, including maximum and minimum temperature, vapor pressure (or 
relative humidity), 24-hour mean wind speed, sunshine duration or cloud cover (to estimate radiation, po-
tential evapo-transpiration, etc.), and if available, measured radiation. 
 
The basic frame of the model was adapted to accommodate the maize variety of interest and is made spe-
cific for the study area, based on crop knowledge obtained from maize research at Chibero.  This research 
was executed by AGRITEX with technical assistance from Wageningen University, the Netherlands.  
Thus, the model is calibrated (calibration of the length of phenological stages as a function of sums of 
temperatures) based on site-specific field data.  In addition, a district specific crop calendar was extracted 
from the Fortnightly Crop Forecast Reports issued by AGRITEX covering the nineties.  The model is 
run once every 10 days.  Model outputs are then available a few days after the end of a 10-day period. 

Crop information 

The crop knowledge bases refer to literature and expert-knowledge based information available on: 
 
(a) Suitable soil types; 
 
(b) Planting (sowing), flowering and harvest dates; 
 
(c) Crop cycle length and relations between phenology and temperature and day length; 
 
(d) Initial dry matter after emergence (and, indirectly, crop spacing); 
 
(e) Crop specific parameters such as light interception as a function of leaf area index, energy conversion 

and the partitioning of dry matter into the various plant parts. 

The available soils data 

The soils information consists of FAO soil types derived from the FAO Digital Soil Map of the World 
and Derived Soil Properties (ver 3.5, November 1995) on small scale (1:5.000.000).  The soil database, 
consisting of texture classes and soil depth classes, is mainly used in conjunction with the crop knowledge 
bases, to identify the areas where a given crop can possibly grow (soil suitability).  A mean value per grid is 
obtained by weighting the basic results of the model by the relative area occupied by these soil types. 
 
In Figure 24 the soil map is given for Mashonaland West Province. 
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Figure 24, Soil Map for Mashonaland West Province, Zimbabwe 

The output of CGMS 

The outputs of the system are outputs of agricultural season quality indicators.  The main available mod-
eled crop preformance indicators are: 
 
• Biomass, under the actual rainfall conditions, and as if all required moisture was available; 
• Grain production, under the actual rainfall conditions, and as if all required moisture was available; 
• Estimated actual soil moisture reserve; differences as compared to the previous decade or month; 
• State of advancement of the cycle during a given decade; and in addition, 
 
District crop state assessments are aggregated to province level where yield forecasts are produced using 
an added statistical procedure at 10-day intervals. 

Module Three: statistical analysis 

In the statistical analysis, a linear regression equation is produced and used to forecast maize yield, which 
may vary for different stages in the growing season.  The regression equation includes the average actual 
(statistical) yield and the technological time trend over the years, with or without a model indicator to ac-
count for the year-specific weather effects.  The statistical module was programmed as a spreadsheet, re-
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lating the model outputs, through a regression analysis and possibly in combination with a technological 
time trend function drawn from historical yield data, to the series of historical (sub) regional yields avail-
able.  The time trend is only used provided it gave satisfactory results in terms of the one-year-ahead and 
two-year-ahead error analysis; if not, the model function is used singly. 
 
The general procedure passes through the following phases to select model indicators describing the re-
gression equation. 
 
In the beginning of the growing season: 
 
Phase 1. Identification of crop yield/production information, at the level of the smallest region for 

which series of several years of reliable statistics are available. In our case this is at provincial 
level. 

 
At the end of each 10-day period j: 
 
Phase 2. Running of the models using daily meteorological input data at the level of a grid cell within 

the region.  The size of a grid cell is 50 x 50 km. 
 
Phase 3. For each grid cell, calculation of average model outputs. 
 
Phase 4. Aggregation of the weighted average model outputs per grid cell to average values at province 

level for which yield statistics are available. 
 
Phase 5. Regression analysis of the series of regional crop yields Pi  of a region or country against the 

model outputs and (possible) time trend: 

                         [ 2 ] 

Since this phase is computational intensive, the algorithms used were programmed using Microsoft Vis-
ual Basic 6 in order to automate the process. 

Model indicators 

The candidate model indicators are: a time trend, potential grain yield (storage organ), water-limited grain 
yield, potential total biomass, and water-limited total biomass.  The latter two are used because these are 
more robust, being less sensitive to modelling errors in the distribution of assimilates.  Furthermore, bio-
mass indicators allow 10-day yield predictions during the growing season, when grain filling has not yet 
started or grains are still very small (Hooijer and van der Wal, 1994).  These model indicators reflect the 
compound effect of soil-weather conditions throughout the growing season on crop growth.  Their con-
tribution in the equation is calculated over a large number of years, i.e. six or seven in total, to improve 
accuracy.  
 

The possible variables that enter in the regression analysis are then: 
 
a) The trend (1 variable) 
 

b) One of the following outputs, which are interdependent: biomass or grain (1 variable). Water-limited 
yield storage organ (wlyld), potential yield storage organ (ptyld), water-limited yield biomass and poten-
tial yield biomass (ptbio) simulation variables were selected as the model indicators. Originally, it was 
intended to predict yields by solely using the water limited yield (wlyld) as the model indicator. Later 

{ } { } jiijii errorTRENDΘICATOR MODEL INDΨ constant P +++=
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on, the other indicators were also added. Water limited yield, for instance, is inappropriate for a region 
with lot of irrigation. Total dry matter is expected to be a more robust predictor than the grain weight 
since it is less sensitive to modelling errors in the distribution of assimilates (de Koning et. al., 1993). 
Thus, biomass was also added to avoid the error coming from yet not fully understood mechanism in 
the distribution of assimilates. 

 

c) Or the following variable: rainfall more (or less) than the simulated water requirements as defined 
by the ratio rainfall over total water requirement on decadal basis in the form of:  

 
 
 
 [ 3 ] 
 
 
 
 
 

This can affect crop yield, but is not reflected or only indirectly by the direct model outputs.  
Considering the agro-meteorological problems observed in the recent past of Zimbabwe, espe-
cially in the northern areas, this variable was regressed additionally as proposed under the section 
Research Question, Common Issues. 

 

Simulation results 
The accuracy of the simulation results was assessed by analyzing the correlation coefficient and coefficient 
of determination (R2) of a simple-linear regression between observed and simulated data for decade 20 of 
the crop cycle. Since yield statistics were provided by two independent sources, namely by AGRITEX, 
provincial office Chinhoyi (POC) and by the Central Statistical Office (CSO), Harare, the analyses is made 
for both cases. 
 

TABLE 3-19 
CORRELATION MATRIX CSO-OBSERVED VS. SIMULATED 

  CSO_observed ptyld wlyld ptbio wlbio 
CSO_observed 1     
ptyld 0.062659885 1   
wlyld 0.907575262 0.1603 1   
ptbio 0.100771651 0.9423 0.1244 1 
wlbio 0.918181296 -0.259 0.8148 -0.16 1

 
TABLE 3-20 

CORRELATION MATRIX POC-OBSERVED VS. SIMULATED 
  PHQ_observed ptyld wlyld ptbio wlbio 
PHQ_observed 1     
ptyld -0.228091805 1   
wlyld 0.613112534 0.1603 1  
ptbio -0.186908675 0.9423 0.1244 1  
wlbio 0.841848529 -0.259 0.8148 -0.16 1

 
For simulation variables with the highest correlation coefficients with observed data, the coefficient of 
determination (R2) are depicted in the scatter plots below. 
CSO 
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Figure 25, Scatter plot simulated water-limited vs. observed CSO Maize Yield 1990/91 to 1998/99, Mashonaland West Province, Zimbabwe 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 26, Scatter plot simulated water-limited biomass yield vs. observed CSO Maize Yield 1990/91 to 1998/99, Mashonaland West Province, 
Zimbabwe 
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Figure 27, Scatter plot simulated water-limited vs. observed POC Maize Yield 1990/91 to 1998/99, Mashonaland West Province, Zimbabwe 
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Figure 28, Scatter plot simulated water-limited biomass yield vs. observed CSO Maize Yield 1990/91 to 1998/99, Mashonaland West Province, 
Zimbabwe 

 
As the regression analysis reveals, simulated crop performance (water-limited biomass) correlates better 
with the observed if we use yield statistics provided by CSO instead of those provided by AGRITEX 
(POC) (respectively a adjusted R2=.82 versus a R2 of .67).  
 
The time trend 
Simulated yields cannot directly be considered as actual yields, even when corrected for sub-optimal culti-
vation practices using linear regression. This can partly be subscribed to a trend (of rising yields) in official 
yields not yet included in the model (Hooijer and van der Wall, 1994). Therefore, to account for the influ-
ence of increasing farmers’ skill, increasing use of technology to crop maize on yield, a fifth indicator, the 
so-called ‘time trend’, is tested as well. Literature suggests that a simple linear model to describe this trend 
is sufficient in most cases (Swanson and Nyankori, 1979 cited by Hooijer and van der Wal, 1994).  A 
smooth trend of any type over a large number of years assumes a continuity that might be unrealistic.  For 
that reason, Hooijer and van der Wal (1994) suggest to base this indicator only on data from the recent 
past.  Its length should nevertheless be long enough to give a sufficient number of degrees of freedom in 
a regression analysis.   
 
In practice, the length of the time series used for the statistical model validation has been set to k = 9 
years (if the total length n of the available series is <k, then k=n).  If the tested trend is zero, there is no 
yield increase or decrease because of technological or possible socio-economical change or no time trend. 
In Figure 25 the time trend for Mashonaland West is given based on yield statistics provided by 
AGRITEX, provincial office Chinhoyi. 
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Figure 29, Time Trend in Observed Maize Yield according to PO Chinhoyi 

 
In Error! Not a valid link. the time trend for Mashonaland West is depicted based on yield statistics pro-
vided by the Central Statistical Office (CSO), Harare. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30, Time Trend in Observed Maize Yield according to CSO Harare 

 
The results show that the trend observed in yield statistics provided by AGRITEX, provincial office 
Chinhoyi is positive, whereas that based on yield statistics provided by the Central Statistical Office 
(CSO), Harare, is negative. In addition, the deviations from the general trend are significant for both 
cases, meaning that the trend functions are expected to have little predictive power on their own. 
 
Elementary predictors 
A (even highly) significant statistical regression does not necessarily imply that the prediction error also 
decreases.  To assess the usefulness of the statistical validations for yield forecasting, the following indica-
tors of the quality and trustworthiness of the predictions are determined during the procedure. 
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The elementary predictor, based on simulation results with time trend function, with the lowest jackknife 
root mean squared prediction error was selected as full prediction rule. The jackknife method (also re-
ferred to as leave-one-out method or Allen’s PRESS method) works as follows (Allen, 1971 and Wallach 
& Goffinet, 1989). The yield observations of all years, except one, are used to construct a predictor which 
is applied to the year kept out of sight, in order to evaluate the prediction error. This is done for each year 
in turn.  

 
  [ 4 ] 
 
 

We then calculate the jackknife root mean square of the prediction errors for the k years in question: 
 

 
  [ 5 ]

Where k is the number of predictions made from information of k-1 years (i.e. k = 1991-1999=9). In this 
way, the estimates for each year are not directly linked to the observation to the year in question. 
 
A one-year-ahead (OYA) prediction error was used to evaluate the elementary predictor rule accuracy us-
ing a dynamic data-window. The sums of squares of the differences between the observed values and the 
values predicted by this elementary predictor was calculated and divided by n, now taking account of only 
the six most recent years (n=6) to formulate the elementary predictor. The mean square MSoya obtained in 
this way was compared with the variance of the residuals of the yields in relation to the general trend, S2z, 
to characterize the part of that variance that is explained by the simulation data: 

  [ 6 ] 
 
 
 

Similar to R2oya, also a jackknife prediction error was calculated, R2jac, where the mean square, MSjac, was 
now obtained based on all data present for the region (k=12). 

If R2oya is positive, then the predictions using agrometeorological model outputs are an improvement as 
compared to the use of the time trend alone. However, if it is negative, the time trend function should be 
used alone, making the simulation effort futile. 
 
The procedure eventually results, at the end of each 10-day period j, in a set of model indicators, their 
constants and corresponding regression coefficients. For decade 7 to 20 of the crop cycle the statistical 
indicators are tabulated (Error! Not a valid link.). 
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TABLE 21 
ELEMENTARY PREDICTORS AND THEIR PERFORMANCE 

 Statistical indicators 
Predictand PO Chinhoyi CSO Harare 

Decade MI R2jac R2oya MI R2jac R2oya 

7 wlbio -0.11 -2.54 wlbio -0.97 -3.63 

8 prec/twr 0.35 0.11 prec/twr 0.14 -1.33 

9 wlbio -0.14 0.38 wlbio -0.82 -0.26 

10 wlbio -0.15 0.58 wlbio -0.81 -0.10 

11 wlbio -0.15 0.51 wlbio -0.78 -0.19 

12 ptyld -0.10 0.62 wlbio -0.82 -0.15 

13 ptyld -0.14 0.69 wlyld -0.81 -0.09 

14 wlbio 0.06 0.47 wlbio -0.36 -0.10 

15 wlbio 0.36 0.30 wlbio 0.19 0.15 

16 wlyld 0.55 0.64 wlbio 0.51 0.45 

17 wlyld 0.56 0.32 wlyld 0.77 0.47 

18 wlbio 0.52 0.05 wlyld 0.79 -0.04 

19 wlbio 0.49 -0.05 wlbio 0.72 0.64 

20 wlbio 0.48 -0.06 wlbio 0.72 0.63 

 

Where, 
MI   = Model indicator  

 
Examination of the statistical indicators for predictand CSO Harare shows that R2oya is negative up to dec-
ade 14. This means that the sum of squares of the forecasting errors is greater than the sum of squares of 
the trend residuals, which reveals that the simulation models have no predictive ability for this particular 
period. From decade 15 onwards, however, all R2oya values are positive (except decade twelve). Based on 
these results, we have every reason to be satisfied with models based on simulation results that, on aver-
age, explain 50% of the variability of the deviation of the yields from the general trend. 
 
When we examine the R2oya values for predictand PO Chinhoyi, we immediately find that from decade 8 up 
to 18 they are positive, which means that models with simulation results are an improvement compared to 
the time trend function alone. On average, more than 40% of the variability of the deviation of the yields 
from the general trend is explained during this period. The R2oya for the first and last two decades are nega-
tive, meaning that the simulation models have no predictive ability for this particular period.   
 
When we look more closely to the model indicators used by the prediction models, the hypothesis that 
prec/twr can successfully be used to model the performance of maize crops during waterlogged periods 
does not hold. As expected, “water-limited” predictors predominantly outperformed their “potential” 
variants, and were predominantly selected to predict maize yield. 
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OYA Relative Prediction Error 1996/97 to 1998/99 per Decade for POC 
Maize, Mashonaland West, Zimbabwe 
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Full prediction rules 
Again, a one-year-ahead (OYA) relative prediction error was used (algorithm Error! Not a valid link.) to 
evaluate the full prediction rule accuracy using a dynamic data-window. The OYA relative prediction er-
rors are calculated based on models developed with data of the most recent six years. If 9 years are avail-
able in the database, we have 9-6=3 occasions to compare predictions. 
 

  [ 7 ] 
 
 
The procedure eventually results, at the end of each 10-day period j, in a set of relative errors. The attrac-
tiveness of this method lies in the number of observations; even with a very limited mount of data, the 
dynamic data-window technique allows for an in-depth analysis of the prediction errors with three obser-
vations available per decade. The mean relative error of these three observations is an indication of the 
performance of the framework (YFF1) under study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31, OYA Relative Prediction Error 1996/97 to 1998/99 per Decade for POC Maize, Mashonaland West, Zimbabwe 

 

Figure 32, OYA Relative Prediction Error 1996/97 to 1998/99 per Decade for CSO Maize, Mashonaland West, Zimbabwe 

 
The results show that the prediction error of CSO maize yields averages around 10% close to harvest, 
whereas that of POC yields around 14%. This points to a reliable yield forecast framework. 
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Based on expert knowledge and common sense, one would expect lower accuracy with less information.  
Indeed, from Error! Not a valid link. it can be concluded that this is the case for predicting CSO yield.  
However, the forecast on the 2nd decade of POC predictions are unexpectedly low (Error! Not a valid

link.).  This forecast is prepared using the full prediction rule based on the time trend and the amount of 
rainfall below/above crop water requirement, expressed in the ratio of rainfall over crop water require-
ment (PRECsum/ETOsum).  Apparently, it was useful as an indicator of rainfall availability during the be-
ginning of the vegetative development stage of the maize crop for POC yield statistics.  Remember that 
during this period, exponential growth is observed and all energy is prioritized to leaf production for the 
plant to intercept more light.  Thus, as the specific leaf area increases the transpiration increases also and 
the demand for moisture increases accordingly.  Being partly dependent on weather data and less on the 
performance of the simulation model, moisture in excess or shortage of the projected water requirement 
proved useful for early crop monitoring, and consequently, for estimating the final yield. Caution is re-
quired in making hard conclusions from these results since they are based on models developed with only 
six observations, whereas nine is a (statistically) sufficient number. The number nine is linked to the de-
gree of freedom to keep a minimum number of observations, considering that we are using two predictors 
(trend + indicator). 
 
Another observation is that the deviation from the mean error are quite significant for the CSO yield up 
to decade 17; from decade 18 and onwards these deviations decrease to a couple of percent points. For 
the POC yield however, this is the other way around. During the first 14 decades, relative small deviation 
from the mean can be observed (app. 5%), whereas these deviations increase during the last 6 decades to 
approximately 10% (except for decade 16). This is in agreement with what the analysis of the R2oya values 
revealed (see Error! Not a valid link.). For CSO yield, only at the end models with simulation variables 
started to explain the variability of the deviation of the yields from the general trend. The R2oya values of 
models for POC yield prediction, however, remained positive for practically the first half of the crop cy-
cle, pointing to more stability and explanatory power for that period. 
 
YFF1 vs. YFF2 
Figures 29 allow analysis of the maize yield frameworks under comparison, i.e. YFF1 based on actual rain-
fall data and YFF2 based on ENSO predicted rainfall.  Note that only preliminary conclusions are permit-
ted from this comparison, since the data for YFF2 covers just one season. 
 
The relative yield forecast error of YFF2 - November seems to stabilize at app. 20% from decade 16 on-
wards which is equivalent to the weather forecast error of app. 20% (long-term: app. 25%) on which this 
yield forecast is based.  Although not representative for the whole population, a relative forecast error of 
20% is an encouraging sign, since this forecast is available as early as November. Note that although 
YFF1 out performs YFF2 in accuracy, it is dependent on current weather data, which may come available 
at a much later point in time. In such occasions, YFF2 is expected to be useful since its timeliness is as-
sured, being dependent on, often, available historical weather data. The above may also indicate a 1:1 rela-
tionship between the accuracy of the ENSO rainfall prediction (for November) and the accuracy of the 
forecasted maize yield (based on that rainfall prediction).  Therefore, there is reason to expect that the 
long-term error in the ENSO based rainfall outlook is also a good indicator for the overall performance 
of YYF2.  For the November ENSO based rainfall outlook, this would amount to 24.5%. 
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Figure 33, Relative YF Error for OYD Yield Statistics Scenario YFF1 vs. YFF2 

 

The error of YFF2 - February yield forecast seems to stabilize at roughly 40% from decade 19 onwards 
which is not far from to the weather forecast error of 30% (long-term: app. 75%) on which this yield 
forecast is based.  However, it does not give reason to expect a 1:1 relationship between the accuracy of 
the ENSO rainfall prediction (for February) and the accuracy of the forecasted maize yield (based on that 
rainfall prediction).  One may conclude that considering the unexpected high accuracy of the WF (30% vs. 
long-term of app. 75%), the error observed in this yield forecast (40%) is not representative for its long-
term performance and that worse accuracy may be expected.  
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4 Discussion 

Elements common to both yield-forecasting frameworks are discussed in the following. 

4.1 Common issues 

Waterlogging and cob rot problems observed in Zimbabwe in the recent past prompted to introduce a 
variable PRECsum/ETOsum in Module Three: Statistical Analysis of this thesis, where this variable was re-
gressed against observed yields as detailed under Research Question, Common Issues. The variable is an indica-
tor of rainfall excess or shortage projected onto the simulated water requirements computed on a decadal 
basis.  Rather unexpectedly, it was found that simulated yields were not lower than average in years in 
which problems of this nature are known to have occurred.  ‘Fortnightly Crop Forecast Reports’ indicated 
that problems of this nature happened indeed, scattered over (parts of) the province.  This does not nec-
essarily imply that the indicator could not detect this.  It is possibly obscured by the averaging technique 
applied to all model outputs in the process to arrive at provincial estimates.  Moreover, these outputs are 
normalized per hectare.  Averaging of data tends may result in overestimating phenomenon; land units 
with very low per-hectare values may be obscured during the aggregation process if averaging involves 
other, high per-hectare values.  
 
Early forecasts, i.e. forecasts in the 8th decade, are based on the same variable selected for its relatively low 
forecast error; it was identified as discussed under Module Three: Statistical Analysis.  Although not particu-
larly useful to explain problems induced by excess rainfall, the indicator was successfully used to model 
the performance of the maize crop during early vegetative development, when maize plants exhibit expo-
nential growth and all absorbed energy is focused on leaf production to maximize light interception.  As 
the leaf area increases, relative transpiration increases also, and moisture uptake by the root system must 
increase accordingly.  Therefore, moisture availability is an essential factor in this stage and a parameter 
that describes this is essential for accurate forecasting of crop performance.  Note that any forecast tech-
nique will be hard pressed to predict accurately early in the season; with traditional model indicators being 
the only information available one must expect low accuracy results. 
 
The dependability of official maize yield statistics on regional scale is a further concern.  The assumption 
that historical maize yield statistics are ‘accurate’ remains doubtful, being confirmed by our comparison 
between those issued by AGRITEX and those by the CSO. Even if it holds, they remain normalized; it 
does not hold in the absolute sense since the total acreage under maize is not accurately known. This 
makes it impossible to arrive at provincial production totals.  This implies that for operational use of the 
approaches evaluated in this research, acreage under maize must be established first and with acceptable 
accuracy. 

4.2 Framework-specific issues 

The following issues are mutually exclusive for the YFF1 and YFF2 approaches. 

4.2.1 YFF2 

The ENSO weather phenomenon is argued to be strongly region-orientated. Most probably, similar re-
sults to the one described here can be achieved for the whole SADC region. This is in agreement with the 
experience of De Jager et al. (1998) who attempted to forecast maize yields in the Free State Province of 
South Africa, using weather forecasts according to a calibrated CERES-MAIZE model based on this same 
principle.  However, the finding that (reasonably) accurate weather forecasts could only be made one 
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month before the start of the growing was unexpected.  De Jager and co-workers maintained that the cor-
relation of rainfall and ENSO over South Africa is such that forecasting could not just be done one 
month before the growing season, but could continue in the season, all the way up to the end (De Jager et 
al., 1998).  Hence, within-season dynamics can be modeled to provide updated forecasts as the season 
progresses.  At first, this point of view seemed to hold for Mashonaland West province also, but spatial 
analysis of the ENSO based weather forecast revealed that the long-term relative error for the February 
forecasts was larger than expected from the statistical analysis.  Thus, it became clear that model precision 
should be evaluated with a well-balanced, comprehensive evaluation of the statistical significance, the ab-
solute rainfall difference observed between typical positive and negative ENSO years, the probability to 
receive a specific rainfall forecast, and the long-term relative prediction error.  It was hoped at first that 
the February forecast would permit to incorporate the effects of changes in the predictor; now it is known 
that for this sub-region such dynamics cannot be modeled in a way that would permit to update forecasts 
as the season progresses.  The low usefulness of the February weather forecast was confirmed by the low 
maize yield forecast accuracy based on these surrogate rainfall figures. 
 
Spatial analysis of the February weather forecasts also showed that below app. the 8.100.000 (UTM) lati-
tude, ENSO is less strongly correlated with specifically late rains than above this latitude.  This may to 
some extent be connected with the fact that the inter-tropical convergence zone (ITCZ), which is respon-
sible for most rainfall over Zimbabwe, comes from the north and is less hindered by other atmospheric 
developments, e.g. subtropical high-pressure belts, at higher latitudes (Unganai, 1998).  
 
Although El Niño does have different impacts in different parts of the world, the agrometeorological 
ENSO Rainfall Analysis and Forecast Model prepared for this research can be used for any of the regions 
of the world depicted in Figure 4: Climatic impacts of warm El Niño events (October-March). 

5 Conclusions 

Research questions were formulated to guide the research and permit to distinguish between issues of 
primary and secondary importance (Chapter 2, section Research Questions).  They addressed the yet un-
known or incompletely understood aspects of the two yield-forecasting frameworks under comparison.  
In the following, conclusions are drawn from the results of the research initiated to answer these ques-
tions.   
 

The main aim of this research was to contribute to the development of a framework for maize yield fore-
casting by setting up and testing the relative merits of two approaches.  It is generally true that the rele-
vance of yield indicators increases as they become available earlier and/or have greater accuracy.  Hence, 
the prediction error and the decade of the forecast were used to compare the two frameworks.   
 

It is tentatively concluded that YFF2 is outperformed by YFF1 in terms of accuracy, however the aspect 
timeliness is an important issue especially if the forecasts should have any value for farm management. 
The timeliness of YFF1, which uses weather data of the current season, is obviously affected by the speed 
at which this weather data comes available for crop growth simulation. If this data is quickly collected, 
processed and distributed to provincial level, it seems a defendable statement that YFF2 is outperformed 
by YFF1.  However, if there exists a significant delay or complete absence of weather data, YFF2 outper-
forms YFF1 since it is not dependent on current weather data but on historical, readily available records. 
 
The author was invited to present the Agrometeorological ENSO Rainfall Analysis and Forecast Model at 
the Seasonal Climate Forecast Workshop 1999 in Harare, where several users indicated a need for site-
specific, quantified rainfall forecasts.  Based on this thesis, the methodology and model have been set up 
and its results analyzed over a long period of time and under extreme weather conditions. 
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The recommendations of the "Agromet and Crop Monitoring Project (ACMP) in the SADC region – 3" 
report specifically mention (Roebeling et al., 1999):  
 

(1) “Investigate the improvements of the ACMS products contained in the use of annually derived plant-
ing date files.” 

 

Although improvements were not specifically investigated, the results reported in this thesis are based on 
district-specific crop calendars, extracted from the 1990’s Fortnightly Crop Forecast Reports issued by 
AGRITEX.   
 

(2) “Application of the relationship between records of reported and predicted yields, during a period of 
at least 8 years, to perform a statistical correction of the predicted yields.” 

 

In this thesis, the relationship between reported and predicted yield records, for a period of 9 years, has 
been used to perform statistical correction of yields predicted for the study area.  The good correlation 
(R2adj. = 0.84) between observed and modeled yield is encouraging. 
 

(3) In the same context, elsewhere in the report it was stated (page 61): “…In fact, this method has been 
applied in the framework of the JRC MARS Project, MARIE-C.  It turned out that the prediction ac-
curacy with this method is very high, with errors below 10%.  It is tempting to use a similar method-
ology in the SADC.” 

 

Hereby, this methodology has been applied to a small part of the SADC region.  This study confirmed 
that the prediction accuracy of the method is indeed very high, with an average relative prediction error of 
9.4 % (last decades).  However, under extreme weather conditions, such as the droughts during the year 
1994/95, the relative error of the forecasts is expected to increase 
  

Considering the above, it is justified to believe that this research contributed to the development of a 
framework for maize yield forecasting for Zimbabwe. 

5.1.1 Common issues 

Conclusions that apply to both approaches are given below. 
 

The first research question concerned the regression analyses of observed yields against model outputs.  
When actual yields do not correlate well with model-generated yield levels, changing the degree of aggre-
gation to levels with more reliable yield statistics does not always solve the problem.  This thesis suggests 
that introduction of ‘new’ variables could improve this regression. In our case, PRECsum/ETOsum was in-
troduced as an indicator of rainfall excess or shortage in relation with the simulated water requirements 
computed on a decadal basis.  Either this variable does not perform as expected, or, the methodology did 
not permit to test this variable for what it was intended, possibly due to the level of aggregation as ex-
plained in sub-section Maize Yield Forecast Component, Chapter 4. 

5.1.2 Framework-specific issues 

The following conclusions to research questions are listed separately for YFF2 and YFF1, as they are mu-
tually exclusive for both yield-forecast frameworks. 

5.1.2.1 YFF2 

Research has shown that the Southern Oscillation Index is a useful indicator of the amount of summer 
rainfall over Zimbabwe (ZIMMET, 1997).  However, to justify feeding a cop growth model with surro-
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gate weather data generated and based on this premise, an in-depth analysis of the impact of El Niño on 
the region was needed.  The temporal and spatial characterization of El Niño for rainfall revealed the fol-
lowing (detailed in the sub section Surrogate meteorological data and their processing: YFF2). 
 

(1) YFF2 is based on alleged links between ENSO and rainfall anomalies, and assumes that significant 
differences in seasonal rainfall exist in the study area and affect maize crop seasons grouped according 
to Stone’s SOI phases (Stone et al., 1996).  Since this hypothesis needs verification, a non-parametric 
test (Kruskal-Wallis) was executed for twenty-three meteorological stations in the study area, based on 
data varying from 30 years up to 108 years.  The null hypothesis (Ho) was that there is no systematic 
difference in forecast period (FP) rainfall totals between seasons grouped according to the different 
SOI phases; versus the alternative hypothesis (Ha) for research, that there is systematic difference in 
FP rainfall totals between the seasons grouped according to the different SOI phases.  The thesis that 
systematic difference in FP rainfall totals exists between seasons grouped according to the different 
SOI phases (with a confidence level of 95%) holds for 14 stations in the study region. 

 

(2) El Niño/Southern Oscillation (ENSO) derived rainfall outlooks are based on the assumption that the 
atmosphere is the best model of itself (Unganai, 1998).  In view of the prominent role of historical 
and huge data needs of models based on this premise, a question to be addressed was whether rainfall 
patterns in the recent past are as strongly conditioned or influenced by ENSO as observed in earlier 
times.  If historical rainfall data are stronger correlated with the state of El Niño than recent rainfall 
data, it is less likely that El Niño will have less impact on rainfall patterns in the future as well.  That 
would make it less relevant for forecasting purposes.  Furthermore, it would greatly weaken the 
weather prediction, as the number of relevant observation data would then reduce to those observed 
in the time-period of strong impact only.  The robustness of the statistical analysis would suffer cor-
respondingly. 
 

To answer this question, five of the twenty-three stations were analyzed for differences in statistical 
significance for different periods in time.  For Karoi, an example has been included in the section en-
titled “Surrogate meteorological data and their processing: YFF”, Chapter Three.  Table 5-1 summarizes the 
results of these five meteorological stations analyzed. 
 

TABLE 5-1 
 
 
 
 
 
 
 
 

 
 
Considering the extensive amount of data analyzed it is a defendable statement that rainfall patterns in 
the recent past are affected more strongly by ENSO than in earlier times, and hence, that the indica-
tor is expected to be valid in the near future as well.  This view was also confirmed by a comparison 
of the absolute difference in rainfall totals. 

 

(3) The nature of the weather forecasts currently provided by the Meteorological Department of Zim-
babwe does not fully meet user demands.  For regional priority management in malaria control or, as 
in our case, crop growth modelling, quantified rainfall estimates are required, at sufficient spatial de-
tail, rather than national estimates that are expressed in such terms as “70% chance of receiving above 

PROBABILITY PROBABILITY PROBABILITY
ALL YEARS < 1958 > 1958

Harare/Belvedere 94.6% 94.8% 77.1%
Guruve 99.6% 89.1% 94.1%

Karoi 99.2% 86.9% 96.0%
Gokwe 96.0% 64.9% 89.4%

Chinhoyi 98.4% 85.4% 86.0%
mean: 97.6% 84.2% 88.5%

STATION

LPM October and its Correlation with FP Rainfall Totals over Different Periods
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average rainfall”.  This raises the following question for research: “Are there differences between 
weather records in how they are affected by ENSO and does this result in spatially differentiated 
weather outlooks?”   
 

The answer to this question is affirmative: (slight) between-station differences were observed in the 
performance indicators used in the spatial analysis of ENSO.  However, this differs for different fore-
casts.  The spatial analysis of the November forecast showed that a slight difference in the point data 
must not be overvalued since it does not recur in all performance indicators and hence, a specific 
intra-distribution or pattern could not be identified.  It can be concluded that for the November fore-
cast a weighted average of map classes would spatially characterize the impact of ENSO on rainfall 
totals in November to April best fro Mashonaland West (based on the state of ENSO in October).  
Hence, no improvement can be made by a region-to-region approach for this forecast.   
 

The spatial analysis of the February weather forecast, however, showed that below app. the 8.100.000 
(UTM) latitude, ENSO is less strongly correlated with rainfall patterns than for areas above this lati-
tude.  Possible explanations for this phenomenon are offered in Chapter Four.  It can be concluded 
that an improvement can be made by a region-to-region approach for this forecast, i.e. another 10% 
of the variability in seasonal rainfall totals could be explained in Hurungwe and Kariba districts if 
these districts were handled separately.  This is a defendable statement, because it appears to hold for 
all performance indicators analyzed. 
 

The question whether it is possible to produce quantified rainfall forecasts within a reasonable error 
margin based on the ENSO principle can be answered positively.  However, again this differs for dif-
ferent forecasts.  The long-term mean error in the ENSO based rainfall outlook of November would 
amount to 24.5%, whereas that of the rainfall outlook of February would be as much as 74.5%.  
Clearly, the latter is unacceptably high and would not improve any of the existing methods introduced 
in Chapter One. The long-term mean error in the ENSO based rainfall outlook of November is ac-
ceptable in that it would be an improvement compared with the results of existing methods.  This is 
confirmed by the error of the November yield forecast (YFF2), which seems to stabilize at app. 20% 
from decade 5 onwards, of the same order as the weather forecast error of app. 20% (long-term: app. 
25%) on which this yield forecast was based.  Although yield forecast error data are insufficient to 
permit hard conclusions, a relative yield forecast error of 20% is an encouraging sign, considering the 
fact that it is available at the start of the growing season.   

 

(4) The scale at which crop performance is monitored aims at analysis of a region, whereas the ENSO 
rainfall estimation is on point basis.  To justify interpolation of these point estimates, geo-statistical 
analysis of the phenomenon is required.  Only if the significance of the predictor is sufficient and spa-
tially structured, is regionalisation of ENSO-based weather outlooks justified. 

 

Spatial analysis of the significance level of all 23 stations revealed that for 80% of Mashonaland West 
Province the theses stated under (1) hold.  Taking into account the conclusions of the other map 
analyses, described in section Surrogate meteorological data and their processing: YFF, Chapter Three, we 
may conclude that regionalisation of rainfall forecasts based on the state of El Niño is permitted in 
this case. 

 

An overall conclusion would be that, although limited, ENSO-based November weather forecasts remain 
useful for preliminary estimates of regional corn production since the forecast is available well in advance 
of actual production and with reasonable accuracy.  Although yield forecast error data are insufficient to 
permit hard conclusions, a relative yield forecast error of 20% for the ENSO based crop simulation is still 
an encouraging sign since the weather forecasts can be improved when lurking variables would be intro-
duced. 



54  INTERNATIONAL INSTITUTE FOR AEROSPACE SURVEY AND EARTH SCIENCES 

6 Recommendations 

In this section, recommendations are given that can contribute to further improve the yield forecast 
frameworks presented in this report. 

6.1 Common issues 

(1) As mentioned earlier, the reliability of the official maize yield statistics is an important factor.  To 
permit absolute yield forecasting at (sub) national scale, the acreage under maize has to be established 
first and with sufficient accuracy. 

 

(2) Verify the automated selection procedure used to select the model indicator as described under Phase 
6, section Module Three: statistical analysis.  As mentioned earlier, careful and case-by-case analysis would 
improve forecasting. 

 

(3) To permit optimal use of the frameworks, it is necessary to correct and enhance the existing soil in-
formation. 

 

(4) Investigate the accuracy of yield forecasts at district level instead of provincial level. 
 

(5) Investigate the implications for (results of) crop modelling of the use of cold cloud duration images to 
interpolate measured rainfall. 

 

(6) Investigate possibilities to calibrate the crop growth model, or replace entire sub-routines of the crop 
growth model, using estimated leaf area index (LAI), photo-synthetically active radiation (FPAR), or 
estimated actual evapo-transpiration from remote sensed images.  This would alleviate the need for 
accurate Land Unit or soil information. 

6.2 Framework-specific issues 

The following recommendations are listed separately for YFF2 and YFF1 as they are mutually exclusive 
for both yield-forecast frameworks. 

6.2.1 YFF2 

(1) To limit the workload, the low, middle, and high rainfall forecasts were averaged before being input 
into the crop growth model.  Feed the crop growth model with all three datasets and average the sur-
rogate yields afterwards. 

 

(2) To limit the workload, other weather parameters than rainfall were not forecast.  Assess the implica-
tions on the accuracy of maize yield forecasts if other crop growth input parameters are also derived 
from historical datasets. 

 

(3) Introduce additional parameters than the SOI Phases to improve the explanation of rainfall variability. 
 

(4) Detailed validation of this forecast system based on long-term forecast error, preferably based on at 
least 9 seasons under varying weather conditions. 
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Glossary 

El Niño  El Niño (Spanish for Christ Child) is the name given by Peruvian fisher folk to the 
warming of the surface waters of the Pacific Ocean that tends to occur around Christ-
mas.  A natural event that recurs in more or less regular cycles (on average every four to 
five years), El Niño affects southern Africa and the Pacific from Peru to Indonesia.  The 
local warming of the world's largest ocean also has repercussions for global atmospheric 
circulation of winds and waters. 

 
ITCZ  The Inter-tropical Convergence Zone is where the moist southeast trade winds meet the 

northeast trades of the northern hemisphere.  It is a zone of heavy rain and thunder-
storms, and constitutes a main source of tropical rain. 
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Appendices 

 

Appendix I List of  Weather Stations 

WMO_NO WMO_NAME LATDD LONGDD ELEV 
21797183 Alabama -18.8667 29.8667 1140 
22806651 Ballineety -17.6 30.7833 1440 
67769010 Banket Res. Stn. -17.3 30.3833 1244 
21796441 Battlefields -18.5833 29.8 1115 
22808206 Carnock -18 30.9167 1400 
21799793 Chegutu Rail/Hartley -18.1 30.1 1190 
67893020 Chibero -18.1 30.6667 1335 
67771030 Chinhoyi -17.22 30.13 1143 
67871020 Chivhu Met    -19.02 30.53 1460 
22804040 Darwendale Rail -17.43 30.333 1360 
67861030 Gokwe -18.2167 28.9333 1282 
67773020 Guruve -16.6667 30.7 1158 
67775050 Harare Airport -17.55 31.06 1497 
67795010 Harare Res. Stn. -17.48 31.03 1506 
67774010 Harare/Belvedere -17.5 31.01 1472 
67785020 Henderson Res. Stn. -17.5833 30.9667 1292 
22808656 Henderson Weed East -17.5833 30.9667 1292 
22801082 Hunyani Mission -16 30.5667 350 
22816731 Impingi Ranch -16.8667 30.75 1420 
67869050 Kadoma Res. Inst. -18.3333 29.9167 1188 
67767020 Kanyemba -15.39 30.2 340 
67761060 Kariba Airport -16.5167 28.8833 518 
67765020 Karoi -16.5 29.37 1344 
67865030 Kwekwe -18.9333 29.8333 1215 
22805099 Lone Cow Estate -17.1667 30.6333 1330 
21818910 Long Valley -17.0833 30.0333 1130 
21811535 Magunje -16.8167 29.4167 850 
21810095 Makuti Tsetse -16.3 29.2167 1070 
67877070 Marondera Res. Stn. -18.11 31.28 1631 
67891010 Mhondoro -18.19 30.36 1260 
67779030 Mount Darwin -16.47 31.35 965 
21813858 Moy -16.6333 29.6 1280 
67772010 Muzarabani -16.25 31.01 450 
67789010 Mvurwi -17.02 30.51 1481 

1 Ngezi Dam -18.6833 30.3667 1240 
67793010 Rattray Arnolds Res. Stn. -17.4 31.13 1341 
67778020 Shamva Panmure -17.16 31.37 881 
22807639 Stapleford Farm -17.7167 30.8667 1465 
21818107 Yeanling -17.0833 30 1220 
20819421 Zvipani -15.6167 30.4333 340 
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Appendix II  Weather Stations Per Grid 

Grid                         Rain                                  Temperature          Rest 
11003  67767020 67761060 22801082 21811535 67778020 67779030 21813858  67761060 67761060 

11004  67767020 22801082 67761060 21811535 67779030 67778020 67773020  67761060 67761060 

11005  67767020 22801082 67761060 21811535 67779030 67778020 67773020   67761060 67779030           67761060 

11006  22801082 67767020 21811535 67779030 67778020 67761060 67773020   67779030 67778020 67761060    67761060 67765020 67774010     

21002  67761060 67767020 21811535 22801082 67778020 21813858 67765020  67761060 67761060 

21003  67761060 21811535 67767020 22801082 67778020 67779030 21813858  67761060 67761060 

21004  21811535 67761060 67778020 67779030 67767020 22801082 21813858   67761060 67779030 67765020    67761060 67765020             

21005  21811535 22801082 67761060 67767020 67778020 67779030 67773020   67761060 67779030 67773020   67761060 

31002  67761060 21811535 67767020 22801082 67778020 21813858 67765020  67761060 67761060 

31003  67761060 21811535 22801082 67767020 67778020 21813858 67765020  67761060 67761060 

31004  21811535 67761060 67778020 21813858 67779030 67771030 67773020   67761060 67773020 67765020    67761060 67765020             

31005  21811535 67761060 22801082 67778020 67779030 67767020 67773020   67761060 67779030 67773020    67761060 67765020 67774010     

31006  67773020 67779030 67771030 67778020 67769010 21811535 22805099   67773020 67779030 67771030    67765020 67774010             

41001  67761060 21811535 22801082 67767020 67778020 67771030 21813858  67761060 67761060 

41002  67761060 21811535 67778020 67771030 21813858 22801082 67765020  67761060 67761060 

41003  21811535 67761060 67778020 67771030 21813858 67779030 67765020   67761060 67771030 67765020    67761060 67765020             

41004  21813858 67765020 67769010 67771030 22804040 22805099 67861030   67765020 67771030           67765020 

41005  67771030 67773020 67769010 21813858 22805099 22804040 67869050  67771030  67765020 67774010             

41006  67773020 67771030 67769010 22805099 67785020 22808656 22816731   67773020 67769010            67765020 67774010             

51001  67761060 21811535 67861030 21796441 67771030 67778020 22801082  67761060 67761060 

51002  21811535 67761060 67771030 67778020 21796441 67861030 67869050   67761060 67861030            67761060 67765020 67865030     

51003  21811535 67761060 67771030 67778020 21796441 67869050 21813858   67761060 67771030 67861030    67761060 67765020 67865030     

51004  67771030 21811535 21796441 67869050 67769010 67773020 21813858   67771030 67769010 67861030    67765020 67865030 67761060     

51005  67771030 67769010 67869050 67773020 22804040 67891010 22805099  67771030  67865030 67765020 67774010     

51006  22804040 22805099 22806651 22816731 67793010 22808206 67769010   67769010 67789010 67893020    67774010 67765020 67877070     

61003  21811535 21796441 67861030 67778020 67869050 67771030 67761060   67861030 67761060 67865030    67761060 67865030             

61004  21796441 67869050 67771030 21797183 21811535 67891010 67861030   67771030 67891010 67861030    67865030 67765020             

61005  67869050 67771030 67891010 67769010 21796441      1 21797183   67771030 67769010 67865030    67865030 67765020 67774010     

61006  22808206 67893020 22804040 22806651 22807639 67785020 22808656   67893020 67891010 67769010   
 67774010 67877070 67765020 

67865030 

61007  22807639 67774010 22806651 22808206 67789010 67893020 67877070   67774010 67893020 67877070   67774010 

71003  21796441 67861030 21797183 67869050 21811535 67865030 67771030   67861030 67865030 67771030    67865030 67761060             

71004  21796441 67869050 21797183 67865030 67771030 67861030 67891010   67865030 67771030 67861030   67865030 

71005  67869050 21796441 21797183 67891010      1 67865030 67771030   67891010 67865030 67771030   67865030 

71006  67893020 67891010 22808206      1 22804040 22808656 67785020   67893020 67891010            67865030 67774010 67877070     

71007  22808206 67893020 22807639 22806651 67774010 67793010 22808656   67893020 67877070            67774010 67877070 67865030     

81004  21796441 21797183 67865030 67869050      1 67861030 67891010  67865030 67865030 

81005  67865030 67869050 21797183      1 21796441 67891010 67893020  67865030 67865030 

81006       1 67893020 67891010 67865030 22808206 67869050 22808656   67893020 67891010 67865030    67865030 67877070             

81007  22808206 67893020 22807639 22806651      1 67891010 67774010   67893020 67891010 67877070    67774010 67877070 67865030     
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Appendix III Overview Yield Forecasting Methods 

Different approaches to crop forecasting according to the information they use are (Dehghan, 1998): 
 
(a) Air (or space) - based information. 
 

Although remote sensing techniques exist, they do not permit yet, for various reasons, the quantita-
tive prediction, and assessments of crop yield.  Using remotely sensed vegetation indices (LAI, NDVI, 
etc.), information about evapotranspiration, and water stress, they have the potential of being inde-
pendent of any other data source and provide real-time information over vast regions. 

 
(b) Ground-based information 
 
There are many different methods successfully used in this approach which can be classified as: 
 

i. Forecasts based on pre-harvest crop reports. 
Infiltration, systematically, flows from villages to provincial level, reporting crop conditions.  Many 
examples could be given here, to name just a few: crop forecasting in India, paddy yield forecasting in 
Indonesia (Singh & Pariyar, 1994) and crop forecasting in Germany (Stadler, 1994). 
 

ii. Time trend analysis. 
This is the most commonly used approach, and crop-weather time trend analysis models are the most 
successful methods used in most of the continents.  The trend extrapolations adjusted for weather 
conditions of European Statistical Office and various methods applied in the former USSR and 
FAO's Early Warning System GIEWS and etc. are based on statistical regressions between weather or 
agro-meteorological conditions and crop yield (Vossen and Rijks 1995). 
 

iii. Crop growth simulation models. 
This is the most advanced method introduced for yield forecasting in the last decade.  A yield gap is 
calculated by regression analysis between simulation results as potential yield and actual yield observa-
tions from the field.  These models are either used to modify time trend yields, experience of CGMS 
(ibid.) or field observable land quality indicators (above ground mass or LAI) are collected during the 
growing season to relate the simulation results to actual land-use systems (Driessen, 1997), or simula-
tion results and actual yields are directly regressed to build forecasting model. 

 
Under the latest approach to yield forecasting, a sub-research started that primarily focused on the 
weather component to provide input for the crop growth simulation models.  Preparing adequate surro-
gate seasonal weather data for crop growth modelling offers a formidable challenge (Hammer and 
Nicholls, 1996).   
 
Hodges et al. (1987) cited by de Jager et al. (1998) selected appropriate analogue historical weather data 
series, depending upon the 90-day weather outlook (below, above or normal).  Randomized weather data 
series generation (e.g. the climate model, Weathergen) is a possibility, as is the use of the daily rainfall data 
series generator of Zucchini and Adamson (1984) as cited by de Jager et al. (1998).  Lourens and de Jager 
(1997) forecast weather data within a growing season with historical data series that had delivered lower 
quartile, median and upper quartile seasonal rainfall (de Jager et al., 1998).  Fouché (1992) cited by de Jager 
et al. (1998) constructed seasonal rainfall scenarios of composite monthly rainfall data from historical me-
teorological records, assuming that each month received median monthly rainfall.  De Jager and Singels 
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(1990) used combinations of daily sunshine, maximum, and minimum temperature and daily rainfall data 
selected randomly from historical data series (de Jager et al., 1998).  McKeon (1996) sited by de Jager et al. 
(1998) simulated forage yields by completing the season with 5-10 analogue years of weather data from 
which he determined the mean and coefficients of variation.   


