

Processing Sentinel3-A/B OLCI Data

Lichun Wang

NRSCC

ESA-MOST China Dragon 4 Cooperation

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

18 to 23 November 2019 | Chongqing University, P.R. China

培训时间:2019 年11月18日-23日 主办方:重庆大

Processing Sentinel3-A/B OLCI Data

Prepared by Daniel Odermatt¹, Ana B. Ruescas^{2,3} and Juan C. Jimenez-Muñoz³ Updated by Lichun Wang

1 Odermatt & Brockmann (Germany) 2 Brockmann Consult (Germany) 3 Image Processing Laboratory (UV, Spain)

Sentinel-3 Sensors

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Ocean and Land Colour Instrument: OLCI

Images credit: ESA

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Ocean and Land Colour Instrument: OLCI

MERIS Bands	λ center	Width		
Yellow substanace/detrital pigments	412.5	10		
Chl., Abs. Max	442.5	10		
Chl & other pigments	490	10		
Susp. Sediments, red tide	510	10		
Chl. Abs. Min	560	10		
Suspended sediment	620	10		
Chl. Abs, Chl. fluorescence	665	10		
Chl. fluorescence peak	681.25	7.5		
Chl. fluorescence ref., Atm. Corr.	708.75	10		
Vegetation, clouds	753.75	7.5		
O ₂ R-branch abs.	761.25	2.5		
O ₂ P-branch abs.	778.75	15		
Atm corr	865	20		
Vegetation, H ₂ O vap. Ref.	885	10		
H ₂ O vap., Land	900	10		
New OLCI bands	λ center	Width		
Aerosol, in-water property	400	15		
Fluorescence retrieval	673.75	7.5		
Atmospheric parameter	764.375	3.75		
Cloud top pressure	767.5	2.5		
Atmos./aerosol correction	940	20		
Atmos./aerosol correction	1020	40		

Band #	λ center	Width
	nm	nm
Oal	400	15
Oa2	412.5	10
Oa3	442.5	10
Oa4	490	10
Oa5	510	10
Oa6	560	10
Oa7	620	10
Oa8	665	10
Oa9	673.75	7.5
Oa10	681.25	7.5
Oal1	708.75	10
Oa12	753.75	7.5
Oa13	761.25	2.5
Oal4	764.375	3.75
Oa15	767.5	2.5
Oa16	778.75	15
Oa17	865	20
Oa18	885	10
Oa19	900	10
Oa20	940	20
Oa21	1020	40

· eesa

BNASCC

OLCI product types

Example: Sentinel-3A/B products

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

MASEC · COSA

Exercise Overview:

- Goal: Processing S3-A/B OLCI data for estimating emissivity using NDVI-THM.
- Source: Sobrino et al. (2008, 2016)
- Procedure:
 - Basic image visualization and manipulation tasks
 - OLCI L1 TOA radiance to reflectance conversion
 - OLCI L1/L2 product collocation
 - Emissivity calculation using the (NDVI)Thresholds Method
 - Spatial and temporal changes of NDVI (S3-SY-NDVI) using time series analysis tools
- Sentinel-3 user guide:

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-olci

The emissivity, ϵ , at a given wavelength λ (units, μ m) and temperature *T* (units, K), is defined as the ratio of the radiance $R_{\lambda}(T)$ emitted by a body at temperature *T* and the radiance $B_{\lambda}(T)$ emitted by a black body at the same temperature *T*, that is,

$$\varepsilon_{\lambda}(T) = \frac{R_{\lambda}(T)}{B_{\lambda}(T)},\tag{1}$$

where $B_{\lambda}(T)$ refers to Planck's law, which is defined as

$$B_{\lambda}(T) = \frac{C_1 \lambda^{-5}}{\exp(C_2 / \lambda T) - 1},$$
(2) (2)

in which C $_1$ and C $_2$ are constants (C $_1$ = 1.191 × 10⁸ W μ m⁴ sr⁻¹ m⁻², C $_2$ = 1.439 × 10⁴ μ m K).

Land surface emissivity retrieval from satellite data; Li et al., 2013, IJRS, http://dx.doi.org/10.1080/01431161.2012.716540

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

 $\cdot eesa$

NRSCC

(NDVI)Thresholds Method

A simple method using OLCI data in the visible and near infrared bands (b8 and b9), which considers three type of pixels depending on the NDVI value:

NDVI<NDVIs : $\varepsilon = a + b\rho_{red}$ NDVIs≤NDVI≤NDVIv : $\varepsilon = \varepsilon_{s}(1 - Pv) + \varepsilon_{v}Pv + C$ NDVIv>NDVI: $\epsilon = 0.99$

where pred is the reflectance at the red band, $\varepsilon s =$ and $\varepsilon v =$ are reference values of surface emissivity for soil and vegetation, respectively. Pv is the fractional vegetation cover, which can be obtained from the scaled NDVI, given by

$$Pv = \frac{NDVI - NDVIs}{NDVIv - NDVIs}$$

Where NDVIs=0.15 and NDVIv=0.9 are reference values of NDVI for bare soil pixels and fully vegetation pixels

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

eest

Exercise data

Sentinel-3B L1 and L2 images

 S3B_OL_1_EFR____20191001T023650_20191001T023950_20191002T073016_0179_030_260_2520_LN1_O_NT_002.SEN3

 S3B_OL_2_LFR___20191001T023650_20191001T023950_20191002T075103_0179_030_260_2520_LN1_O_NT_002.SEN3

Sentinel-3A L1 and L2 images

 S3A_OL_1_EFR____20181005T023514_20181005T023814_20181006T062411_0179_036_260_2520_LN1_O_NT_002.SEN3

 S3A_OL_2_LFR____20181005T023514_20181005T023814_20181006T064358_0179_036_260_2520_LN1_O_NT_002.SEN3

Sentinel-3A/3B Synergy NDVI products

S3B_SY_2_V10____20190726T163346_20190805T163346_20190815T172025_SOUTH_EAST_ASIA___LN2_0_NT_002.SEN3 S3B_SY_2_V10____20190825T163346_20190904T163346_20190914T172004_SOUTH_EAST_ASIA___LN2_0_NT_002.SEN3 S3B_SY_2_V10____20190926T120000_20191006T120000_20191007T084850_SOUTH_EAST_ASIA___LN2_0_ST_002.SEN3 Data downloadable at https://scihub.copernicus.eu

NRSCC

· eesa

Exploring S3A/B OLCI L-1/L-2 data:

- From the folder products exercise,open the scene: "S3B_OL_1_EFR____20191001T023650_2019 1001T023950_20191002T073016_0179_030_ 260_2520_LN1_0_NT_002"
- Create and visualize an RGB composition image (Red: Oa08_Radiance; Green: Oa06_Radiance; Blue: Oa04_Radiancd).
- Stretch the histogram for a better visualization in the *Colour Manipulation* window
- View image bands and check the spatial resolution for the radiance bands
- Open and explore OCLI L2 product

Spatial Subset

Reduce the spatial extent to focus on the study area for **OCLI L1 & L2** products:

Specify 'Spatial Subset' parameters (as shown in Figure)

Save the newly created subset images:

subset_0_of_S3B_OL_1_EFR___201910
01T023650_20191001T023950_20191002T07
3016_0179_030_260_2520_LN1_O_NT_002.d
im

subset_0_of_S3B_OL_2_LFR___201910
01T023650_20191001T023950_20191002T07
5103_0179_030_260_2520_LN1_0_NT_002.d
im

Specify Pro	duct Subset					×
Spatial Subset	Band Subset	Tie-P	oint Grid Subset	Met	adata Subset	
		^	Pixel Coordin	ates	Geo Coordina	ites
	A States		North latitude	boun	nd: Indi	27.465 🜩
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			South latitude	e bou	nd:	20.043
and the second sec			East longitude	e bour	nd:	113.64 🜩
			Scene step X:			1 🚔
			Scene step Y:			1 🚔
			Subset scene v Subset scene h	vidth: neight	:	2399.0 2399.0
			Source scene v Source scene h	vidth: neight	:	4865 4091
			Use	Previe	ew	Fix full width
			0.00			Fix full height

Radiance to Reflectance

WRASEE ·eesa

From the folder *products exercise*, open the newly created OCLI L1 subset product:

"subset_0_of_S3B_OL_1_EFR____20191001T023650_ 20191001T023950_20191002T073016_0179_030_260 _2520_LN1_0_NT_002.dim"

In the *Optical* label click on *Preprocessing/Radiance-to-Reflectance Processor*:

 $R_{TOA}(\lambda) = \frac{\pi L_{TOA}(\lambda)}{E_0(\lambda)\cos(\theta)}$

Specify 'Processing Parameters' (as shown in Figure)

Save the output product as:

"subset_0_of_S3B_OL_1_EFR____20191001T023650_ 20191001T023950_20191002T073016_0179_030_260 _2520_LN1_0_NT_002_radrefl.dim"

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Radiance-to-Reflectance Processor

I/O Parameters Processing Parameters

[2] subset_0_of_S3B_OL_1_EFR____2...

0179_030_260_2520_LN1_O_NT_002.SEN3 radrefl

D2OTP1-S3thermal-LW\products exercise

Help

Source Product

Target Product

Open in SNAP

Save as: BEAM-DIMAP Directory:

Name:

Name:

File

Radiance-to-Re	eflectance Processor				
ile Help					
I/O Parameters P	rocessing Parameters				
Sensor:	OLCI				
Conversion mode:	RAD_TO_REFL				
Copy tie point grids					
Copy flag bands and masks					
Copy non spectral bands					

Open RGB window using band 8,6,4

subset_0_of_S3B_OL_1_EFR____20191001T023650_20191001T023950_20191002T073016_0179_030_260_2520_LN1_O_NT_002.SEN3_radrefl.dim subset_0_of_S3B_OL_2_LFR____20191001T023650_20191001T023950_20191002T075103_0179_030_260_2520_LN1_O_NT_002.dim

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

WRASEC · COSA

OLCI L1/L2 Collocation

Use the collocation tool to group the L1 (*_radrefl) and L2 OLCI bands in one product with the same spatial resolution and geo-location

Raster/Geometric Operations/Collocation

Master file:

subset_0_of_S3B_OL_1_EFR____20191001T023650_20191001T023950_20191 002T073016_0179_030_260_2520_LN1_0_NT_002_radrefl.dim

Slave file:

subset_0_of_S3B_OL_2_LFR____20191001T023650_20191001T023950_20191 002T075103_0179_030_260_2520_LN1_0_NT_002.dim

Target file: collocate_S3B_OL1_OL2_20191001.dim

Open RGB view using bands 8, 6 and 4

Emissivity Calculation using NDVI-THM

Using the collocated start calculating the variables needed for algorithm with the Ra Maths tool

> Product: [6] co Data sources: \$6.0a01 re \$6.0a02_re \$6.0a03_re \$6.0a04_re \$6.0a05 re \$6.0a06_re

2019 ADVANCED INTERNATIONAL TR

18–23 November 2019 | Chongqing, P.R

	Band Maths									\times
rated product	Target product:									
	[6] collocate_S3B_L1_L2_20191001							~		
1 the several	Name: emis_s_	<u>58</u>								
	Description:									
d for the IST	Unit:									
a for the LST	Spectral wavelength: 0.0									
the Dector/Rand	Virtual (save expression only, don't store data)									
the Raster/Danu	Replace NaN and infinity results by							NaN		
	Generate associated unco	ertai	inty band							
	Band maths expression:	Band maths expression:								
	if (OGVI_S <= 0.15) then (-0.051 * Oa08_reflectance_M) + 0.98 else 0									
Band Maths Expression Editor	Load Save					E	dit Expres	ssion		
Product: [6] collocate_S3B_L1_L2_20191001								ОК	Cancel	Help
Data sources:		_		Expression:						
\$6.0a01_reflectance_M		^	@ + @	if (OGVI	I_S <=	0.15) then (-0	.051 *			
\$6.0a02_reflectance_M			0 - 0	Oa08_ref	flectar	1ce_M) + 0.98 e	lse 0			
\$6.0a03_reflectance_M			0 * 0	1						
\$6.0a04_reflectance_M										
\$6.Oa05_reflectance_M			@ / @							
\$6.0a06_reflectance_M			(@)							
\$6.0a07_reflectance_M			Constants v							
\$6.0a08_reflectance_M		¥	Operators V							
Show bands			Functions V							
Show masks										
Show tie-point grids									汉武宣机拉	di i astr
Show single flags				manal i			Ok, i	no errors.	王 主办方:重日	大学
						OK Car		Hala		
						UK Can	/CEI	neip		

· eesa

NRSCC

Emissivity calculation using (NDVI)Thresholds Method

 $Pv = (OGVI_S-0.15) / (0.9 - 0.15)$

Emissivity for soil pixels

 $emis_{S} = if (OGVI_{S} \le 0.15) then (-0.051 * Oa08_reflectance_M) + 0.98 else 0$

```
emis_s_{9} = if (OGVI_{5} <= 0.15) then (-0.032 * Oa09_reflectance_M) + 0.983 else 0
```

Emissivity for mixed pixels

 $emis_m_S8 = if (OGVI_S > 0.15) and (OGVI_S < 0.9) then 0.969 * (1 - Pv) + (0.99 * Pv) else 0$ $emis_m_S9 = if (OGVI_S > 0.15) and (OGVI_S < 0.9) then 0.977 * (1 - Pv) + (0.99 * Pv) else 0$ Emissivity for vegetation pixels

 $emis_v = if (OGVI_S \ge 0.9)$ then 0.99 else 0

Total emissivity

```
emis_total_S8 = emis_s_S8 + emis_m_S8 + emis_v
emis_total_S9 = emis_s_S9 + emis_m_S9 + emis_v
```

Mean emissivity

```
emis_mean = (emis_total_S8 + emis_total_S9) / 2
```

Differential emissivity

```
emis_diff = emis_total_S8 - emis_total_S9
```

Water vapour to g*cm2

water_vapour = IWV_S_S / 10

Check the newly calculated values for water, soil and vegetation pixels (display the only pixels with NDVI values above/below a specific threshold)

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Temporal & spatial changes in NDVI

• Open the S3 Synergy NDVI files:

 File1: Subset_0_of_S3B_SY_2_V10____20190726T163346_20190805T163346_20190815T172025_SOUTH_EAST_ASIA___LN2_O_NT_002.dim

 File2: subset_0_of_S3B_SY_2_V10____20190825T163346_20190904T163346_20190914T172004_SOUTH_EAST_ASIA___LN2_O_NT_002.dim

 File3: subset_0_of_S3B_SY_2_V10____20190926T120000_20191006T120000_20191007T084850_SOUTH_EAST_ASIA___LN2_O_ST_002.dim

Visualize the NDVI images of each file

• Add all images in the time series analysis settings

Time Series Analysis Settings Add Graph Show Grid Show Legend NDVI_changes ♣ File Name Type Acquisition Track Orbit subset_0_of_S3B_SY_2_V1... SY_2_V10 261ul2019 999999 99999 1 subset_0_of_S3B_SY_2_V1... SY_2_V10 25Aug2019 99999 99999 subset 0 of S3B SY 2 V1... SY 2 V10 99999 99999 26Sep2019 3 3 Products Rename 3 Apply Close

Temporal & spatial changes in NDVI

- Move the cursor over the image and observe the changes in graph.
- The graph shows the changes in NDVI for each pixel in the image you click

NRSCC

·eesa

