ESA-MOST China Dragon 4 Cooperation 2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班

Instructions for practical exercises

Pre-processing and multi-temporal analysis of SAR time series

Multitemporal Analysis of SAR Backscatter Intensity

by Magdalena Fitrzyk

Objectives

- Familiarize with SNAP toolbox
- Familiarize with Sentinel-1 GRD products
- Calculating backscatter intensity from Sentinel-1 detected products
- Analysing of temporal backscatter signatures for various land cover types
- Change detection over AOI (Beijing Daxing International Airport)

Dataset

Time series of Sentinel-1 GRDH images over China

S1A_IW_GRDH_1SDV_20151003T222044_20151003T222111_007994_00B2F6_9374 S1A_IW_GRDH_1SDV_20160611T222046_20160611T222112_011669_011DDC_7FB0 S1B_IW_GRDH_1SDV_20171115T222014_20171115T222041_008298_00EAE8_2415 S1B_IW_GRDH_1SDV_20181110T222021_20181110T222048_013548_019131_A556 S1B_IW_GRDH_1SDV_20190930T222028_20190930T222054_018273_022698_C498

Data preparation

The subset of te dataset has been prepared in advance. In order to prepare the subset the following steps shall be followed

File/Open Products

Visualise one of the bands *Raster/Subset/Spatial Subset* Select 'Pixel Coordinates', 'Geo Coordinates' or select AOI from the preview Confirm 'OK'

1. Manual Data pre-processing (for single data product)

1.1 Updating orbits

Radar/Apply orbit file

Input: Subset of S1 GRD

eg. 2_Subsets_GRD/Subset_S1A_IW_GRDH_1SDV_20151003T222044...

Output: Subset_S1A_IW_GRDH_1SDV_20151003T222044..._Orb

Parameters:

Sentinel Precise

1.2 Radiometric Calibration

Radar/Radiometric/Calibrate

Input: Subset_S1A_IW_GRDH_1SDV_20151003T222044..._Orb

Output: Subset_S1A_IW_GRDH_1SDV_20151003T222044..._Orb_Cal

Parameters:

Polarisations VV,VH

Output sigma0 band

1.3 Terrain Correction

Radar/Geometric/Terrain Correction/Range Doppler Terrain Correction

Input: Subset_S1A_IW_GRDH_1SDV_20151003T222044..._Orb_Cal

Output: Subset_S1A_IW_GRDH_1SDV_20151003T222044..._Orb_Cal_TC

Parameters:

Digital Elevation Model SRTM3sec

Pixel spacing 10m

Map projection WGS84

Mask areas without elevation

2. Automatic pre-processing using graph processing tool and batch processing (for all files)

Tools/Graph Builder

Input: Subset_S1A_IW_GRDH_1SDV_20160611T222046_..._

Output: Subset_S1A_IW_GRDH_1SDV_20160611T222046_..._Orb_Cal_TC

Parameters:

Build processing chain with functions presented in steps 1.1-1.3

Save the graph as GRD_Cal_TC.xml

Tools/Batch Processing

Input: all GRD subset files

Output: GRD subset files processed as in steps 1.1-1.3

Parameters: Load GRD_Cal_TC.xml

3. Further processing

3.1 Multitemporal stack

Radr/Coregistration/Stack Tools/Create Stack

Input: all GRD subset files precessed in section 2

Output: backscatter_Stack.dim

Parameters:

Create Stack-Initial offset method 'Product Geolocation'

3.2 Specke Filtering

Radar/Speckle Filtering/Multi-temporal Specke Filter Input: backscatter_Stack.dim Output: backscatter_Stack_Spk.dim Parameters: Source bands – all

Filter – Gamma Map Filter Size – 3x3

3.3 Linear to db conversion

Raster/Data Conversion/Converts bands to\from dB Input: backscatter_Stack_Spk.dim Output: backscatter_Stack_Spk_dB.dim Parameters: all bands

3.4 Creating RGB

Right click on the name of the product created in 3.3 (in Product Explorer) Open RGB Image Window R: Sigma0_VH_3_Oct_2015 G: Sigma0_VH_30_Sep_2019 B: Sigma0_VH_30_Sep_2019

3.5 Stack Averaging

Radar/Coregistration/Stack Tools/Stack Averaging Input: backscatter_Stack_Spk_dB.dim Output: backscatter_Stack_Spk_dB_avg.dim Parameters: Mean Average

RGB - Right Click on the name of the product 'backscatter_Stack_Spk_dB_avg.dim' R: Sigma0_VV

- G: Sigma0_VH
- B: Sigma0_VV/Sigma0_VH