

Pre-processing and multi-temporal analysis of SAR time series Magdalena Fitrzyk

ESA-MOST China Dragon 4 Cooperation

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

Part 1

Multitemporal Analysis of SAR Backscatter Intensity

Objectives

- Familiarizing with SNAP toolbox
- Familiarizing with Sentinel-1 GRD products
- Calculation of backscatter intensity from Sentinel-1 detcted products
- > Analysis of temporal backscatter signatures for various land cover types
- Change detection over AOI (Beijing Daxing International Airport)

· eesa

NRSCC

Introduction

Input data: time series of Sentinel-1 GRDH images over China

S1A_IW_GRDH_1SDV_20151003T222044_20151003T222111_007994_00B2F6_9374 S1A_IW_GRDH_1SDV_20160611T222046_20160611T222112_011669_011DDC_7FB0 S1B_IW_GRDH_1SDV_20171115T222014_20171115T222041_008298_00EAE8_2415 S1B_IW_GRDH_1SDV_20181110T222021_20181110T222048_013548_019131_A556 S1B_IW_GRDH_1SDV_20190930T222028_20190930T222054_018273_022698_C498

Output:

- temporal backscatter signatures for various land cover types
- change detection

Data preparation

1. Opening the S1 data

1						
<u>File Edit V</u> iew And	alysis Layer	Vector Ra	ster Optical	Radar <u>T</u>	ools <u>W</u> indov	w <u>H</u> elp
🚭 Open Product	_	F .4 .		a 🔊		φ,λ
Reopen Product	► 2.6	1 44 4				φ, το []
😪 Product Library	nfo					
Close Product Close All Product Close Other Prod	Et an and a second s					
Save Product Save Product As.	40					
Session	•					
Projects	•					
Import	•					
Export	•					
Exit						

 S1B_IW_GRDH_1SDV_20190219T055747_20190219T055812_015011_01C0C5_16E0.zip

 S1B_IW_GRDH_1SDV_20190315T055747_20190315T055812_015361_01CC2F_2DE0.zip

 S1B_IW_GRDH_1SDV_20190420T055748_20190420T055813_015886_01DD7D_B255.zip

 S1B_IW_GRDH_1SDV_20190514T055749_20190514T055814_016236_01E8EA_C0BC.zip

 S1B_IW_GRDH_1SDV_20190713T055752_20190713T055817_017111_020314_33F3.zip

 S1B_IW_GRDH_1SDV_20190818T055755_20190818T055820_017636_0212DC_C2D4.zip

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING

18-23 November 2019 | Chongqing, P.R. China

For unzipped products

Name		Size	Modified	
annotation			8/7/18 4:13 PM	
measurer []	ment		8/7/18 4:13 PM	
preview			8/7/18 4:13 PM	
S1B_IW_G	RDH_1S		8/7/18 4:13 PM	
support			8/7/18 4:13 PM	
manifest.			8/7/18 4:13 PM	
	safe RDH_1S		8/7/18 4:13 PM 8/7/18 4:13 PM	
SIB_W_G	RDH_1S	19 KB		
		19 KB		

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

Collocation spatially overlapping products (based on geolocation)

Speckle filtering

Filtering the inherent salt and pepper like texturing called speckles

Linear to dB conversion

Compensate for very high dynamic range in visualisation

Stack statistics and analysis of temporal backscatter signatures

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

> Updating orbits

Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

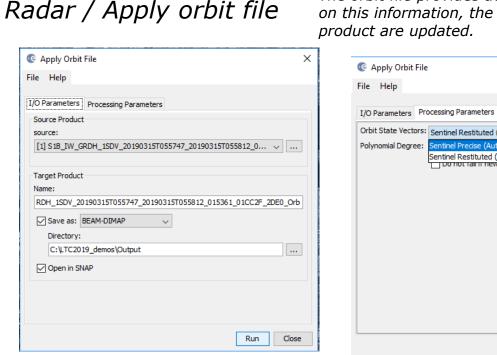
Collocation spatially overlapping products (based on geolocation)

Speckle filtering

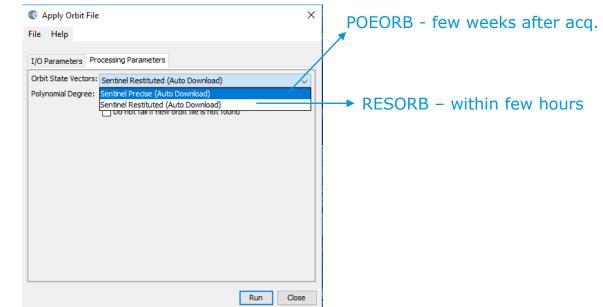
Filtering the inherent salt and pepper like texturing called speckles

Linear to dB conversion

Compensate for very high dynamic range in visualisation


Stack statistics and analysis of temporal backscatter signatures

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China



Updating orbits

The orbit file provides accurate satellite position and velocity information. Based on this information, the orbit state vectors in the abstract metadata of the product are updated.

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

Collocation spatially overlapping products (based on geolocation)

Speckle filtering

Filtering the inherent salt and pepper like texturing called speckles

Linear to dB conversion

Compensate for very high dynamic range in visualisation

Stack statistics and analysis of temporal backscatter signatures

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

From image pixel values or digital numbers (DNs) we can derive:

Beta Naught – radar brightness coefficient, reflectivity per unit area in slant range which is dimensionless

Sigma Naught – power returned to the antenna from the ground (distributed scatterer) in dB. A number comparing the strangth of the signal to that expected from and area of one square meter. It is defined with respect to the nominal horisontal plane and is varying with incidence angle, wavelength, polarisation and scattering surface itself

Radiometric Calibration

Radar/Radiometric/Calibrate

Radar	<u>T</u> ools <u>W</u> indow	Help				
Apply (Orbit File	-1 [4] @ t@ t				
Radion	netric	Calibrate				
Speckl	e Filtering	Radiometric Terrain Flattening				
Coregi	stration	Remove Antenna Pattern				
Interfe	rometric	S-1 Thermal Noise Removal				
Polarin	netric	Convert Sigma0 to Beta0				
Geome	etric	Convert Sigma0 to Gamma0				
Sentin	el-1 TOPS	Create Calibration LUT TPG				
ENVISA	AT ASAR					
SAR Ap	plications	• 1997				
SAR Ut	ilities					
SAR W	zards	· Contractor States				
Compl	ex to Detected GR					
Multilo	oking	6				

0	Calibration	×
File Help		
I/O Parameters Proc	essing Parameters	
Polarisations:	VH VV	
Save as complex ou		
Output gamma0 ban		
Output beta0 band		
the radar	backcoattor	

Pixel values can be directly related to the radar backscatter

Run	Close
1000	

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

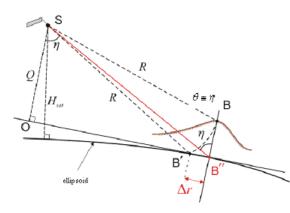
Collocation spatially overlapping products (based on geolocation)

Speckle filtering

Filtering the inherent salt and pepper like texturing called speckles

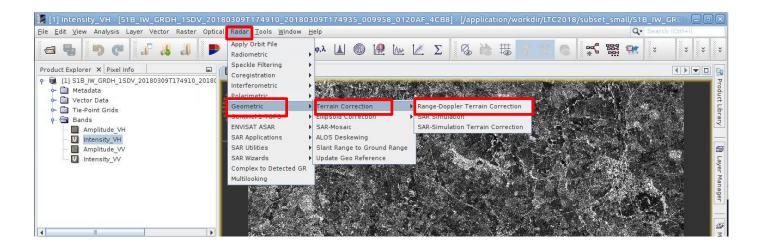
Linear to dB conversion

Compensate for very high dynamic range in visualisation


Stack statistics and analysis of temporal backscatter signatures

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Terrain correction & Geocoding



Point **B** with elevation **h** above the ellipsoid is imaged at position **B'** in SAR image, though its real position is **B''**. The offset Δr between **B'** and **B''** exhibits the effect of topographic distortions

Terrain Correction allows geometric overlays of data from different sensors and/or geometries.

Radar / Geometric / Terrain Correction / Range Doppler Terrain Correction

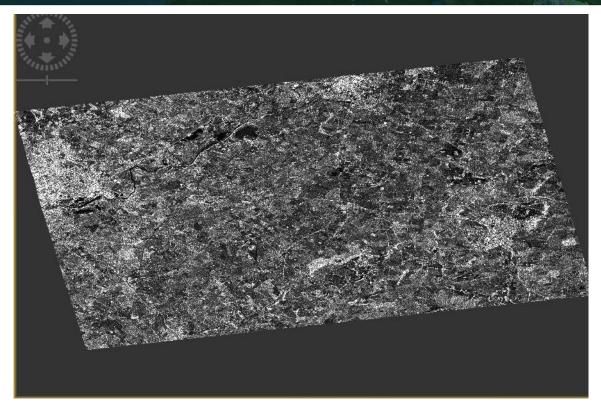
· eesa

NRSCC

Terrain correction & Geocoding

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING

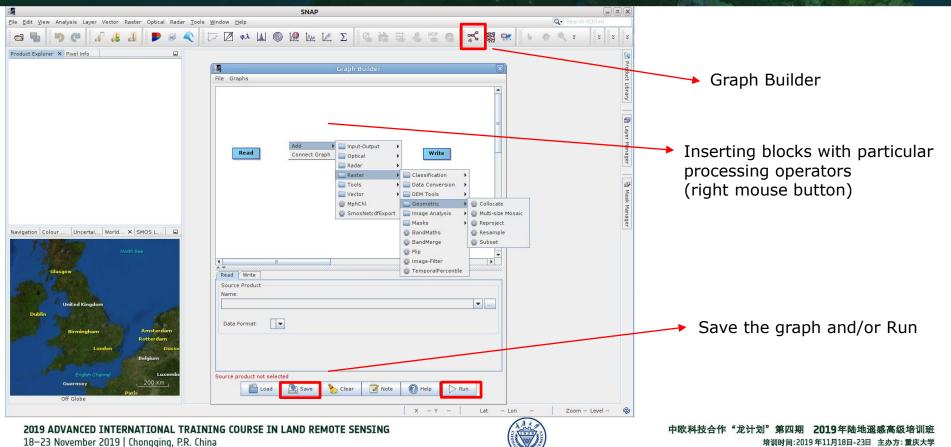
18-23 November 2019 | Chongqing, P.R. China



 $\cdot eesa$

NRSCC

Data check



Automatic Processing with Graph

Automatic Processing with Graph – Calibration

dBNS		Graph Builder : GRD_Cal_TC.xml	×
File	Graphs		
	Read	Apply-Orbit-File	^
			~
< Rei		bit-File Calibration Terrain-Correction Write	>
So	ource Product ame:		
C	Data Format:	Any Format 🗸	
		Load Save Solear Note OHep Run	

Apply Orbits: Sentinel Precise Calibration: Output Sigma0 Terrain Correction: pixel spacing 10m

The same settings like in manual processing

· eesa

save as GRD_Cal_TC.xml

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

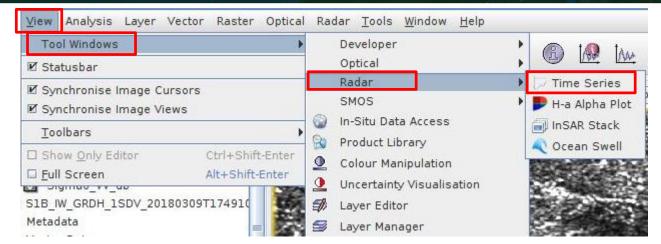
Batch processing

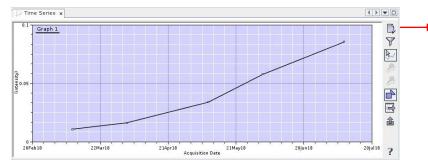
2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Batch processing

File Graphs

I/O Paramet	ters Apply-Orbit-	File Calibrat	tion Terrain-Correction	Write		
File Name		Туре	Acquisition	Track	Orbit	
Subset_S1A	IW_GRDH_1SD	GRD	03Oct2015	47	7994	-
Subset_S1A	IW_GRDH_1SD	GRD	11Jun2016	47	11669	
Subset_S1B	IW_GRDH_1SD	GRD	15Nov2017	47	8298	
Subset_S1B	IW_GRDH_1SD	GRD	10Nov2018	47	13548	
Subset_S1B_	IW_GRDH_1SD	GRD	30Sep2019	47	18273	
						 ✓ ✓ ✓ ✓ ✓
						>
						5 Products
Target Fold	ler					
Save as: E	BEAM-DIMAP	~				
Directory:						
D:\DRAGO	N2019\Final Datas	et\GRD proc	essed			
Skip ex	isting target files	 Keep sou 	rce product name			
		Γ	Run remote	d Graph	Run Close	Help
				u Grapri	Run Close	пер


File Graphs I/O Parameters Apply-Orbit-File Calibration Terrain-Correction Write ╬ File Name Acquisition Track Orbit Type 4 Subset S1A IW GRDH 1SD... GRD 03Oct2015 47 7994 Subset_S1A_IW_GRDH_1SD... GRD 11Jun2016 47 11669 Subset_S1B_IW_GRDH_1SD... GRD 15Nov2017 47 8298 Subset S1B IW GRDH 1SD... GRD 10Nov2018 47 13548 * Subset S1B IW GRDH 1SD... GRD 47 18273 30Sep2019 V ⊻ B ٩, 5 Products Target Folder Save as: BEAM-DIMAP v Directory: D:\DRAGON2019\Final Dataset\GRD_processed Skip existing target files 🗸 Keep source product name Close Help Run remote Load Graph Run


Open previously saved graph GRD_Cal_TC.xml

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Time series analysis

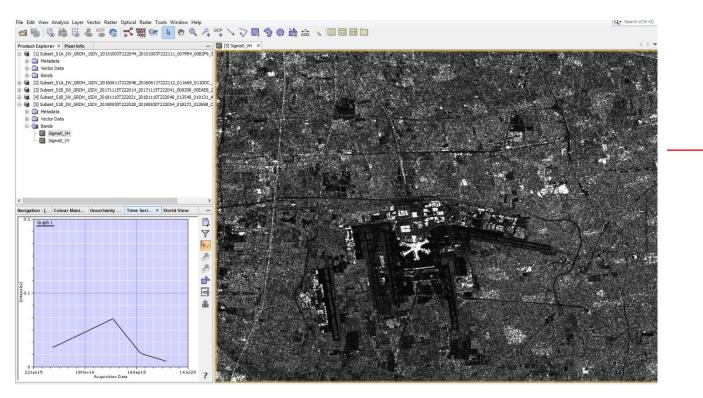
2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Add your data products

 $\cdot eesa$

NRSCC

Time series analysis


	Time Series Analysis Settings 🛛 🗙
Choose your	Add Graph 🗹 Show Grid 🗹 Show Legend
processed data products —	Graph 1
processea	File Name Type Acquisition Track Orbit
',, , , ,	S1B W GRDH 1SDV 20
data products —	S1B_IW_GRDH_1SDV_20
	S1B_IW_GRDH_1SDV_20
	S1B_IW_GRDH_1SDV_20
	S1B_W_GRDH_1SDV_20
	S Products Rename
	Apply <u>C</u> lose

· eesa

NRSCC

Time series analysis

One of the plottet bands has to be opened

SNRSEE . COSA

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

Collocation spatially overlapping products (based on geolocation)

Speckle filtering

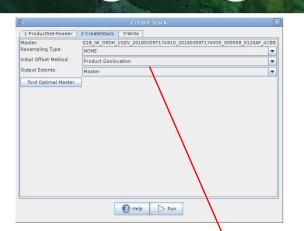
Filtering the inherent salt and pepper like texturing called speckles

Linear to dB conversion

Compensate for very high dynamic range in visualisation

Stack statistics and analysis of temporal backscatter signatures

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China



Creating multitemporal stack

Radar <u>T</u> ools <u>W</u> indo	w <u>H</u> elp	
Apply Orbit File Radiometric Speckle Filtering		Φ,λ 🔝 🛞 🧟
Coregistration	Coregistration	[1] SigmaC
Interferometric Polarimetric	 S1 TOPS Coregistration DEM-Assisted Coregistra 	ation)
Geometric	Stack Tools	Create Stack
Sentinel-1 TOPS	Cross InSAR resampling	Stack Averaging
ENVISAT ASAR		Stack Split
SAR Applications	•	
SAR Utilities	•	
SAR Wizards		
Complex to Detected	GR	
Multilooking		

Collocating spatially overlapping images

		Create Stack			
1-ProductSet-Reader	2-CreateStack	3-Write			
File Name 1B_IW_GRDH_1SDV_201	Туре	Acquisition	Track	Orbit	÷
1B IW GRDH 1SDV 20 1B IW GRDH 1SDV 20 1B IW GRDH 1SDV 20	Lune -				Ę
1B_IW_GRDH_1SDV_20. 1B_IW_GRDH_1SDV_20.					_
					Ŧ
					1
					2
					3
					۲
					5 Prod
1-ProductSet-Reader					
Target Product	2-CreateStack	3-Write			
- Target Product	20180309T1774910_	3Write 201803091174995_0099	158_0120AF_4CB6	I_Stack	

NRSCC

- *Product geolocation (if terrain corrected)*
- Orbits (if not terrain corrected)

· eesa

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

Collocation spatially overlapping products (based on geolocation)

Speckle filtering

Filtering the inherent salt and pepper like texturing called speckles

Linear to dB conversion

Compensate for very high dynamic range in visualisation

Stack statistics and analysis of temporal backscatter signatures

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Multitemporal speckle filtering

Radar Tools Windo	w <u>H</u> elp		F 1 11 1	
Apply Orbit File Radiometric	, φ.λ 🔟 🛞 🕼 🗽 [File Help	File Help	
Speckle Filtering	Single Product Speckle Filter	I/O Parameters Processing Parameters	I/O Parameters Processing Par	ameters
Coregistration Interferometric Polarimetric Geometric Sentinel-1 TOPS ENVISAT ASAR SAR Applications SAR Utilities SAR Wizards Complex to Detected Multilooking	GR Hulti-temporal Speckle Filter	Source Product source: [6] backscatter_Stack v Target Product Name: backscatter_Stack_Spk Save as: BEAM-DIMAP v Directory: D:\pRAGON2019\Final Dataset\GRD_processed V Open in SNAP	Source Bands: Filter: Filter Size X (odd number): Filter Size Y (odd number): Estimate Equivalent Number of L Number of Looks:	Sigma0_VH_mst_03Oct2015 Sigma0_W_mst_03Oct2015 Sigma0_VV_slv1_11Jun2016 Sigma0_VV_slv2_11Jun2016 Sigma0_VV_slv4_15Nov2017 Sigma0_VV_slv4_15Nov2017 Sigma0_VV_slv4_15Nov2018 Sigma0_VV_slv6_10Nov2018 Samma Map 3 3 1.0
		Run Close		Run Close

Spatial filtering with weighted average of selected filter across the images of the time series

· eesa

NRSCC

Multitemporal speckle filtering

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

Collocation spatially overlapping products (based on geolocation)

Speckle filtering

Filtering the inherent salt and pepper like texturing called speckles

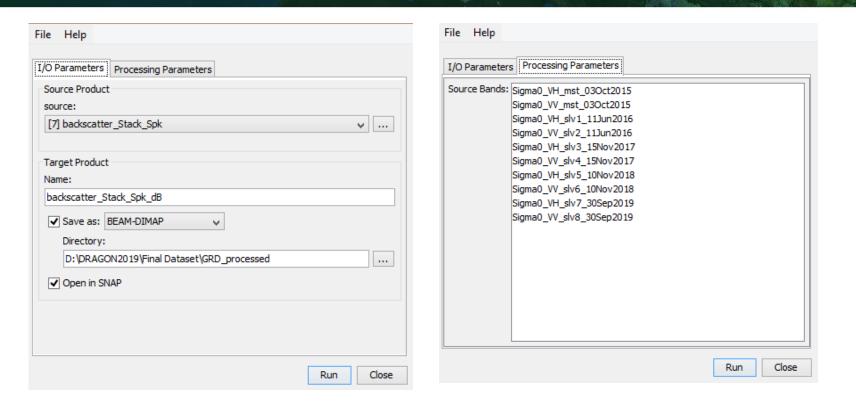
Linear to dB conversion

Compensate for very high dynamic range in visualisation

Stack statistics and analysis of temporal backscatter signatures

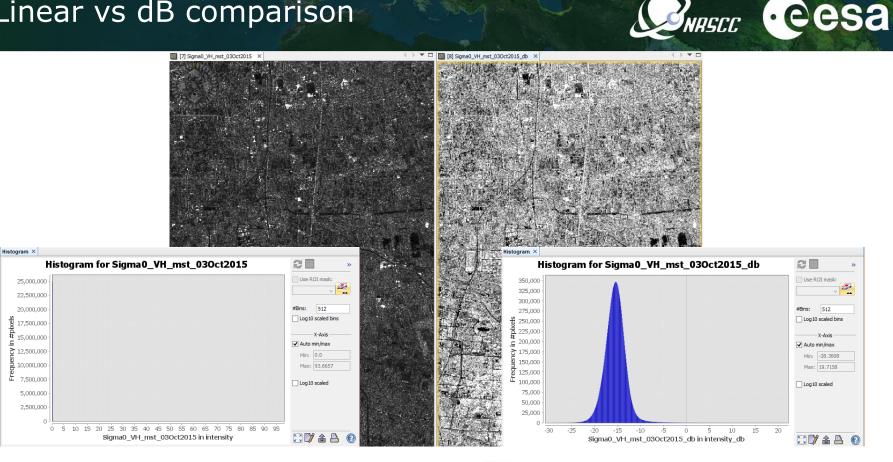
Conversion from linear to dB

2019 ADVANCED


18-23 November

i级培训班 方:重庆大学

SINASCE · COSA


Conversion from linear to dB

SNRSEC · COSA

Linear vs dB comparison

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

.⊆

Inel

Ŧ

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Creating a subset of S1 GRDH images

Spatial subset depending on the AOI

- Updating orbits
- Radiometric calibration

Conversion of image intensity to sigma0 providing the radar backscatter

Terrain correction

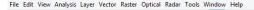
Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

Creating a multitemporal stack

Collocation spatially overlapping products (based on geolocation)

Speckle filtering

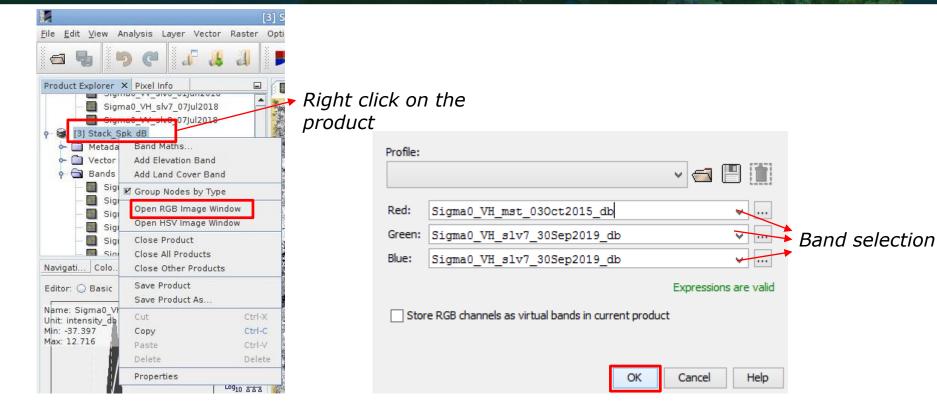
Filtering the inherent salt and pepper like texturing called speckles


Linear to dB conversion

Compensate for very high dynamic range in visualisation

Stack statistics and analysis of temporal backscatter signatures

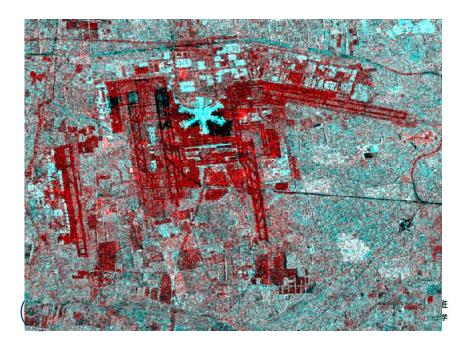
Visual inspection of the time series


Q - Search (Ctrl+I)

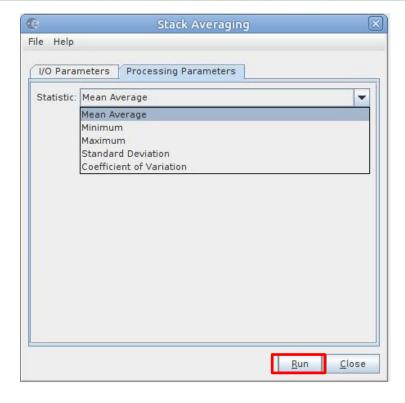
WARSEE · Cesa

RGB Composite

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

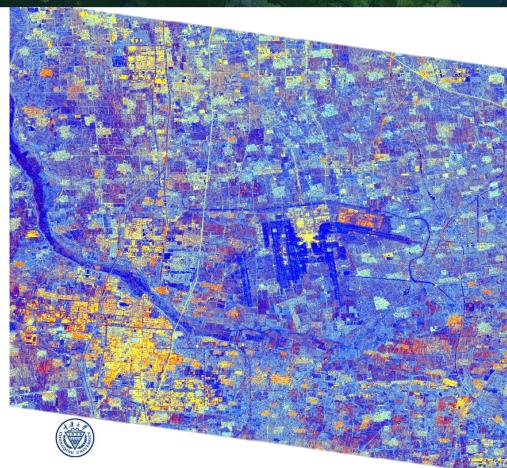

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

RGB Composite


2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongging, P.R. China Red – high backscatter in 2015, low backscatter in 2019 Cyan – low backscatter in 2015, high in 2019

Stack averaging

Apply Orbit File Radiometric Speckle Filtering	φ,λ		μ 🖾 Σ	2
Coregistration	Coregistrat	ion		
Interferometric	S1 TOPS C	oregistration		
Polarimetric	DEM-Assist	ed Coregistratio	on 🕨	
Geometric	Stack Tools	S.	Create Stack	
Sentinel-1 TOPS	Cross InSA	R resampling	Stack Averagin	g
ENVISAT ASAR	•		Stack Split	
SAR Applications	•			_
SAR Utilities	•			
SAR Wizards	•			
Complex to Detected Multilooking	GR			



Stack averaging – RGB Composite

RGB combination for land cover classification

Dual Po	l Ratio Sigma0 VV+VH	
Red:	Sigma0_VV	
Green:	Sigma0_VH	•
Blue:	Sigma0_VV/Sigma0_VH	.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China