

Introduction to ESA toolboxes

Magdalena Fitrzyk

NRSCC

ESA-MOST China Dragon 4 Cooperation

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

Introduction

Input data: set of Sentinel-1 SLCs

S1A_IW_SLC__1SDV_20190819T055015_20190819T055043_028634_033D5F_B955 S1A_IW_SLC__1SDV_20190831T055016_20190831T055043_028809_03437F_6942

Output: coherence – intensity false colour composites for land cover mapping

Sentinel-1 data acquisition

<u>T</u>errain <u>O</u>bservation by <u>P</u>rogressive <u>S</u>cans (TOPS)

Bursted IW SLC

TOPSAR Split to choose a subswath and bursts for the AOI

Scattering mechanisms

· eesa

NRSCC

Sentinel-1 TOPSAR Split

S-1 TOPS Split X	S-1 TOPS Split	<
File Help	File Help	
I/O Parameters Processing Parameters Source Product source: [1] S1A_IW_SLC_1SDV_20190819T055015_20190819T055043_028634_033D5F_B955	I/O Parameters Processing Parameters Subswath: IW3 ~ Polarisations: VH ~	Selection of subswath
Target Product Name: S1A_IW_SLC1SDV_20190819T055015_20190819T055043_028634_033D5F_B955_split Save as: BEAM-DIMAP Oirectory: C:\LTC2019_demos\Output_cal_TC Open in SNAP	Bursts: 7 to 9 (max number of bursts: 9)	IW3 VV 7-9
Run Close	Run Close	

TOPS Split applied to both S-1 SLCs

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

SNRSCC

· eesa

STEP 1 Interferometric Coherence

Coregistration

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

azimuth corrections for every burst in the slave

RSCC

Coregistration

The Cross Correlation operator creates an alignment between master and slave images (matching automatically distributed correlation optimization windows between master and slave)

First on coarse level, with large windows and lower oversampling factors, later on fine level, with smaller windows and higher oversampling factors.

With the master-slave offsets computed, a coregistration polynomial (CPM) is estimated by the Warp operator, which resamples pixels in the slave image into pixels in the master image.

Interferometric Coherence

COHERENCE

Measure of correlation between phase in two SAR complex images Ranging from 0 (no correlation) to 1

Coherence may be affected by:

- Local slope
- Properties of the surface
- Time lag between acquisitions
- The perpendicular baseline
- Poor coregistration

Rada	r Tools Window Help				
	Apply Orbit File		₽ `+ +> 🗖 🌗	Q Ì	≵ 🏤 🔨 💷 🖿 🖿 🗀
	Radiometric	>			
	Speckle Filtering	>	IW3_VV_mst_19Aug2019 >	< 🔳 [3] Intensity_IW3_VV_slv1_31Aug2019 ×
	Coregistration	>			
	Interferometric	>	Products	>	Interferogram Formation
	Polarimetric	>	Filtering	>	Coherence Estimation
	Geometric	>	Unwrapping	>	Topographic Phase Removal
	Sentinel-1 TOPS	>	PSI\SBAS	>	Three-pass Differential InSAR
	ENVISAT ASAR	>	InSAR Stack Overvie	N	Phase to Height
	SAR Applications	>			Phase to Displacement
	SAR Utilities	>			Phase to Displacement
	SAR Wizards	>			Phase to Elevation
	Complex to Detected GR				Integer Interferogram Combination
	Multilooking				

Interferometric Coherence

Coherence Estimation	×
I/O Parameters Processing Parameters	
Subtract flat-earth phase	
Degree of "Flat Earth" polynomial	5 ~
Number of "Flat Earth" estimation points	501 🗸
Orbit interpolation degree	3 🗸
Subtract topographic phase	
Digital Elevation Model:	SRTM 3Sec (Auto Download) 🗸 🗸
Tile Extension [%]	100 🗸
Square Pixel	Independent Window Sizes
Coherence Range Window Size	10
Coherence Azimuth Window Size	2

Demarcation black-filled line between bursts

Close

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

SINASCE · COSA

S-1 TOPS Debursting

MENU: Radar/Sentinel-1 TOPS/S-1 TOPS Deburst

Ø Parameters Ø Porcessing Parameters Source Product source: [5] S1A_IW_SLCISDV_20190819T055015_20190819T055043_02 Target Product Name: 5015_20190819T055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb Shve as: BEAM-DIMAP Directory: C:\LTC2019_demos\Output SLC\backscatter_TC	O Parameters Processing Parameters Source Product [5] S1A_IW_SLC_ISDV_20190819T055015_20190819T055043_02 v Target Product Name: 5015_20190819T055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb Seve as: BEAM-DIMAP v Directory: C:\LTC2019_demos\Output SLC\packscatter_TC Open in SNAP	ile Help	
Source Product source: [5] S1A_IW_SLC1SDV_20190819T055015_20190819T055043_02 v Target Froduct Name: 5015_20190819T055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb Source Product Source Product C:\LTC2019_demos\Output SLC\backscatter_TC	Source Product source: [5] S1A_TW_SLC1SDV_20190819T055015_20190819T055043_02 v Target Broduct Name: 5015_20190819T055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb v Spive as: BEAM-DIMAP v Directory: C:\LTC2019_demos\Output SLC\backscatter_TC v Open in SNAP	/O Parameters Processing Parameters	
[5] S1A_IW_SLC_1SDV_20190819T055015_20190819T055043_02 ↓ Target Froduct Name: 5015_20190819T055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb Style as: BEAM-DIMAP ↓ Directory: C:\LTC2019_demos\Output SLC\backscatter_TC	[5] S1A_IW_SLC1SDV_20190819T055015_20190819T055043_02 ↓ Target Froduct Name: 5015_20190819T055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb ✓ Save as: BEAM-DIMAP ↓ Directory: C:\LTC2019_demos\Output SLC\backscatter_TC ✓ Open in SNAP	Source Product source:	
Target Froduct Name: 5015 20 1908 197055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb Seve as: BEAM-DIMAP V Directory: C:\LTC20 19_demos\Output SLC\backscatter_TC	Target Froduct Name: S015 20 1908 197055043_028634_033D5F_B955_split_Orb_Stack_coh_deb_deb Sove as: [BEAM-DIMAP Frectory: C:\LTC2019_demos\Output SLC\backscatter_TC Open in SNAP	[5] S1A_W_SLC1SDV_20190819T055015_20	0190819T055043_02 v
C: \LTC2019_demos\Output SLC\backscatter_TC	C:\LTC2019_demos\Output SLC\backscatter_TC	5015_20190819T055043_028634_033D5F_B953	5_split_Orb_Stack_coh_deb_deb
	Open in SNAP	C:\LTC2019_demos\Output SLC\backscatter	r_TC

Input: Coherence

Terrain Correction

Compensate for geometric distortions caused by topographical variations of a scene and the tilt of satellite sensor

+ Geocoding

Range Doppler Terrain Correctio	on ×	
ile Help		
/O Parameters Processing Parameter	15	
iource Bands:	coh_IW3_VV_19Aug2019_31Aug2019	
Digital Elevation Model:	SRTM 3Sec (Auto Download) 🗸 🗸	
DEM Resampling Method:	BILINEAR_INTERPOLATION ~	
mage Resampling Method:	BILINEAR_INTERPOLATION ~	4
Source GR Pixel Spacings (az x rg): Pixel Spacing (m):	13.86(m) x 3.37(m) 13.86	
Pixel Spacing (deg):	1.2450649837896568E-4	
1ap Projection:	WGS84(DD)	
Mask out areas without elevation	Output complex data	
Selected source band	DEM Latitude & Longitude	
Incidence angle from ellipsoid	Local incidence angle Projected local incidence angle	
Apply radiometric normalization		
Save Sigma0 band	Use projected local incidence angle from DEM $\qquad \bigtriangledown$	
Save Gamma0 band	Use projected local incidence angle from DEM $\qquad \bigtriangledown$	
Save Beta0 band		i i
Auxiliary File (ASAR only):	Latest Auxiliary File \checkmark	
	Run Close	

Select: > DEM > Resampling > Pixel spacing > Projection

·eesa

NRSCC

STEP 2 Backscatter Intensity

Backscatter Intensity product

Input: Two splitted SLCs Batch Processing : cal deb ML TC.xml \times File Graphs I/O Parameters Apply-Orbit-File Calibration TOPSAR-Deburst Multilook Terrain-Correction File Name Type Acquisition Track Orbit S1A_IW_SLC__1SDV_20190... SLC 19Aug2019 37 28634 4 S1A_IW_SLC__1SDV_20190... SLC 37 28809 31Aug2019 ~ 1 Ŷ ⊵ B * 2 Products Target Folder Save as: BEAM-DIMAP \sim Directory: C:\LTC2019_demos\Output SLC Skip existing target files 🗸 Keep source product name Load Graph Run Close Help

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Creating a stack

Input: Coherence from STEP 1 Radar Tools Window Help Intensity, backscatter for 2 SLCs from STEP 2 ↓ √ 🗖 🌒 🗣 🏠 🔧 🔲 🗏 🖿 🖿 Apply Orbit File P+ Create Stack Radiometric 3 1-ProductSet-Reader 2-CreateStack 3-Write VV_19Aug2019_31Aug2019 × Speckle Filtering 3 File Name Type Acquisition Track Orbit ÷ Coregistration > Coregistration S1A IW SLC 1SDV 2019081... SLC 19Aug2019 37 28634 S1A_IW_SLC__1SDV_2019083... SLC 37 28809 31Aug2019 Interferometric > S1 TOPS Coregistration 규 S1A_IW_SLC__1SDV_2019081... SLC 28634 19Aug2019 Polarimetric 5 **DEM-Assisted Coregistration** Geometric Stack Tools > Create Stack Sentinel-1 TOPS Cross InSAR resampling Stack Averaging ENVISAT ASAR Create Stack Х Stack Split SAR Applications 1-ProductSet-Reader 2-CreateStack 3-Write SAR Utilities Master: S1A_IW_SLC__1SDV_20190819T055015_20190819T055043_028634_033D5F_B955_split SAR Wizards Resampling Type: NONE Initial Offset Method: Product Geolocation Complex to Detected GR Output Extents: Master Multilooking Find Optimal Master

🕜 Help 🛛 🕞 Run

Conversion of sigma0 to db

- Right click on the sigma0 band
- Conversion linear to/from db
- Right click on the sigma0_db virtual band
- Select "convert band"
- Save the product: File/Save product

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

· eesa

NRSCC

Band math: average sigma 0 and difference

Band Maths			
Filtered Band		Target product:	
		[10] Stack	
Convert Band		Name:	diff_sigma
Propagate Uncertainty		Description:	
Geo-Coding Displacement Bar	nds	Unit:	
Subset		Spectral wavele	ngth: 0.0
DEM Tools	>	Virtual (sav	e expression only, don't stor
Geometric Operations	>	Replace Na	N and infinity results by
Masks	>		
Data Conversion	>	Generate a	ssociated uncertainty band
mage Analysis	>	Band maths exp	vression:
Classification	>	Siginao_1443_4	*_avz_51Adg2015
Segmentation	>		
Export	>	Load	Save

Target product:			
[10] Stack			
Name:	diff_sigma		
Description:			
Unit:			
Spectral waveler	ngth: 0.0		
Virtual (save	e expression only, don't store	a)	
Replace Nat	N and infinity results by		Na
Generate as	sociated uncertainty band		
Band maths exp	ression:		
Sigma0_IW3_V\	/_slv2_31Aug2019		
Load	Save	Edit	Expression

Band Maths Expression Editor	Sigma	0 difference x
Product: [10] Stack		\sim
Data sources:		Expression:
\$10.coh_IW3_VV_19Aug2019_31Aug2019	0 + 0	\$10.Sigma0_IW3_VV_slv1_19Aug2019_db-
<pre>\$10.Sigma0_IW3_VV_slv1_19Aug2019</pre>	0 - 0	\$10.Sigma0_IW3_VV_s1v2_31Aug2019_db
<pre>\$10.Sigma0_IW3_VV_slv2_31Aug2019</pre>		
<pre>\$10.Sigma0_IW3_VV_slv1_19Aug2019_db</pre>	6 * 6	
<pre>\$10.Sigma0_IW3_VV_slv2_31Aug2019_db</pre>	0 / 0	
<pre>\$10.average_sigma0</pre>	(8)	
\$10.diff_sigma0	Constants	
	constants v	-
Show bands	Operators V	-
Show masks	Functions V	
Show tie-point grids		
Show single flags		Ck, no errors.
		OK Cancel Help

Sigma0 average

· eesa

Product: [10] Stack										
Data sources:			Expres	sion:						
\$10.coh_IW3_VV_19Aug2019_31Aug2019	0 + 0		(\$10	.Sigm	a0_IW	3_VV	slvl	19Aug2	019_db+	F
<pre>\$10.Sigma0_IW3_VV_slv1_19Aug2019</pre>	8 - 8		\$10.	Sigma	0_IW3	_VV_	slv2_3	1Aug20	19_db)/	2
\$10.Sigma0_IW3_VV_slv2_31Aug2019		-								
<pre>\$10.Sigma0_IW3_VV_slv1_19Aug2019_db</pre>	0 * 0		-							-
\$10.Sigma0_IW3_VV_slv2_31Aug2019_db	0 / 0									
\$10.average_sigma0	(8)									
\$10.diff_sigma0	Constants	~								
Show bands	Operators	~								
Show masks	Functions	~								
Show tie-point grids				11411	-		-			_
Show single flags			100		Q	10	20		Ok, no e	errors.

Creating RGB false composite

Profile: Ikonos (modified)	Selec	t RGB-Image Channels X	
Ikonos (modified) Image: Second structure Red: \$10.coh_IW3_VV_19Aug2019_31Aug2019 Image: Second structure Green: \$10.average_sigma0 Image: Second structure Blue: \$10.diff_sigma0 Image: Second structure Expressions are valid Image: Store RGB channels as virtual bands in current product	Profile:		
Red: \$10.coh_IW3_VV_19Aug2019_31Aug2019 Green: \$10.average_sigma0 Blue: \$10.diff_sigma0 Expressions are valid Store RGB channels as virtual bands in current product	Ikonos	(modified) - v 🔁 🛄 📋	Se
Expressions are valid Store RGB channels as virtual bands in current product	Red: Green: Blue:	\$10.coh_IW3_VV_19Aug2019_31Aug2019 \$10.average_sigma0 \$10.diff_sigma0	R: G:
Cancel Trap	Stor	Expressions are valid re RGB channels as virtual bands in current product OK Cancel Help	D.

Select RGB bands:

NRSCC

R: coherence G: average sigma0 B: difference sigma0

· eesa

Right click on the stack productOpen RGB Image Window

Resulting RGB false composite

Multi-temporal 12-day product (August 2019)

Yellow: Urban centers Magenta: objects not changing Green: Vegetated lands and forests Blue: objects changing in 12 days (e.g. ploughing)

NRSCC

· eesa

Resulting RGB false composite

Multi-temporal product (2015-2017)

Yellow: Urban centers Magenta: objects not changing Green: Vegetated lands and forests Blue: objects that changed

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Answers to your questions

What is the difference between Range Doppler TC and SAR Simulated TC?

SAR Simulation TC : generates simulated SAR image using DEM and orbit vectors from orginal file, coregisters the simulated SAR image and original one, terrain correct – for each pixel of DEM finding corresponding position in the simulated image and corresponding pxel position in the original SAR image

The Range Doppler Terrain Correction Operator implements the Range Doppler orthorectification. It uses: orbit state vector information in the metadata, the radar timing annotations, the slant to ground range conversion parameters together with the reference DEM data to derive the precise geolocation information.

What do we do if my AOI is in two products?

18-23 November 2019 | Chongqing, P.R. China

