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• Why multiple baselines?
• Because: more equations!
• Increased robustness against disturbances (temporal 

decorrelation…) 
• and/or relaxation of hypotheses required in the single 

baseline case
• more unknowns are available to characterize the vertical 

structure of the scene

N=2 N=3

…

N is large

Backscattered Power

z z z

Top Height, Extinction
Mean, Std, Skewness Tomographic Reconstruction

Backscattered Power Backscattered Power

MB allow to pass from model-based inversion to full tomographic reconstruction

Tebaldini & Rocca
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Rationale: Form a 2D synthetic aperture by collecting multiple SAR acquisitions 
acquired along parallel flight lines

o Vertical resolution  total normal baseline span

o Vertical ambiguity  normal baseline spacing

Multi-baseline (MB) systems: 
• Multiple pass systems: 

airborne and spaceborne SARs

• Multiple antenna systems: 

ground based Radars

MB campaigns involve:
• Higher costs: 

spaceborne: ≈ x 1

ground based: ≈ x N

• More sophisticated processing: 

see single vs multi-baseline InSAR…

Source: 
Tebaldini & Rocca
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Tomographic SAR
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Multiple baselines  Illumination from multiple points of view

By collecting several baselines it is possible to synthesize an 

antenna along the cross range direction as well

3D focusing is possible in the coordinate 
system:  slant range, azimuth, cross range

Source: Tebaldini & Rocca

Basic concepts
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Resolution is determined by pulse bandwidth along the slant range direction, and by the lengths of the synthetic 

apertures in the azimuth and cross range directions

The SAR resolution cell is split into multiple layers, according to baseline aperture

B: pulse bandwidth
Av: baseline aperture
Ax: azimuth aperture
λ: carrier wavelength
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TomoSAR gives access to the 3D structure



Foliage penetration Biomass estimation

Polarimetric TomoSAR over Vegetation



Finite number of scatterers

Urban TomoSAR



Irregular sampling &
Limited acquisitions

Orbit uncertainties &
tropospheric delay

= low resolution in s

TomoSAR principle



∥

where

∥

so, gn is the Fourier transformation of γ′(s) at position

∥

TomoSAR as spectral estimation problem



The focused SAR image from the nth pass of a specific cell is nothing else but the 
Fourier Transfer of the reflectivity function in the elevation direction at the position 

fn.

TomoSAR basics



The expected resolution in elevation depends on the slant-range r and the aperture 
size in elevation 

The extent of the illuminated objects and therefore the limits of the extent in 
elevation s depends on r, , and the resolution in range . In the spaceborne

case, with large slant-range r, this is seldom a limitation (see Zhu & Bamler, 2010). 

TomoSAR basics



• Using TomoSAR on a large area requires the removal of 
atmospheric effects

• This can be done using PS-InSAR
• However, this requires a large number of PS to be found
• Therefore, this works best in urban areas

• PS-InSAR is used for pre-processing 

• Afterwards, TomoSAR can be used

PS-InSAR for pre-processing



PS-InSAR



• Import
• Selection of the master image
• Co-Registration 

• Typically to a single-master

• Interferogram processing
• Not in every implementation. Several PS-InSAR implementations only 

use the phases of the PS candidates

• PS candidates selection
• APS estimation

• Typically on a subset of the PS candidates

• PS point processing
• Post-processing
• Visualization

PS-InSAR steps



• Identical to the co-registration described in the InSAR section:

• Registration accuracy < 0.2 pixel is required
• This requirement is even much higher during TOPS processing

• Different methods available
• Based on the amplitude
• Based on complex data – searching maximal coherence

•
Slave images are resampled to the master image

• Results need to be checked and the parameters may need to be 
adjusted

Image co-registration



• Classical way: amplitude dispersion index

• Other possible ways, e.g. based on coherence

• Be aware: amplitude dispersion index not ideal for 
TomoSAR, because the existence of several scatterers in a 
resolution cell can increase the index

PS candidate selection



Example: SARProZ

APS estimation
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• Beamforming: 

inverse Fourier Transform; coarse spatial resolution; radiometrically consistent

     vvvS H aRa ˆˆ 

• Capon Spectral Estimator:

spatial resolution is greatly enhanced, at the expense of radiometric accuracy; 
     vv
vS

H aRa 1ˆ
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• Methods based on the analysis of the Eigenstructure of R (MUSIC, ESPRIT…):
determination of the dominant scatterering centers; mostly suited for urban scenarios

• Methods based on sectorial information (Truncated SVD, PCT…): 
optimal basis choice (e.g.: Legendre), depending on a-priori info about the scene vertical extent

• Model based methods (NLS, COMET…):
model based; high radiometric accuracy; high computational burden; possible model mismatches

• Compressive sensing:

localization of few scattering centers via L1 norm minimization; mostly suited for urban scenarios

Spectral estimators



where

gn = complex value observed for the nth pass 

𝛾 = complex amplitude of kth scatterer

𝑠 = elevation of kth scatterer

𝑛 + 1= number of available images 

𝑣 =noise 

𝑛 =number of scatterers inside a resolution cell 

𝑓 =frequency of sampled FT which depends on the baseline 

Multiple scatterers



( )×

Non-linear least-square estimation



SVD on real data



• Selecting a statistical model for given data

• Selecting the correct model is the model selection problem

too simple –
order too low

appropriate model
too complex –
order too high

Model selection



• Bayesian Information Criterion (BIC)
𝑘 = argmax ln 𝑝 𝑦 𝜃 𝑘 , 𝑘 −

𝑘

2
ln 𝑛

• Akaike Information Criterion (AIC)

• Minimum Description Length (MDL)

Model selection methods



TomoSAR processing steps



3D scatterer reconstruction



•SVD based methods
• SVD
• Truncated SVD (T-SVD)
• Wiener SVD
• Butterworth-SVD

•Compressive Sensing based methods
• Basis Pursuit (BP)
• TWIST

Urban TomoSAR different methods



g K    

Another solution to SAR tomography is by L1 norm minimization, which is also the core of 

compressive sensing:

The argument listed above can be stated by

where is a weighted value adjusted according to the noise level.

k

TWIST



• SAR tomography with compressive sensing
• (see Zhu, Xiaoxiang’s work in the references)

• Often, TomoSAR with compressive sensing is based on Basis 
Pursuit (BP)

• Very high super-resolution 
• However, time-consuming

• Alternatively: Two-Step Iterative Shrinkage  Thresholding 
(TWIST) for TomoSAR

• Very efficient
• Less super-resolution capability

TWIST



When using TWIST, the least squares fitting is needed to calculate    

Calculate      according to 

0

1

where is the normalization equation.

If 



1t 

in which, are the weighting coefficients, 

TWIST



(a) s_Sc1=-20m, 

s_Sc2=30m; 

(b) s_Sc1=8m, 

s_Sc2=30m; 
(c) s_Sc1=23m; 

s_Sc2=30m

TomoSAR: different methods



TSVD                                                     TWIST                                                    BP                                                     

TSVD, Twist & BP



red: single;

blue: double;

black: multi

柏林实验区
（a）TSVD

85 seconds

（b）TWIST

89 seconds

（c）BP

1378 

seconds

TSVD, Twist & BP



• Extend the model to the time-domain and include 
an estimation of the deformation

• 4D TomoSAR

• Basically just an extension of the previously 
described method

• Including an additional dimension for the focusing

• Can be further extended by including seasonal 
motion

• Sometimes called 5D TomoSAR

Differential TomoSAR



Simulation results:

BSVD TWIST

= for D-TomoSAR, the noise suppression gets even more important

D-TomoSAR



Example: TSX stack from Las Vegas:

BSVD TWIST

= clear result in TWIST

D-TomoSAR



Due to the high computational demand for 
compressive sensing TomoSAR, the processing can 
be divided:

1. PS-InSAR for pre-processing – APS estimation
2. Basic TomoSAR processing for model estimation
3. Depending on the number of scatterers:

• One scatterer per resolution cell: use PS-InSAR for 
processing

• Two or more scatterer: use TomoSAR

Practical implementations



• Fusion of SAR imaging geodesy and TomoSAR

• SAR imaging geodesy:
• Very high absolute geo-positioning capability of SAR
• Especially with TerraSAR-X due to the very precise orbit
• see Eineder et al, Cong et al, Balss et al….

• The fusion allows getting precise absolute 3D 
positions 

Geodetic SAR tomography



from Zhu et al, 2016 – 3D absolute positioned 
TomoSAR point cloud from Berlin

from Zhu et al, 2016 – Amplitude of the seasonal 
motion derived from one stack 

Geodetic SAR tomography
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Assuming typical airborne or spaceborne MB geometries, SAR Tomography can be 

formulated according to one simple principle:

yn(r,x) : SLC pixel in the n-th image
s(r,x,v): average complex reflectivity of the scene within 

the SAR 2D resolution cell at (r,x)
bn : normal baseline for the n-th image
λ : carrier wavelength
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Each focused SLC SAR image is obtained as the Fourier Transform of the scene 

complex reflectivity along the cross-range coordinate 

 The cross-range distribution of the complex reflectivity can be retrieved through 

Fourier-based techniques

Source: Tebaldini & Rocca

Tomographic scene reconstruction



Example: Tomographic reconstruction of a forest scenario

Contributions from volume backscattering
Contributions from ground backscattering
Contributions from ground-trunk interactions
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Tomographic scene reconstruction
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BIOMASS tomographic phase



A closer look…

Source: Rocca

Tomographic analysis: TropiSAR



This resolution cell gathers contributions from terrain only.
=> Signal intensity in this cell is affected by terrain slope the same 
way as in traditional SAR images of bare surfaces

A closer look…

Source: Rocca

Tomographic analysis: TropiSAR



This cell is completely within the volume layer, 
independently on volume orientation w.r.t. the 
Radar LOS.
=> Signal intensity in this cell is independent of 
terrain  slope

This resolution cell gathers contributions from terrain only.
=> Signal intensity in this cell is affected by terrain slope the same 
way as in traditional SAR images of bare surfaces

A closer look…

Source: Rocca

Tomographic analysis: TropiSAR



This cell is completely within the volume layer, 
independently on volume orientation w.r.t. the 
Radar LOS.
=> Signal intensity in this cell is independent of 
terrain  slope

The scattering volume within cells at the boundaries 
of the vegetation layer depends on volume 
orientation w.r.t. the Radar LOS.
=> Signal intensity in this cell is affected by terrain 
slope in a similar way as the cell corresponding to 
the ground layer.

This resolution cell gathers contributions from terrain only.
=> Signal intensity in this cell is affected by terrain slope the same 
way as in traditional SAR images of bare surfaces

A closer look…

Source: Rocca

Tomographic analysis: TropiSAR



Co-polar signature at the ground 
layer reveals ground-trunk  double 
bounce interactions dominate the 
signal from flat areas despite the 
presence of  a 40 m dense tropical 
forest

Source: Rocca

Tomographic analysis: TropiSAR



 SAR tomography allows to map not only vertical forest 
structure but also biomass.

 The scattering mechanisms at P-band in a very dense tropical forest: 

 It was found that scattering contributions from about 30 m above ground 
exhibit high sensitivity to forest biomass value ranging from 250 t/ha to 
450 t/ha.

Ground scattering is strongly visible and double bounces in flat terrain topography are 
visible everywhere.

Volume scattering is significantly related to the high range biomass

Towards BIOMASS



P-band SAR tomography

key tool to SEE through the forest

suitable long wavelength to penetrate the dense forest 

layer

key indicator to tropical forest biomass

GOAL: Study the temporal decorrelation of scattering mechanisms of the radar 

signal in a tropical forest as a function of height and polarization.

Orbit constraint: temporal decorrelation

Revisit time ≥ 1 day in a sun synchronous satellite configuration

Forest scattering changes with time

Forest temporal decorrelation
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