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Learning Objectives
What 1s thermal remote sensing?
Which are the laws describing thermal remote sensing?
What is the difference between kinetic temperature and radiant
temperature?
What 1s emissivity and why is it relevant to thermal remote
sensing?
How 1s land surface temperature influenced by the thermal
properties of materials?
How to interpret thermal images?
How 1s land surface temperature estimated?
Which applications can be supported?



Introductory points -1

The three basic ways in which energy can be transferred:
* Conduction occurs when one body (molecule or atom) transfers its kinetic energy
to another by colliding with it. This is how a pan is heated on a stove.

* In convection, the kinetic energy of bodies is transferred from one place to
another by physically moving the bodies. An example is the convectional heating of
air in the atmosphere in the early afternoon.

 The transfer of energy by electromagnetic radiation is of primary interest to
remote sensing because it is the only form of energy transfer that can take place in a
vacuum such as the region between the Sun and the Earth.




Convection

e

A Pulse

Conduction of
b /‘% warm
an air
L ] in contact /— \
a. C::'—D with burner b. Terrain

Radiation

l .
Earth

Electromagnetic
C. wave

Sun




Optical vs thermal remote sensing
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Introductory points - 2

The reason we can use remote sensing devices to detect infrared energy in these
regions is because the atmosphere allows a portion of the infrared energy to be
transmitted from the terrain to the detectors.

Regions that pass energy are called atmospheric windows.

Regions that absorb most of the infrared energy are called absorption bands. Water
vapor (H,0), carbon dioxide (CO,), and ozone (O,) are responsible for most of the
absorption.
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Introductory points - 3

An object’s internal Kinetic heat is converted to radiant energy (often called
external or apparent energy).

The electromagnetic radiation exiting an object is called radiant flux and is
measured in watts. The concentration of the amount of radiant flux exiting (emitted

from) an object relates to its radiant temperature (7).

* There is usually a high positive correlation between the true kinetic temperature of
an object (7};,) and the amount of radiant flux radiated from the object (7,,,).

This is the basis of thermal infrared remote sensing.




Yet, the correlation (and the resulting relationship) is not perfect, with the
remote measurement of the radiant temperature always being slightly less
than the true kinetic temperature of the object.

This 1s due to a thermal property called emissivity which depends on the type
of the radiating body and the wavelength.

Emissivity, €, is the ratio between the radiant flux exiting a real-world
selective radiating body (F,) and a blackbody at the same temperature

(F} )



Radiation of real Materials

Emissivity depends on wavelength, surface temperature, and some physical B|ackb0dy
properties of the surface, e.g. water content, or density. 1 ‘
Selactive radiator
Material Average Emissivity ;-f
over 8-14 ym 9 Grayhody
Clear water 0.98-0.99 E
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Planck blackbody equation:
describes the EM radiation emitted from a blackbody at a certain wavelength as a
function of its absolute temperature
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The distribution of energy from o blackbody at 70O°F.

http://tes.asu.edu/MARS_SURVEYOR/MGSTES/TES_emissivity.html



Planck equation for blackbody radiance

—> radiance temperature Ty = Tg
(brightness temperature)




Stefan-Bolzman Law for natural object:

Tk the kinetic temperature



Kirchhoff’s radiation law
According to Kirchoff’s radiation law for a blackbody: o, = ¢,

Thus 1= r, + o, +7t, canbewrittenas 1= r, +g, +1,
where r, 1s spectral hemispherical reflectance by the terrain,
o, 1s spectral hemispherical absorptance, and

T, 1s spectral hemispherical transmittance

But most real-world materials are usually opaque to thermal radiation meaning that
no radiant flux exits from the other side of the terrain element. Therefore, we may
assume transmittance, 7, =0

Thus: 1= r, +¢g,

which implies that the higher an object’s reflectance in the thermal infrared
region, the lower the emissivity and vice versa.



Important note for thermal analysis

Two materials on the ground could have the same true Kinetic temperature but have
different apparent temperatures when sensed by a thermal radiometer simply because
their emissivities are different.

The emissivity of an object may be influenced by a number factors, including:

» color - darker colored objects are usually better absorbers and emitters (i.e. they have a
higher emissivity) than lighter colored objects which tend to reflect more of the incident
energy.

» surface roughness - the greater the surface roughness of an object relative to the size of
the incident wavelength, the greater the surface area of the object and potential for
absorption and re-emission of energy.




 moisture content - the more moisture an object contains, the greater its ability to absorb
energy and become a good emitter. Wet soil particles have a high emissivity similar to
water.

 compaction - the degree of soil compaction can effect emissivity.

« field-of-view/resolution - the emissivity of a single leaf measured with a very high
resolution thermal radiometer will have a different emissivity than an entire tree crown
viewed using a coarse spatial resolution radiometer.

« wavelength - the emissivity of an object is generally considered to be wavelength
dependent. It may be constant in one spectral interval, but varying in another (see
Spectral Signature)

e viewing angle - the emissivity of an object can vary with sensor viewing angle.



Estimating LST



Step 1. Develop a data base for your city
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Step 2. Define Land cover (and its changes)
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The spatial distribution of urban land in Beijing during 1989-2010.



Left to right: Land cover, satellite image in the visible, thermal image



Step 3. Choose the appropriate spatial (and temporal) resolution
1 km resolution

Source: processing by C.Cartalis



Step 4. Choose the right satellite mission — Merge satellite data
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Step S. What time of the day? (the impact of thermal capacity)

Surface temperature (deg C)

" M- - ’d Surface temperature (deg €)
w%g 11,1-13 E n%n =:1=1n ;
kd 5 121 15 2 . -13:1 -15
[171-19 Eg'i : i;
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Source: processing by C. Cartalis



Step 6. Which period of the year?
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2017 of the Canton Basel-S5tadt. The scenes are ordered after the DOY of acquisition.
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Step 7. Convert and Retrieve

|: Thermal channels DNs
Conversion to radiance

Conversion to brightness temperature

l

]

Atmospheric correction

Emissivity correction

LST retrieval

Overall LST accuracy: * 2 Kelvin




Sentinel -3 Sea and Land Surface Temperature
Radiometer (SLSTR)

The Land Surface Temperature (LST) processing includes a split-window method,
using radiances from two channels, the band centres of which are close in
wavelength, to determine the effective radiometric temperature of the Earth's
surface "skin" in the instrument field of view. This method assumes that the
linearity of the relationship between LST and BT results from linearisation of the
Planck function and linearity of the variation of atmospheric transmittance with
column water vapor amount. The algorithm is:

LST = ay+ BTy 1 Ty,

where a, b, and c, are classes of coefficients that depend on atmospheric water
vapour, satellite viewing angle and land surface emissivity. T, and T,, represent
the brightness temperatures measured at 11 pm and 12 pm respectively.



LST Processi no

e

| Build gridded LST
warinbhles
(L2 Isk_&)

L

O ITea e
processing
(L _com}

IFsw =
v

Imitinlisation
(L2 _E=t_17

Calculate pasilioem
amd tinmes
(L2 kst )

v
Calculats
Aatrmiosgraeris ama
murface backgrownd
(L2 _Esit. )

w

Calculate LST
cocificonts
FLZE _Fsa_ S

v

Calculate LST
I.ll'l:rl!'rtﬂl'l'l-‘l'.l
(L2 kst _S)

— || e

v
Build ungridded

LST variabxles
(L2 _k=x_T)

o —
Build walidatiomn
wariabla
fLZ _ist_B&)

|

https://sentinel.esa.int/web/sentinel/technical-
ouides/sentinel-3-slstr/level-2/lst-processing

=TT .- THL S
B e
ILZE__oark)


https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/level-2/lst-processing
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Land Surface Temperature from Landsat
TM images

1. Converting the digital number of Landsat TM or ETM+ TIR band into spectral radiance
Radiance = 0.0370588 x DN + 3.20 (For Landsat7 ETM+) Radiance = 0.0553760 x DN +

1.18 (For Landsat5 TM)

2. Converting the spectral radiance to at satellite brightness temperature (i.c.,
blackbody temperature, TB) TB = K2/[In(K1/Radiance + 1)] Where “In” is Natural
Logarithm, and K2 and K1 are pre-launch calibration constants (For Landsat7 ETM+,
K2=1282.71 K, and K1=666.09 W/(m2 sr um)) (For Landsat5 TM, K2=1260.56 K, and

KI1=607.76 W/(m2 sr um))

3. Converting the blackbody temperature to land surface temperature (LST) which
involves correcting for spectral emissivity according to the nature of land cover.

LST=TB/[(1 + (A x TB/ p )xIn(g)] where: k = wavelength of emitted radiance (A = 11.5
um), p = hxc/c = 1.438x10-2 m K, 6 = Boltzmann constant (1.38x10-23 J/K), h = Planck’s
constant (6.626x10-34 J s), and ¢ = velocity of light (2.998x108 m/s).



Retrieval of land surface temperature
from the Moderate Resolution Imaging Spectroradiometer
(MODIS)

MODIS has a 36 spectral band spectrometer; its thermal infrared (TIR)
bands are used for LST retrieval. The methodology used for the calculation
of the LST maps is based on the Split Window Technique (SWT). Using the
SWT, LST is calculated as (Ts), (Jiménez-Muiioz et al., 2008):

Ts (land surface temperature) =Ti +cl (Ti —Tj) +c2 (Ti—Tj) 2 +cO0+ (c3 +
c4*W) (1 —¢) + (c5 + c6*W) Ae where:

Ti and Tj : at-sensor brightness temperatures at the LW bands i and j (in
Kelvin)

g the mean emissivity, ¢ = 0.5(ci + ¢j),

Ae: the emissivity difference, Ae = (ei — gj),

W is the total atmospheric water vapor content (in grams per square
centimeter),

c0—c6: the SWT coefficients

In the case of the MODIS sensors 1 and j are bands 31 and 32, at 10.780-11.280
um and 11.770-12.270 um respectively.



Assessing the thermal environment 1n urban areas
with the use of land cover and land surface emissivity
data of varying spatial resolutions
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CLASSIFICATION SENTINEL -2 IMAGE
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ACCURACY ASSESSMENT

Accuracy = (sum of elements of principal diagonal /
total number)
Landsat -8 68.73% Sentinel -2 73.82%



ASSESSMENT OF EMISSIVITY ON THE BASIS OF LANDSAT -8
(left) and SENTINEL -2 (right) LAND COVER CLASSIFICATION
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LST as estimated with the use of land cover deduced from LANDSAT —
8 (left) AND SENTINEL - 2 (right)
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COMPARISON OF AIR TEMPERATURE AS EXTRACTED FROM LST

Ta=1.2104Ts - 17.676)
( Stathopoulou and Cartalis, 2005)

1 25,3 24,6 26,1 -0,8
2 24,4 24,6 -0,2 24,7 -0,3
3 25 24,5 0,5 24,4 0,6
4 25,7 25,2 0,5 24,6 1,1
5 25 24,6 0,4 26,5 -1,5
6 22,7 21,2 1,5 19,9 2,8
7 24,4 24,7 -0,3 25,4 =il

8 24,3 24,4 -0,1 25,4 -1,1
9 24,9 23,9 1 23,9 1

10 25,2 24,8 0,4 24,5 0,7
11 23,8 23,5 0,3 25,2 -1,4
12 24,2 25,1 -0,9 25,6 -1,4



Satellite Sensor

Spatial resolution

what size can we resadlve

Spectral resolution

what wavelengths do we us

Temporal resolution

lhow often do we observe)

Radiometric resolution

degree of detail observed




The critical balance between spatial and
temporal resolution



Temporal to spatial resolution — a delicate (and critical) balance

TENMPORAL AND SPATIAL SCALES OF
INFRARED REMOTE SENSING SENSORS




APPLICATIONS OF THERMAL REMOTE
SENSING



Climate
Dynamics

Information from Sentinel-3A’s radiometer, which measures radiation emitted from Earth’s
surface, reveal how the temperature of Earth’s land changes between July and November
2016. Measurements are in Kelvin.
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Remote sensing and forest fires

Remote sensing can contribute to the three phases of fire
management:

Pre-fire: Fuel conditions and amount
Active fires: detection and fire properties (THERMAL)
Post-fire: burned area, severity and emissions

Active fires: the thermal signal is discrete, especially when using
instruments that do not saturate at low temperature. Confusion may
be introduced due to signals from oil refineries and volcanic
eruptions.
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Comparing window channels in the thermal infrared

More adequate for smoke detection than 3.9 um
Near infrared (1.6 pm) Small fires not visible

No CO2 absorption (higher fire temperature)

High sub pixel sensitivity

High temperature sensitivity - major sub pixel effects (hot
spots are easily detected)

Middle infrared (3.9 um) Negligible absorption by atmospheric humidity
Close to a CO2 absorption band, 4-7 Kelvin signal reduction
Brightness is temperature of the CO2 layer above the fire

1-2 Kelvin absorption by atmospheric humidity
No signal reduction by CO2
Thermal infrared (10.8 pm) Lower temperature sensitivity (small subpixel effects)
No risk of sensor blinding by fires
Low values compared with 3.9 pum due to semi transparent
cloud or smoke
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http://www.esa.int/var/esa/storage/images/esa multimedia/image
s/2017/08/kalamos fires/17122699-1-eng-GB/Kalamos fires.gif



http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2017/08/kalamos_fires/17122699-1-eng-GB/Kalamos_fires.gif

LAND SURFACE TEMPERATURE - Heat stress +
long term TRENDS

Slides 57-67,
Remote Sensing and Image Processing Unit,
University of Athens



Long term trends in LST for land surface dynamics
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Extraction of €
and change of
— ¢, depending on

land cover
Area Ae E
Urban -0.007 0.97
Semi-urban -0.003 0.98

— Rural 0 0.989




SPLIT WINDOW ALGORITHM

T =051+ T4+ (Ta+Ts) + 0.58(T4 — Ts)*+a(l — &) — bAe

T, = brightness temperature channel 4
Ts = brightness temperature channel 5
€ = mean spectral emissivity for channels 4 and 5

12:00 UTC PW (gr/cm?)
Precipitable Land surface =
water temperature July ‘ 1.669
o,B | a = (0.190- PW — 0.103)T4, — 67 - PW + 107
)

B = (0.100 - PW — 1.118)T, — 68 - PW + 163
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Landscape change — from natural to built

O Airport since 2001. Previously agricultural/rural areas

1990




Landscape change — from natural to built
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Mountainous area
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Mountainous area
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Nature reserve (Natura 2000 network)
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 Forested area throughout the study period
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Link LST to air temperature

Important to simulate energy fluxes. But be careful: local
applicability

Apmeddrnmal 19 TdEn
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Source: Agathangelidis and Cartalis, 2016
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Satellite Remote Sensing and the urban
thermal environment



Thermal trajectories
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Downscaling LST

Sentinel-3 Landsat 8 Sentinel-3

Original resolution Downscaled 296 K
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Thermal hot spot detection



Critical p-values and z-scores for different confidence levels.

Significance Level (p Value) Critical Value (z Score) Confidence Level
—0.01 z< —33 99.9%
—0.1 —330<z< 258 99%
0 —258<z <258 -
0.1 2.58<z<3.30 99%
0.01 z>33 99.9%

The calculation of the local LST sum for a pixel under consideration (red) includes all of its

neighbors (orange).



LST statistics for the “hot spots™ and “cold spots” categories (in “K).

“Hot Spots™ “Cold Spots™
Min. Max. Mean Min. Max Mean
o-day 313.94 319.24 317.75 305.57 313.04 308.65
5-day 313.86 318.69 316.19 306.69 312.24 300.78
A-day 313.11 318.37 315.458 306.19 313.56 310.38

- G-dla s hotspot [ 2-days hoespor [l 5-days coldspor
- Sedays hotspot |:| d-days coldspot . G-days colaspot

Location of the hot/cold spots within Athens Municipality. (A: old industrial area of Athens,
B: the historic center of Athens).
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0 Industrial, commercial, public, military and private units 0 Other roads and associated land
B Consiruction siles’Land withoul current use 0 Green urban areas

B Sports and leisure facilities

Land use percentages of the “hot spot” and “cold spot” categories.



Greenery 1n the city




Surface temperature (Kelvin)
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Results — Urban parks

Surface Park Cool Intensity (SPCI) (what kind of parks?)

Surface Park Cool Island (SPCI) is the difference AT
=Tu-Tp

Tu the average Land Surface Temperature of the urban g 1
fabric around the park at a radius of 500 meters o
(excluding other parks or areas with water), ‘

The 500 meters zones are depicted in purple colour. ‘

Tp is the average Land Surface Temperature (LST) in
the park




Results — Urban parks

Impact of park area to SPCI: SPCI increases with increasing park size up to sizes
around 20 ha and then becomes asymptotic which implies that no matter how bigger
the size of the park becomes, SPCI remains almost constant. Important to develop
many small parks — urban _acupuncture

SPCI vs park area (parks up to

SPCI vs park area (all parks)
6 16ha) 6

: 0 20 40 60
Park area (ha)

0 5 10 15 20
Park area (ha)



Working with indicators




Flowchart of the methodology for the estimation of the Urban
Heat Exposure (UHeatEXx) indicator.
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Spatial distribution of the UHeatEx indicator for
Athens at 100-meter resolution; scale varying from
low (0) to high (10) thermal environmental quality.
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Il No data




	Slide Number 1
	Learning Objectives�
	The three basic ways in which energy can be transferred:
	Slide Number 4
	Optical vs thermal remote sensing 
	Introductory points - 2
	Slide Number 7
	Introductory points - 3
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Kirchhoff’s radiation law
	Important note for thermal analysis 
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	CLASSIFICATION LANDSAT – 8 IMAGE
	CLASSIFICATION SENTINEL -2 IMAGE
	ACCURACY ASSESSMENT
	ASSESSMENT OF EMISSIVITY ON THE BASIS OF LANDSAT -8 (left) and SENTINEL -2 (right) LAND COVER CLASSIFICATION
	LST as estimated with the use of land cover deduced from LANDSAT – 8 (left) AND SENTINEL – 2 (right)  
	COMPARISON OF AIR TEMPERATURE AS EXTRACTED FROM LST 
	 
	Slide Number 40
	Temporal to spatial resolution – a delicate (and critical) balance 
	Slide Number 42
	Slide Number 43
	Land surface �temperature �dynamics
	Remote sensing and forest fires
	Wien’s law
	Slide Number 47
	Comparing window channels in the thermal infrared 
	Forest fires northeast of Athens – 14 August 2017  (Sentinel)
	Two days later …   26,000 m2 of the forest were burned
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Downscaling LST
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Results – Urban parks
	Results – Urban parks
	Slide Number 78
	Slide Number 79
	Slide Number 80

