

Wetland & Lake monitoring—Case study Poyang Lake & Erhai Lake

Liqiong Chen & Xiaoling Chen

ESA-MOST China Dragon 4 Cooperation

NRSCC

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

Wetland & Lake monitoring—Case study Poyang Lake

Liqiong Chen & Xiaoling Chen

State key Laboratory of Information Engineering in Surveying, Mapping and Remote sensing (LIESMARS), Wuhan University

Introduction: How wetland connects lake and land?

Basic Principles

Applications

- Water body
- > Wetland

Eutrophication

Introduction

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Global change leads global challenge

Ice is melting

ENRSCC

· eesa

Islands are disappearing

Lakes Water Change in China Since 30 Ka BP

Xue B, et.al., 2003, Science China

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Dynamic process of Dongting Lake

Only three river-connected lakes are in Yangtze river

The vegetation of most of the lakes in Yangtze plain showed a decreased trend

Figure 3. MODIS-Aqua-derived yearly climatology VPF from 2003 to 2014. 2003 (a), 2004 (b), 2005 (c), 2006 (d), 2007 (e), 2008 (f), 2009 (g), 2010 (h), 2011 (i), 2012 (j), 2013 (k), and 2014 (l).

Figure 4. Long-term trends in the VPF from 2003 to 2014 in Eastern Lake Taihu. The dash line indicates fitted values of VPF data versus year by GAM.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Fig. 6. Classification maps of Poyang Lake from four decades of Landsat observations between 1973 and 2013. The last panel shows the maximum inundation and cloud mask for further use at interior.

Fig.4 The distribution and area of Ceratophyllum demersum community from 1980s to 2014

81 km

132 km²

图 3 微齿眼子菜群落 1950s-2014 年分布范围及面积变化

121 km²

81 km²

Honghu Lake

Challenges

•Water Quality

•Wetland Ecology

•Public Health

Water Quality of Poyang Lake (> III)

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

❖ Largest freshwater lake in China ✓Inundation: >3000km²(wet season)

Drainage: 162,200 km² Water flow from south to north, and discharge into the Yangtze River

 Water income: precipitation, local rivers and Yangtze River (reversal flow)

Highly water dynamics & world famous wetlands

- ✓ Migratory bird
- ✓ Schistosomiasis
- Lagged economic development

Poyang Lake is one of the most frequently flooded and drought areas in China. Rapid changes of the inundation area play an important role in affecting the wetland ecosystem as the habitat for migrating birds

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Basic Principles

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Integration of Space-born and Ground Observation for **Dynamic Monitoring**

18-23 November 2019 | Chongging, P.R. China

4

培训时间:2019年11月18日-23日 主办方:重庆大学

Mission capability

Algorithms

In-situ observations

Operational capability

Colleen B. Mouw, 2015, Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions, Remote sensing and environment

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

How to choose sensors for you study areas?

Small area

Complexity color

Dynamic changes

Spatial resolution

Sentinel-2A MSI, Dec. 31,2016 RGB:432, 30M

Sentinel-3 OLCI, Dec. 05,2016 RGB:864, 300M

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Radiative resolution

2019 ADVANCED	INTERNATIONAL	TRAINING	COURSE IN LAND	REMOTE SENSING
18–23 November	2019 Chongqing,	P.R. China		

OLCI	Function
400nm	Aerosol correction, improved retrieval
412.5nm	Yellow substance(turbidity)
442.5nm	Chl_absorption max
490nm	High Chl, other pigments
510nm	CHL, sediment, turbidity, red tide
560nm	Chl absorption min
620nm	Sediment
665nm	Chi(2nd Chi abs. max), sediment, yellow substance
673.35nm	Improved fluorescence
681.25nm	Chl fluorescence peak, red edge
708.75nm	Chl fluorescence baseline, red edge transition
753.75nm	O2 absorption/clouds, vegetation
761.25nm	O2 absorption/aerosol corr.
764.375nm	Atmospheric corr.
767.5nm	O2A used for cloud top pressure, fluorescence over land
778.75nm	Atmospheric corr./aerosol corr.
865nm	Atmos. corr./aerosal corr. Clouds,
885nm	Atmos. Corr/water vapour absorption band Common reference band with SLSTR
900nm	Water vapour absorption band/vegetation
940nm	Water vapour absorption band, atmos./aerosol corr.
1020nm	Atmos./aerosol corr.

Temporal resolution

Land	Open Ocean Waters (Case 1 waters)	Coastal and Inland Waters (Case 2 waters)			
Sensor Requirements					
Broad spectral bands	Narrow spectral bands	Narrow spectral bands			
Wide dynamic range	Narrow dynamic range	Wide dynamic range			
Low signal-to-noise	High signal-to-noise				
Clustering; classification	Atmospheric correction; pigment algorithm	Radiative transfer; multivariate techniques			
Characteristics of Feature	es to be Monitored				
Spatial scales ~10 m	Spatial scales ~1 km	Spatial scales ~ 30 m			
Time scales ~ 10 - 100 d	Time scales ~1 d	time scales ~ 0.2 d			
Crisp, fixed boundaries	Fluid boundaries	Fluid boundaries			
Many spectral signatures	One spectral signature	Many spectral signatures			

Short term goal of flood mapping and monitoring T.C. Preparing the exploitation Sentinel series

Sentinel 2

- Resolution same as SPOT5 (10m)
- Presence of a SWIR band
- Large swath (MERIS)
- Revisiting time

Sentinel 2 observation over Yantgze middle watershed

one cycle of acquisition Red: Day 3, Green: Day 6, Blue: Day 7, Yellow: Day 10.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Sentinel 2 like: Applicable to others optical sensors

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

HJ1 A & B constellation

Launched in September 2008 CCD camera (both), a hyper-spectral camera (HJ 1A) or an infrared camera (HJ 1B).

WVC (WIDE View CCD Cameras)

Instrument Spectral bands (4), μm

Spatial resolution Swath width CCD detector (pushbroom type) B1=0.43-0.52, B2=0.52-0.60, B3=0.63-0.69, B4=0.76-0.90 30 m 360 km x 2 = 720 km (double swath observation provided by parallel camera mounts)

Sentinel-3 Sensors

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

MWR.

培训时间:2019年11月18日-23日 主办方:重庆大学

Sensor (Satellite)	MODIS (Terra/Aqua)	MERIS (ENVISAT)	OLCI (Sentinel- 3A)	TM/ETM+ (Landsat- 5/7)	OLI (Landsat- 8)	MSI (Sentinel- 2A/B)	CCD (HJ- 1A/B)
Agency	USA	Europe	Europe	USA	USA	Europe	China
Working time	1999-Now	2002-2012	2016-Now	1984-2011/ 1999- Now	2013-Now	2015-Now 2017-Now	2008- Now
Spatial resolution(m)	250/500/100	300	300	30	30	10/20/60	30
Repeat days	1	3	2	16	16	5(A+B)	2(A+B)
bands	36	15	21	7/8	9	13	4
Swath(km)	2330	1150	1270	180	180	290	360
orbit	Polar	Polar	Polar	Polar	Polar	Polar	Polar
Spectral Coverage(µm)	0.4-14.38	0.407- 0.905	0.39-1.06	0.45~2.35	0.43-2.3	0.443-2.19	0.43-0.9

MODIS (1000m)	MERIS	OLCI	Function
		400nm	Aerosol correction, improved retrieval
412.5nm	412.5nm	412.5nm	Yellow substance(turbidity)
443nm	442.5nm	442.5nm	Chl absorption max
488nm	490nm	490nm	High Chl, other pigments
	510nm	510nm	CHL, sediment, turbidity, red tide
531nm	560nm	560nm	Chl absorption min
551nm	620nm	620nm	Sediment
667nm	665nm	665nm	Chl(2nd Chl abs. max), sediment, yellow substance
		673.35nm	Improved fluorescence
678nm	681.25nm	681.25nm	Chl fluorescence peak, red edge
	705nm	708.75nm	Chl fluorescence baseline, red edge transition
748nm	753.75nm	753.75nm	O2 absorption/clouds, vegetation
	760nm	761.25nm	O2 absorption/aerosol corr.
		764.375nm	Atmospheric corr.
		767.5nm	O2A used for cloud top pressure, fluorescence over land
	775nm	778.75nm	Atmospheric corr./aerosol corr.
869.5nm	865nm	865nm	Atmos. corr./aerosal corr. Clouds,
	890nm	885nm	Atmos. Corr/water vapour absorption band Common reference band with SLSTR
905nm	900nm	900nm	Water vapour absorption band/vegetation
936nm		940nm	Water vapour absorption band, atmos./aerosol corr.
		1020nm	Atmos./aerosol corr.

Mission capability

Algorithms

In-situ observations

Operational capability

Colleen B. Mouw, 2015, Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions, Remote sensing and environment

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Atmospheric correction

Molecular

Aerosol

Sea-atmosphere surface Sun glint

Water components retrieval

Inorganic suspended

material

Phytoplankton

CDOM (colored dissolve organic

matters)

Bottom effects 2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Geometric correction with a high accuracy

Atmospheric correction under high aerosol optical depth(AOD) and high water-leaving reflectance in NIR bands

Water components retrieval algorithms with correctly description of radiative transfer model Validation and uncertainty evaluation

NRSCC

· eesa

Atmospheric Correction (AC) and Inherent Optical Properties (IOP) Processor for

Sentinel 3, MERIS, MODIS, SeaWiFS Level 1b radiance products

Brockmann C. et al. 2016, Evolution of the C2RCC neural network for sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters , 'Living Planet Symposium 2016', Prague, Czech Republic

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

APPLICATIONS Water body

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Flood mapping based on thresholding of raw channel and /or indice

Classe B

Classe A

Fundamentals: : water areas can be very bright if containing suspended materials

Extraction of water bodies from:

Brightness Standard or Tasseled Cap

Nombre de pixels

- First component of a PCA,
- Saturation indices of a HIS transformation

FAI

$$R'_{rc,NIR} = R_{rc,RED} + \left(R_{rc,SWIR} - R_{rc,RED}\right) \times \frac{\lambda_{NIR} - \lambda_{RED}}{(\lambda_{SWIR} - \lambda_{RED})}$$
$$R_{rc,NIR} = \frac{\pi L_t^*}{F_0 cos \theta_0} - R_r$$
$$FAI = R_{rc,NIR} - R'_{rc,NIR}$$

 $L^\prime{}_t\,$ is the calibrated sensor radiance after adjustment for ozone and other gaseous absorption;

 F_0 is the extraterrestrial solar irradiance at data acquisition time;

 θ_0 is the solar zenith angle;

 R_r is Rayleigh reflectance estimated with 6S

$$FAI = R_{rc}(NIR) - R_{rc}(RED) + (R_{rc}(RED) - R_{rc}(SWIR)) >$$

NRSCC

· eesa

Inundation Areas for Each Year between 2000 and 2010

Using FAI (Floating Algae Index) and a gradient method to delineate inundation area. 620 MODIS cloud free images were selected between 2000 and 2010.

Intra-annual changes: a factor of 2.3 – 3.2

Maximum possible inundation was 14 times larger than minimum inundation

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Inundation Areas for Each Month between 2000 and 2010

- The monthly min inundation area between September and March is only <50% of that between June and July
- The monthly max inundation area is significantly lower during December to January
- •From June to August, >50% of the Poyang lake region was inundated even at minimal inundation
- Max/min ratios range between 1.46 (June) to 4.03 (October), suggesting significant inter-annual variability for all months
- A dramatic decline in the monthly minimum inundation occurred between August and September (from 1706.6 to 832.1 km²), leading to a sharp increase in the max/min ratio (from 1.85 to 3.64)

-	Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Maximum	Area Vear	1705.9	2665.8	2561.2	2861.6	3038.5	2820.1	3052.1	3162.9	3025.5	2864.7	2768.5	1960.1
TE	Minimum	Area Year	797.3	958.9 2007	888.7 2008	1020.8	1120.3	1931.8	1819.1	1706.6	832.1 2006	710.7	812.3	824.5 2007
	Max/Min Ratio		2.14	2,78	2,88	2.8	2,71	1.46	1.68	1.85	3.64	4.03	3.41	2.38

Inundation area of May 2011 (red), overlaid on the mean inundation area during May 2000-2010 (green)

✓ A serious drought in 2007 triggered potable water problems for more than ten million people

✓ A big flood event in 1998 resulted in economic losses of more than 30 billion Yuan in the Poyang Lake region

Bottom topography of Poyang Lake

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Bottom topography of Poyang Lake

The lake bottom has an typical elevation of 12–17 m (around 80%)

Agree well with insitu measurements

Inundation area & water volume of Poyang Lake: 2000-2009

APPLICATIONS Wetland

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

15 years Vegetation community transitions in Poyang Lake wetland

Xingxing Han, Lian Feng, Chuanmin Hu and Xiaoling Chen, Wetland changes of China's largest freshwater lake and their linkage with the Three Gorges Dam, Remote Sensing of Environment

Method: Spectral and temporal features of different vegetation categories

• Few differences were found in the satellite derived spectral profiles for different wetland vegetation in Yangtze Plain. However, the annual NDVI changes of wetland vegetation could generally fall into three categories, large differences could be found in the occurred time of NDVI increasing trend and the maximum or minimum NDVI value in the NDVI time series.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Results 1: Spatial and temporal distribution of wetland vegetation

- The coverages of wetland vegetation accounted for 16.78% to 58.89% of the total areas of these 25 lakes during the period 2000 to 2014.
- More than half of the lakes (17/25) showed decreasing trends in their vegetation area percentage (VAP),

Hou X, Chen X, Liu W, et al., Changes in the wetland vegetation growth patterns in large lakes on the Yangtze Plain. International Journal of Remote Sensing, 2019,40(11): 1-12

NRSCC

· eesa

• Differences of seasonal change in VAPs of lakes were found. The maximum VAPs typically occurred in the second and third quarters, minimum VAPs were observed in the first and fourth quarter.

- 44% of the lakes have 15-year mean greenness values of<0.2, 52% were between 0.2 and 0.3, and 4% were>0.3.
- Over half of the lakes (17/25) have demonstrated decreasing trends in their greenness values over the period.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Results 2: Phenology change of wetland vegetation

• 76% of the lakes showed delayed trends in the vegetation emergence times (VET), and 32% of them were statistically significant. In contrast, 24% of the lakes displayed advanced trends in the VET and 17% of them were statistically significant over the past 14 years.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

• The VET of Taihu lake mainly occurred between 1 and 60 (i.e. January to February) for most regions. The VET of eastern Taihu Lake exhibited a delayed trend.

Results 3: Driving forces analysis

- The amounts of chemical fertilizers used in nearby farmlands have played an important role in influencing the vegetation growth for some of the lakes.
- VET change was more sensitive to temperature and sunshine duration than to precipitation for most of the lakes. The temperature in 1–2 months before VET had great effect on the vegetation growth, while such a pattern was not evident for sunshine duration for 5 months before VET.

Hou, X., Feng, L., Chen, X., & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,141: 148-160

18–23 November 2019 | Chongqing, P.R. China

VRSCC

APPLICATIONS Eutrophication

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

What is Eutrophication?

Eutrophication refers to the Enrichment of a water body with Nutrients, usually with an excess amount of nutrients. Algal bloom is one of the results.

WNRSCC

· eesa

Ronghua Ma, Harmful algae blooms, 2017, Summer school of ocean color remote sensing in China: theory and application

Eutrophication in Lakes now become world wild and frequency

Radiative resolution

2019 ADVANCED	INTERNATIONAL	TRAINING	COURSE IN LAND	REMOTE SENSING
18–23 November	2019 Chongqing,	P.R. China		

OLCI	Function
400nm	Aerosol correction, improved retrieval
412.5nm	Yellow substance(turbidity)
442.5nm	Chl_absorption max
490nm	High Chl, other pigments
510nm	CHL, sediment, turbidity, red tide
560nm	Chl absorption min
620nm	Sediment
665nm	Chi(2nd Chi abs. max), sediment, yellow substance
673.35nm	Improved fluorescence
681.25nm	Chl fluorescence peak, red edge
708.75nm	Chl fluorescence baseline, red edge transition
753.75nm	O2 absorption/clouds, vegetation
761.25nm	O2 absorption/aerosol corr.
764.375nm	Atmospheric corr.
767.5nm	O2A used for cloud top pressure, fluorescence over land
778.75nm	Atmospheric corr./aerosol corr.
865nm	Atmos. corr./aerosal corr. Clouds,
885nm	Atmos. Corr/water vapour absorption band Common reference band with SLSTR
900nm	Water vapour absorption band/vegetation
940nm	Water vapour absorption band, atmos./aerosol corr.
1020nm	Atmos./aerosol corr.

Remote Sensing for Sediment Retrieval

· eesa

NRSCC

Pixels

18-23 November 2019 | Chongqing, P.R. China

· eesa NRSCC

Retrieval algorithm development: Single band or band ratio?

18-23 November 2019 | Chongqing, P.R. China

Spatio-temporal Pattern of Suspended Sediments

 Annual mean TSS distributions of Poyang Lake from 2000 to 2010

Remote Sensing for Chlorophyll-a Retrieval Using MERIS

A positive correlation exists between Chl-a and NGRDI in relatively sediment-poor waters.

645 nm "immune" to land adjacency effect

normalized green-red difference index (NGRDI =
(Rrs,560 - Rrs,681)/(Rrs,560+ Rrs,681))

Spatio-temporal Pattern of Chlorophyll-a

- Mean Chl-a distributions of Poyang Lake between July and September from 2003 to 2011.
- Higher Chl-a was observed in the small sub-lake in the south and in the astern Poyang Lake.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

- Chl-a distributions during 0 each climatological month between 2003 and 2012.
- Higher Chl-a was observed 0 in the south, especially for the small sub-lake.
- Chl-a in the summer 0 months appeared higher than in other months.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean
Mean	2.6	2.9	2.5	2.4	3.0	3.4	4.4	4.2	3.5	3.3	3.3	2.9	3.2
Std.	0.5	0.6	0.4	0.2	0.4	0.8	1.0	1.0	0.3	0.3	0.6	0.6	0.6

Mean Chl-a distributions of Erhai Lake from 2003 to 2009

Annually mean Chl-a concentration in Erhai Lake various from 2.1 to 27.8 ug/L

NRSCC

· eesa

Higher Chl-a was observed in the south, especially after 2007

ChI-a in the summer months appeared higher than in other

Han X. et al (2014) MERIS observations of chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and 2009, Internation of Chlorophyll-a dynamics in Erhai Lake between 2003 and

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Identify algal and non-algal waters

VB-FAH

Red' is a mirror band of Red symmetric to NIR

 $VB - FAH = R_{rc}(NIR) - R_{rc}(GREEN) +$

$$(R_{rc,}(GREEN) - R_{rc}(RED)) \times \frac{NIR - GREEN}{2 \times NIR - RED - GREEN}$$

$$FAI = R_{rc}(NIR) - R_{rc}(RED) + (R_{rc,}(RED) - R_{rc}(SWIR)) \times \frac{NIR - RED}{SWIR - RED}$$

Xing Q., Hu C. 2016, Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique, Remote sensing and environment

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

VB-FAH calculated from MSI and OLCI

SNRSCE · COSA

NG UN

Thank you

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

