

Advanced Optical Imaging

Professor Bob Su, ITC, University of Twente, The Netherlands (z.su@utwente.nl)

ESA-MOST China Dragon 4 Cooperation

NRSCC

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

Source of materials

C. Cartalis, 2017, Optical remote sensing, Dragon 4 advanced land remote sensing course, Kunming.

X. Ding, 2015, Hyperspectral Imaging, Dragon 4 advanced land remote sensing course, Tianjing.

Y.L. Desnos, 2015, ESA EO programmes, Dragon 4 advanced land remote sensing course, Tianjing.

Q. Liu, 2015, Advanced Optical High Resolution Imaging and Quantitative Inversion, Dragon 4 advanced land remote sensing course, Tianjing.

W. Verhoef, 2012, Multi-angular observations, EUFAR/EUROSPEC REFLEX advanced training course, Albacete.

Contents

Optical Imaging Principle

Radiative Transfer Models

Examples of Optical Imaging and Applications

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

RESEC CESA

We receive more than 80% information from the outside world by seeing (vision)!

(to see is to receive lights in our eyes -(light rays entering the eye are transformed by the retina into electrical signals that are transmitted to the brain via the optic nerve – **light rays reflected or emitted from objects representing their properties (such as color, luminosity, shape, and size)**

What is imaging (seeing)?

We receive more than 80% information from the outside world by seeing (vision)!

Isaac Newton reflected sunlight through a glass prism and discovered the "color spectral separation" and the white light is actually made of many colors in 1666.

· eesa

NRSCC

Color is the visible manifestation of light's wavelength

(Optical imaging usually refers to Vis/NIR/SWIR requency range)

		Atmospheric window not considered	Atmospheric window considered
UV	Ultraviolet	10~390nm	10~390nm
VIS	Visible band	0.39~0.75μm	0.39~0.75µm
NIR	Near infrared	0.75~1.1μm	0.75~1.1µm
SWIR	Short wavelength infrared	1.1~3.0 μm	1.1~2.5 μm
MWIR	Medium wavelength infrared	3.0~6.0 μm	3.0~5.0 μm
LWIR	Long wavelength infrared	6.0~25.0 μm	8.0~14.0 μm

Classification of optical remote sensing

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Panchromatic remote sensing

Single band (Black and White) image Only geometric image without spectral information

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

NASCC

· eesa

Conventional Spectral Measurement

Relative Reflectance

Only measure object's spectral information - without imaging

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

RANGEC

· eesa

Development path of optical remote sensing

全色Panchromatic

彩色color photography

Continuous

improvement of spectral

resolution

高光谱Hyperspectral

2019 ADVANCED INTE 18-23 November 2019 Desa

Terminology of radiant energy

Spectral bands (wavelength) of some sensors

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

· eesa

Solar Irradiation

Optical remote sensing utilizes the solar illumination. The solar irradiation spectrum above the atmosphere can be modeled by a black body radiation spectrum having a source temperature of 5900 K.

After passing through the atmosphere, the solar irradiation spectrum at the ground is modulated by the **atmospheric** absorption windows. Significant energy remains only within the wavelength range from about 0.25 to 3 µm.

Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground.

Spectral reflectivity and albedo

Spectral reflectivity is the percentage of radiation reflected by the object in a wavelength or spectral bands

Albedo is ratio of the amount of radiation reflected by a surface to the amount of incident radiation on the surface.

Albedo is reflectance integrated over the upper hemisphere (and over the optical wavelengths).

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

NRSCC

· eesa

Different materials reflect and absorb differently at different wavelengths.

The reflectance spectrum of a material serves as a unique signature for the material. In principle, a material can be identified from its spectral reflectance signature if the sensing system has sufficient **spectral resolution** to distinguish its spectrum from those of other materials.

2019 ADVANCED INTERNATIONAL TRAINING 18-23 November 2019 | Chongqing, P.R. China

UNRSEE · COSA Some available optical sensors 0.8 1.2 1.6 1.8 2.0 2.2 2.4 0.4 0.6 1.0 1.4 Quickbird **IKONOS** ASTER +1.0LANDSAT-7-+0.9LANDSAT-5-+0.8 쮸 E litter +0.7 IRS SPOT-5 +0.6TAN +0.5MODIS soil **₽**0.4 🛱 VIIRS 40.3 AVHRR-14 vegetation +0.2AVHRR-18 +0.1MERIS salt-water -0.0 0.4 0.6 08 1 1.6 1.8 2 2.2 2.4 1.2 1.4 WAVELENGTH (µm)

MRSEC COSA

Different Spatial Resolution

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Spectral resolution

Full width at half **maximum** (FWHM) is used to express detector function, given by the difference between the two extreme values of the independent variable at which the dependent variable is equal to half of its **maximum** value.

Spectral resolution, or bandwidth, of a detector, FWHM=0.10 µm

·eesa

NRSCC

RADIOMETRIC RESOLUTION

WRSEC COSA

FROM SATELLITE IMAGE TO IMAGE INFORMATION

ATMOSPHERIC CORRECTION

From the sun to the Earth and then to the sensor, electromagnetic energy passes through the atmosphere twice.

Absorption reduces the intensity with a haziness effect. Scattering redirects EM energy in the atmosphere causing an adjacency effect where neighboring pixels are shared.

These two processes affect the quality of an image and are reasons for atmospheric correction.

Atmospheric correction removes the scattering and absorption effects from the atmosphere to obtain the surface reflectance (surface properties).

· eesa

NRSCC

Atmospheric Correction Steps

Convert DNs to radiance based on the rescaling factors provided in the metadata file

Requires additional information: Earth-sun distance, solar zenith angle, exoatmospheric irradiance, often found in metadata

Requires knowledge of atmospheric conditions and aerosol properties at the time the image was acquired

DN (raw value

from the sensor)

Surface

Reflectance

· eesa

NRSCC

Simple methods

- e.g. empirical line correction (ELC) method
- Use target of "known", low and high reflectance targets in one channel e.g. dense dark vegetation & snow
- Assuming linear detector response, radiance L = gain * DN + offset

'min

Atmospheric Correction

$$L_{tot} = \frac{\rho ET}{\pi} + L_p$$

$$\rho = \frac{\left(L_{tot} - L_p\right) \cdot \pi}{ET}$$

 L_{tot} = radiance measured by the sensor ρ = reflectance of the target E =irradiance on the target T = transmissivityof the atmosphere L_p = path radiance (radiance due to the atmosphere)

· eesa

NRSCC

Atmospheric RTMs

simulate the radiative transfer interactions of light scattering and absorption in the atmosphere. Used for the atmospheric correction of airborne/satellite data and allow retrieving atmospheric composition.

Some RTMs:

- MODTRAN (MODerate resolution atmospheric TRANsmission)
- •<u>6S</u> (Second Simulation of the Satellite Signal in the Solar Spectrum)
- **OPAC** (Optical Properties of Aerosols and Clouds)

https://artmotoolbox.com/radiativetransfer-models.html

· eesa

Land radiative transfer modeling

Radiative transfer modeling

WRSCE ·eesa

- Some radiative transfer basics
- 4-stream modelling
- Particular models: SAIL, SLC, 4SAIL, SCOPE

Flux from a surface in a given direction

Bi-directional reflectance distribution function BRDF, from $dL_o = \rho' dE_i$ Unit of BRDF (ρ') = sr⁻¹

Hemispherical integral

$$\int_{2\pi} \cos\theta \,\mathrm{d}\Omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi = 2\pi \int_{0}^{\pi/2} \cos\theta \sin\theta \,\mathrm{d}\theta = 2\pi \times \frac{1}{2} \sin^2\theta \,\left| \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right|_{0}^{1} = \pi$$

Irradiance from a uniform sky (L_{sky} = constant): $E_i = \pi L_{sky}$

Perfect (white) Lambertian reflector:

esa

- radiance is constant (independent of viewing angle); this implies a constant BRDF (ρ')
- total (hemispherical) reflected flux = incident flux

Total reflected flux for Lambertian surface:

$$\mathrm{d}\Phi_o = \int_{2\pi} \rho' \mathrm{d}E_i A \cos\theta_o \,\mathrm{d}\Omega_o = \pi \rho' \mathrm{d}\Phi_i$$

so this implies that $ho' = \pi^{-1}$ for perfect Lambertian surface

By convention, we write $\mu = \cos \theta$, $\mu_o = \cos \theta_o$, etc.

Special cases of directional reflectance factors

- 1. Bi-directional reflectance factor (BRF) = directional reflectance factor for specular (solar) incidence, symbol r_{so}
- 2. Hemispherical-directional reflectance factor (HDRF) = directional reflectance for diffuse incident flux, symbol r_{do}

Relations with BRDF:

$$r_{so}(\boldsymbol{s},\boldsymbol{o}) = \pi \rho'(\boldsymbol{s},\boldsymbol{o})$$
 $r_{do}(\boldsymbol{o}) = \int_{2\pi} \rho'(\boldsymbol{i},\boldsymbol{o}) \mu_i d\Omega_i$

Special cases of hemispherical reflectance factors

- 1. Directional-hemispherical reflectance factor (DHRF) = hemispherical reflectance for specular (solar) incidence, sometimes called "black sky albedo", symbol r_{sd}
- 2. Bi-hemispherical reflectance factor (BHRF) = hemispherical reflectance for diffuse incident flux, sometimes called "white sky albedo", symbol r_{dd}

Relations with BRDF:

$$r_{sd}(\mathbf{s}) = \int_{2\pi} \rho'(\mathbf{s}, \mathbf{o}) \mu_o d\Omega_o \qquad r_{dd} = \pi^{-1} \int_{2\pi 2\pi} \rho'(\mathbf{i}, \mathbf{o}) \mu_i d\Omega_i \mu_o d\Omega_o$$

Four-stream approximations of

surface reflectance

sa

•assume that fluxes are either specular or perfectly diffuse (uniform by hemisphere)

$$r_o = \frac{r_{so}E_{\rm sun} + r_{do}E_{\rm sky}}{E_{\rm sun} + E_{\rm sky}}$$

directional reflectance factor DRF

hemispherical reflectance factor HRF (spectral albedo)

- <u>s</u>cattering from <u>a</u>rbitrarily <u>inclined</u> <u>leaves</u>
- canopy reflectance model (1981)
- refinement of Suits model (H and V leaves)
- solved by boundary condition method
- parameters ρ, τ, r_s , LAI, LIDF, $\theta_s, \theta_o, \psi, f_{sky}$

Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. *Remote sensing of environment*, *16*(2), 125-141.

4-STREAM RADIATIVE TRANSFER

Adding canopy and soil

SOIL-LEAF-CANOPY MODEL (SLC)

Fluxes considered

- 1. Direct solar flux
- 2. Diffuse downward flux
- 3. Diffuse upward flux
- 4. Direct observed flux (radiance)

Dry soil reflectance spectrum Soil moisture SM Soil BRDF Parameters (b, c, B0, h) Chlorophyll Cab Water Cw Dry matter Cdm Senescent material Cs Mesophyll structure N

Leaf Area Index LAI LIDF leaf slope parameter a LIDF bimodality parameter b Hot spot parameter hot Fraction brown leaf area fB Layer dissociation factor D Crown coverage Cv Tree shape factor zeta

brown

eaves

Solar zenith angle sza Viewing zenith angle vza Relative azimuth angle raa sun-observer geometry

BRDFs in the principal plane simulated with SLC (3 hot spots)

4SAIL MODEL

- Modernized version of SAIL
- Speed-optimized
- Numerically robust
- Single homogeneous layer of leaves
- Supports thermal infrared applications
- Directional emissivity and brightness temperature
- Differentiation of leaves and soil in the sun and the shade

Verhoef, W., Jia, L., Xiao, Q., & Su, Z. (2007). Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. *IEEE Transactions on Geoscience and Remote Sensing*, *45*(6), 1808-1822.

4SAIL MODEL

- Modernized version of SAIL
- Speed-optimized
- Numerically robust
- Single homogeneous layer of leaves
- Supports thermal infrared applications
- Directional emissivity and brightness temperature
- Differentiation of leaves and soil in the sun and the shade

DIRECTIONAL EMISSIVITY AND OBSERVED COVER FRACTION (OCF) VS. VIEWING ZENITH ANGLE

SIMULATED BRIGHTNESS TEMPERATURE ANGULAR PROFILES IN THE PRINCIPAL PLANE

RELATIONS WITH NDVI

RELATIONS WITH NDVI

NDVI vs. cover

emissivity vs. NDVI

SCOPE MODEL

- Soil-Canopy spectral Observations, Photosynthesis and Energy balance model
- Numerical model uses the energy balance at leaf level as a function of its orientation and depth
- Output: leaf temperatures, fluorescence, photosynthesis, and directional observed radiances
- Available in Matlab code

Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. *Biogeosciences*, *6*(12), 3109-3129.

Hemispheric directional plots from SCOPE model

Radiative transfer modeling

SCOPE - Simulation model for radiative transfer, photosynthesis and energy fluxes in vegetation and soil <u>https://github.com/Christiaanvandertol/SCOPE</u>

Automated Radiative Transfer Models Operator (ARTMO) Graphic User Interface (GUI) https://artmotoolbox.com/

2SeaColor - Two-stream remote sensing model for water quality mapping: https://github.com/suhybsalama/2SeaColor

Optical imaging and applications

RESCE CESA

- Agriculture: Gathering crop statistics and yield assessments
- Urban: Planning city-wide infrastructure improvements
- Forests: Checking de- or re-forested areas for treaty purposes
- **Biodiversity**: Understanding the habitats where wildlife exist
- Health: Tracking conditions associated disease spread
- Water: Evaluating water body extents for flood assessments
- Disaster: Making damage maps following major earthquakes
- Cryosphere: Mapping snow fields and glacier melting

Sentinel-2 in a nutshell

13 VIS/NIR/SWIR spectral bands: 3 bands in the red edge tailored to vegetation monitoring

Spatial resolution: 10m / 20m (60 m for atmosphere calibration)

Swath: 290 km

2 spacecraft on same orbit, 180° apart: 5 days revisit at equator

Systematic coverage between 84°N and 56°S

WARSEE · Cesa

Paris!

 金感高级培训班 主办方:重庆大学

Sentinel 2 Copenhagen (Denmark) - Natural Colour (10m)

2019 ADVANCED IN 18-23 November 201

Sentinel 2 Nador (Morocco) - False Colour (10m)

陆地遥感高级培训班 3-23日 主办方:重庆大学

Sentinel 2 Pavia (Italy) - 'Red Edge' False Colour (20m)

击地遥感高级培训班 1-23日 主办方:重庆大学

2019 ADVANCED IN 18–23 November 20

Irrigation and fires in Tabuk, Saudi Arabia

遥感高级培训班 = 主办方:重庆大学

Urban Infrastructure and Motion in Venice/Italy

2019 ADVANCE 18-23 Novembe

Greenland: Disko Bay 13 Spectral bands make the difference

Sentinel-2 Western Greenland glaciers

遙感高级培训班主办方:重庆大学

· eesa

CC

Baja California: dry land vs irrigated land (NIR-VIS), land discharge (red-edge) along a border

-

Stunning details: fronts and filaments of ocean biogeochemistry slashed open by shiptracks, wind blown structures...

2015-10-20

10 m

科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

2019 ADVANCED INTERNATIONAL TRAINING COUR 18-23 November 2019 | Chongqing, P.R. China

2019 ADVANCE 18-23 Novembe