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Land degradation is a process that land productive capacity continues to decline or even lose

completely under the influence of natural forces and human activities.

Scope of the general potential extent of 

desertification in China（1981-2010）

1 Definitions and reviews

• Desertification in drylands is an important problem world-
wide, but the concept is ambiguous in terms of specific
processes, conditions, and solutions.

• UNCCD: Persistent and severe reductions in biological
productivity due to unsustainable land uses in drylands,
often associated with climatic and societal factors such as
poverty and migration.



Diverse types 
of land 

degradation 
and 

desertification



Dryland regions of the world (yellow), cover about 54 million km2, amounts to 40% of the global land area.

Regions 
sensitive to 

desertification
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1997/UNEP/
（WAD2）

2018/EU/
（WAD3）

2007/UNEP/
（GEO4）

2018/IPBES


Overall situation of land degradation

 1991，Global Assessment of Human-induced Soil Degradation，GLASOD(Expert interpretation,  12 classes); ASSOD, Relative 

degradation(FAO,UNEP,UNDP)

 1992，World Atlas of Desertification (First edition)(GLASOD,GLADIS),UNEP

 1997，World Atlas of Desertification (Second edition),UNEP

 2002，Land Degradation Assessment in Drylands，LADA;GLADA;GLADIS

 2007，Global Environment Outlook 4, UNEP

 2018，World Atlas of Desertification (Third edition),EU

 2018，The Assessment Report on Land Degradation and Restoration,IPBES

 Vegetation degradation is sheltered to a certain extent 

by vegetation variation caused by climatic fluctuation

 Areas of degraded lands can not be identified 

accurately by simple trend analysis of vegetation 

parameters, e.g. NDVI, NPP etc. 



GLADA
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Desertification：land degradation in arid, semi-arid and dry sub-

humid areas.

Harms： About a quarter of the global land is affected by 

desertification hazards. China is one of the most seriously affected 
countries by desertification.

Causes:

(1)Climatic variation：Climatic change,  drought…

(2)Human activities: over-grazing, over-reclamation, mismanagement 
of water resources etc.

2.Desertification status in China



Climatic Types of 
Desertification in China 

Table 1. Indicators of classification of climate type of desertification 

Climate Type Moisture Index (MI) 

Extreme arid area* MI ≦ 0.05 

Arid area 0.05< MI < 0.20 

Semi-arid area 0.20< MI < 0.50 

Dry sub-humid area 0.50< MI < 0.65 

Sub-humid and Humid area* MI > 0.65 

*Means the climate scope without possible occurrence of desertification 

Annual Mean Precipitation Map



MI=P/E0

E0=16(10T/I)a

a=(0.675I-77.1I2+17920I+492390)  10-6

I=(T/5)1.514

APE=E0 CF

P: precipitation (mm), E0: potential evapotranspiration (PE, mm), T: monthly

temperature (oC), I: annual thermal index, APE: modified PE (mm), CF: coefficient of

sunshine hours varied with latitudes.

Moisture Index (MI)— Calculated with the Thornthwaite
method (UNCCD)



(1) Cropland;

(2) Rangeland & pastures;

(3) Woodlands & Forest;

(4) Resident settlements & industry/transport facilities 

and mining areas;

(5) Waste lands.

Land Use/Cover Types of Desertification



(1) Caused by wind erosion: in sandy areas of North, Northwest and Northeast 

China

(2) Caused by water erosion: in Loess of Plateau of North and Northwest China 

and some mountainous areas

(3) Caused by soil salinization or alkilization: in Northwest and Northeast China

(4) Caused by Freezing and thawing processes: in Tibet Plateau

(5) Caused by other interacted factors.

Desertification Types

Grading of Severity of Desertification
(1) Slight desertification

(2) Medium desertification

(3) Severe desertification



Sandy desertification and sandstorm



Soil and water erosion in Loess Plateau Salinization In Hexi corridor, Gansu



Sandy Desertification Control

straw checkerboard barriers

Tree planting



Sandy Desertification Control



Control of water erosion

Terraced farmlands in Loess Plateau

Vegetation recovery in a small watershed

of the Loess Plateau



Desertification Monitoring

Definition: Monitoring of desertification is to detect the dynamic 

changes of desertified lands and inherent mechanical change of 
desertification process within a defined spatial and temporal area with 
practical measures, to understand the developing process and grading 
stage of desertification.

Significances：

a) Providing data for establishing national pre-alarming and forecasting 
system of desertification disaster;

b) Framing the national policies for combating desertification;
c) Distributing projects for combating desertification.



Spectral resolution: the specific wavelength intervals

that are a sensor can record;

Spatial resolution: the area on the ground represented

by each pixel;

Radiometric resolution: the number of possible data file

value in each band (indicated by bit);

Temporal resolution: how often a sensor obtains imagery

of a particular area.

Resolutions



Airborne data
Early stages: 1950-1970’s, plastic films or 

photo copy;

Modern stage: 1980’s - , digital data, Higher 
spatial & spectral resolutions.

Spaceborne data (Satellite data)
Multispectral data： NOAA, MODIS, CBERS-

1/2, Beijing-1, HJ-1A/B, Landsat
MSS/TM/ETM, EO-1 ALI, SPOT-4/5, etc;

Hyperspectral data：PROBA CHRIS，EO-1 
Hyperion，HJ-1A，etc。

Remotely Sensed Data



GF-1 16m data 

（Otindag sandy land）
April 26, 2013



GF-1 multispectral image (16m)



EO-1 ALI

GF-2 Multispectral images（Otindag sandy land）
August 19, 2014



GF-2 Multispectral and panchromatic images（Minqin, Gansu）



ZY-3 Multispectral images

（Otindag sandy land）
January 9, 2012



TM



Closing

TM



Rapideye



CBERS-1 



SPOT-5



EO-1 ALI

EO-1 HYPERION



Five times of The national  desertification and sandification monitoring have been organized with 

integration of remote sensing and in situ survey from 1994 to 2014.

National  Desertification Monitoring in China



Flow Chart of National Desertification & Sandification Monitoring (NDM)

CDMC, SFA

DMCC (National Center)

PDMC (Provincial)City & County 

Surveying Teams

In-situ
Validation

Data Processing
Work Program 

For NDM 
LandsatTM

Data

Management & Technique 

Specification

signs for Visual

Interpretation

Achievements of 

Provincial Monitoring

Maps & Statistical 

data of NDM

System

for NDM



Biological

Non-natural factors

Driving forces

Soil

Desertified Land

Natural factors

Vegetation

Eco-environment

Impacts

Socio-economics

Combating effect

Combating action

Eco-environmental

Desertification impact 
indicators

Socio-economic

Effect indicators

Implementation 
indicators

Action indicators

Chemical

State indicators

Physical

Non-natural indicators

Pressure indicators

Natural indicators

Desertification control

Desertification 
Indicator System



 Desertification caused by wind erosion

 Slight: 

Vegetation cover is >30%;

Land surface is covered by stable  dunes or sandy  field, 

Water-leakage sandy land;

Cultivated fields transformed from sandy land.

Grading indicators of various desertification



 Medium:

Vegetation cover is between 10% and 30%, and is evenly 
distributed; 

Sand drift are under control by plant community;

Sand movement ripples are prevailing on sand dunes or sand 
fields.

 Severe: 

The surface is composed of Gobi; 

Vegetation cover is less than 10%;

Sand dunes are stabilized with non-biological measures;

Surface landform is composed of denuded residuals, unfertilized 
fields, Yardang landforms, clay mounds and wind blowouts.



 Desertification caused by 

water erosion

Table 2. Indicators for grading severity of desertification caused  

by water erosion 

Severity Erosion Modulus 

(t/km2.a) 

Mean annual loss 

Depth (mm) 

Slight 1000 -2500 2 

Medium 2500 -8000 2-6 

Severe > 8 000 > 6 

 

Table 3. Indicators for grading the severity of desertification  

caused by frozen and melting processes at cold plateau 

Severity Locations of the occurrence of desertification 

Slight Extreme highlands, high mountains, gentle slope 

meadow and flooded depression and ridge area on 

plateau. 

Medium Extreme highlands, high & cold hills and desert 

steppe. 

Severe Extreme highlands, high mountains, high & cold 

mountain deserts and cold deserts. 

 

 Desertification caused by 
frozen and melting



 Desertification caused by Soil salinization
Table 4. Soil salinization classification & grading indicators 

0-30 cm salt content (%) 

Type 
West 

Region 

(Xinjiang) 

East Region 

(Inner 

Mongolia) 

Reclam possibility 

Slight 0.5-1.0 0.1-0.3 

With favorable conditions to 

be reclaimed by simple 

improvement only 

Medium 1.0-1.5 0.3-0.7 

water conservancy project 

and improvement 

measurement are required. 

Severe 1.5-2.0 0.7-1.0 
Reclaim condition is poor& 

integrated measures needed. 

 



Inventoried Year
Desertification Area 

（M km2）
Wind Erosion Area

（M km2）
Sandification Area

（M km2）

1994 2.622 1.607 1.714

1999 2.674 1.873 1.743

2004 2.636 1.839 1.740

2009 2.624 1.832 1.731

2014 2.611 1.826 1.721

Desertification and Sandification Areas from 
1994 to 2014



(1) Indicators for desertification monitoring and assessment;

(2) Thresholds of indicators proposed;

(3) Bench mark of Desertification

(4) Quantitative inversion of the surface parameters by remote sensing. 

Issues and challenges
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3.1 PV/NPV estimation

 Vegetation coverage, a key indicator of desertification. Remote sensing offers a unique

opportunity for the retrieval at large scale.

 From a functional perspective, vegetation could be divided into PV(green leaves) and

NPV(wood, senescent material, litter). PV, well studied, based on difference in visible and

NIR reflectance. NPV estimation receives less attention, because of spectral similarity

with soils.

 It is wroth noting that NPV widely existed in arid and semi-arid regions, and play a key

role in controlling wind and water erosion. Thus, estimating fractional coverage of PV and

NPV simultaneously is very important for desertification monitoring in drylands.

 Examining the performance of different SMA techniques in estimating the fractional cover of PV and NPV

simultaneously in relation to in situ fractional cover measurements, with GF-1 WFV data(only visible and

NIR bands), in a complex landscape , the Otinday sandy land

3 Extraction of Desertification Information from Remote Sensing data



3.1.1 Study Area- Otindag sandy land

open forest steppe

shrub encroachment

high percentage NPV 

desert grassland 

meadow

Sandy soil

 semi-arid area,  strong 
wind, less precipitation.  

 Because of desertification 
process, most grasslands 
have experienced different 
degrees of shrub 
encroachment. 

 The NPV account for a high 
percentage and vary 
seasonally and inter-
annually.



3.1.2 Data acquisition

Sensor Acquisition date Seriel number

WFV3 2014/07/31 291592

WFV3 2014/07/31 291593

WFV4 2014/07/31 291607

WFV4 2014/07/31 291608

WFV2 2014/08/04 294882

http://www.cresda.com/

Radiometric correction: DN value was converted
to radiance using the calibration coefficients
obtained from the CRESDA.
Atmospheric correction: Radiance was
transformed to surface reflectance through FLAASH
algorithm provided by ENVI 5.0.
Geometric correction: Landsat-8 OLI data
provided by USGS, proved geometrically consistent
with the field GPS values, were selected as the base
map for geometric correction (ENVI 5.0). The
geometric correction error was less than one pixel
of the Landsat-8 pan data (15m).

.

5 GF-1 WFV scenes, from 3 cameras

Remote Sensing Data

http://www.cresda.com/


Field SpectraDevice: ASD full-range (350-2500 nm)
Fieldspec® 4.
Methods: Collected within 2 hour of
local solar noon on clear sky days. The
sensor, held 1m above the top of the PV,
NPV or bare soil surface in vertical
downward position.
Acquired spectra: Synchronous with
GF-1 data acquisition, 29 PV spectra, 14
NPV spectra and 12 bare soil spectra
were measured. For acquiring more NPV
spectra, 14 NPV spectra and 3 bare soil
spectra were acquired in November.
Pre-process: Based on the spectral
response function of GF-1 WFV sensor,
the field spectra were resampled to the
GF-1 WFV bands.



In situ dataTime: late July and early August,
season of max vegetation cover.
Sample design:121 sites were selected
,based on stratified random design and
accessibility, one 3232 m plot was set
up in each site.
Methods: Along the 2 or 3 transects,
the surveyors recorded the cover type
(PV, NPV, SOIL) at 1m interval directly
under a thin tape. Vegetation is divided
into three categories: non-woody or
ground cover; woody less than 2
meters; and woody greater than 2
meters.
Position: The coordinates of the cross
point of two transects were recorded by
GPS to match with GF-1 WFV data

Natural vegetation

Artificial vegetation



 Traditional SMA
 Fixed EMs, the average spectra of PV, NPV and bare soil were utilized as the EM spectra.

 MESMA
 All EM combinations are calculated, the best-fit model (lowest RMSE) is determined for each 

pixel. 

 AutoMCU
 A large number of EM combinations for each pixel are calculated by randomly selecting spectra from a 

spectral library. Assumed fcover distributed normally, when the number of EM combinations are 

sufficient, the average value of fcover would be taken as the final results.

SMA methods adopted(Linear)

Reflectance of a pixel is assumed to be a linear combination of the reflectance 
of the spectra of the EMs, weighted by their fractional cover.

3.1.3 Method



Unmixing approach
Three approaches are different in EM selection. For the calculation of 𝒇𝒌 in each time, the Fully

Constrained Least Square (FCLS) algorithm would be applied. Through using FCLS, two

important constraints on 𝒇𝒌 :

 fraction sum-to-one constraint (ASC) σ𝒌=𝟏
𝒏 𝒇𝒌 = 𝟏

 fraction nonnegativity constraint (ANC) 𝒇𝒌 ≥ 𝟎

Performance assessment

To compare the performance of different SMA techniques on PV/NPV fractional cover

estimation, two metrics were calculated against in situ data, RMSE and coefficient of

determination (R2) of linear regression.

RMSE =

Τσ𝑖=1
𝑛 (𝑥𝑖 − 𝑦𝑖)

2
𝑛

𝑅2 =
σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)(𝑦𝑖−ത𝑦)

2

σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)

2
σ𝑖=1
𝑛 (𝑦𝑖−ത𝑦)

2



EM library and variability

 General: PV spectra is easily
distinguishable from NPV and
bare soil spectra, but the NPV and
bare soil are similarly.

 Differences between BS and NPV:
Higher reflectance of BS, mainly
due to the extensive bright sandy
substrate. Bow-shaped
protuberance existed for BS,
while not emerging in NPV.

 Intra-variability: The PV and NPV
spectra are relatively
concentrated, while the bare soil
spectra varies greatly.



Traditional SMA

MESMA

AutoMCU

3.1.4 Results 



Unmixing apprpach 
𝐑 𝟐 RMSE 

PV NPV BS PV NPV BS 

AutoMCU 0.49
*
 0.49

*
 0.48

*
 0.17 0.09 0.20 

MESMA 0.48
*
 0.11 0.15 0.21 0.24 0.21 

SMA 0.47
*
 0.41

*
 0.47

*
 0.27 0.20 0.17 

 1 

Comparisons among different methods 

AutoMCU performs best for fpv,  fnpv estimation compared to SMA and MESMA, with R2 

of 0.49, and RMSE of 0.17  and 0.09 for for fpv,  fnpv. The problems of fnpv overestimation 

and fpv underestimation in SMA and MESMA were resolved effectively. 

MESMA would produce higher error in fnpv estimation , while improve the accuracy 

of  fpv estimation, compared to SMA.



Cross-multispectral sensors comparison

# Reference Source data 
Study region and 

area 

Study 

periond 
Approach 

Validation 

points 
RMSE of fpv RMSE of fnpv 

1 
Guerschman et al. 

(2012) 
MODIS NDVI and 

the ratio of MODIS 

bands 7 and 6 
Australia ~7.7 106 

km2 2000-2010 SMA 567 14.7% 20.5% 

2 Okin et al.(2013) MODIS  
Rain-fed cropping 

region of South 

Australia. ~150 km2 
Apr, Jul and 

Oct 2010 
SMA, MESMA  27 7-23% 12-29% 

3 
Guerschman et al. 

(2015) Landsat and MODIS Australia ~7.7 106 

km2 2000-2013 SMA 1171 11.2-11.9% 16.2-17.4% 

4 Current study GF-1 WFV 
Otindag sandy land 

of North China. 

~3.0104 km2 

Peak 

growing 

season, 

2014 

SMA, MESMA 

and AutoMCU 121 17-27% 9-24% 

 1 

 For fpv estimation, this study showed relative lower accuracy, the lowest RMSE acquired 

by AutoMCU was 17%, the numbers based on the range from 7% to 14.7%.

 For fnpv estimation, this study showed some advantage , the lowest RMSE acquired by 

AutoMCU was 9%, compared to the previous study’s 12-20.5%.



3.1.5 Conclusions
1. Despite of the spectral similarity of NPV and bare soil, there do exist some differences 

at  GF-1 WFV bands in Otindag sandy land, which could be utilized.

2. Due to the complex ecosystem structure of the Otinday sandy land, the PV, NPV and 

bare soil endmember libraries showed great intra-variability. 

3. SMA should be used with more cautious in quantitative study. MESMA can not be 

assumed performing always better than SMA, due to the coupling of the NPV and 

bare soil EMs. AutoMCU was proved effective for dealing with the EM variability .

4. GF-1 WFV data was proved to be capable for fpv and fnpv estimation in Otinday

sandy land, although lacking the important SWIR bands. With GF-1 WFV’s unique 

advantage of high spatial resolution, wide coverage and high revisit frequency, great 

potential existed for relevant analysis in the future.
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3.2 Sandy Land detection by Spectral Mixture Analysis 

3 Extraction of Desertification Information from 
Remote Sensing data

 Vegetation covers the soil information to a great extent, it is difficult 
to detect the sandy Land or desertification based on remote sensing 
image;

 Transitional sandy land is difficult to extract, its boundary is hard to 
define exactly, and efficiency of qualitative classification is relatively 
lower;

 Against the problems above, Spectral Mixture Analysis (SMA) was  
applied to solve vegetation cover and transitional sandy land detection.



Flowchart of technique route

Sand abundance 

Endmumber selection

Remote sensing image

Data preprocessing

Field data

PPI GVS

Spectral Mixture Analysis 

Other endmumber abundance 

Degraded land detectionSandy land detection 

Other endmuember abundance

Endmember selection



 Image type: GF-1

 Spatial resolution : 16m

 Imaging time: 2014.04.27

3.2.1 Test site and data



 Pure Pixel Index (PPI) 

 Geometric vertex of scatterplot (GVS)

 PPI was better than GVS, the endmember spectral was more classic and suitable

3.2.2 Endmember selection method 

GVS

2D-splattering Endmember spectral plotMinimum Noise Fraction,MNF

PPI

PPI iteration 3D-splattering Endmember spectral plot



 if the number was greater than 6, it was prone to generate noise and error;

 if the number was less than 5, the mixed pixel couldn’t be decomposed 

effectively;

 the endmember number was 5 or 6 in this study was more suitable, the 

decomposition result would be more accurate in the degraded land detection. 

N=3                                                            N=6

Endmember number 



研究
背景

Endmembers spectral plots

Endmember type 

Pictures of several typical lands in GF-1 image during the ungrowing 

season

Sandy 

land
Shrub Grassland Bare soil

Salty land Water City Road



研究
背景

Abundance distribution of different endmember based on PPI

Sand Bare soil Water 

Grassland Shrub  Salty land 

 Linear Spectral Unmixing (LSU) ij

p

j
ijNi emD +α=

1=
∑ 1=α+...+α+α 21 j

Spectral Mixture Analysis 



Sandy land detection based on mixed pixel decomposition

 If sand abundance accounted for more than 50% in the remaining endmember abundance except for vegetation, or less than 
50% but it was the maximum , the pixels would be determined as sandy land. 

 The total accuracy was 86.42%, the transitional sandy land with high vegetation coverage could be also extracted accurately 
and effectively.

3.2.3 Sandy Land detection

Projects Total number Sandy land Unsandy land

Sample number 162 81 81

Correct number 140 68 72

Accuracy 86.42% 83.95% 88.89%
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Estimating Above Ground Biomass of Otindag

Sandy land by Using Chinese and European Earth 

Observation data and Machine Learning
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 Land degradation in dryland has become one of the major environmental problems.
 Land degradation indicators identification is one of the most important tasks in achieving of UN ’s

sustainable development goals（SDGs）15: Life on Land and 2: Zero Hunger.
 Vegetation above ground biomass (AGB) could reflect the land productive capacity well.
 Refined estimation of AGB in dryland has a great scientific significance to the dryland ecosystem

management and desertification assessment and monitoring.

UN SDGs (2016-2030 )

Land condition trends 
for PEDC during 

2003-2011 based on 
MERIS data

Dragon 4 cooperation 
research results

(Project ID:32396)

3.3.1 Introduction



Vegetation is 
sparse

Soil 
background

Shrub
Different structure

Soil background

Challenges for AGB estimation in dryland

3.3.1 Introduction



Method：nonparametric
Data：Band information/VIs/Texture

Landsat GF-1

NDVI、SAVI、MSAVI and regression method 

Fitting effectFitting effect

Trend
Trend

Method：parametric
Data：VIs



 To develop a useful method for sparse

vegetation aboveground biomass inversion

in dryland by integrating remote sensing

information and field survey data.

 To compare the application ability of

EO data from Chinese and European side in

the extraction of sparse vegetation

aboveground biomass in dryland.

Spatial Resolution
(m)

Band Number
Central Wavelength

(nm)
Bandwidth

(nm)

10

2 490 65

3 560 35

4 665 30

8 842 115

20

5 705 15

6 740 15

7 783 20

8a 865 20

11 1610 90

12 2190 180

60 1 443 20

9 945 20

10 1380 30

Wavelengths and Bandwidths of the three Spatial Resolutions 
of the MSI instruments Sentinel-2 Product Parameters 16m WFV

Spectral rang
（μm）

B1:0.45-0.52
B2:0.52-0.59
B3:0.63-0.69
B4:0.77-0.89

Spatial resolution
（m）

16

Swath width（km）
4 Cameras spliced 

width of 800
Coverage period 4days

Technical parameters of GF-1 WFV 
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 Located in semi-humid zone.

 Covering typical grassland and sandyland vegetation.

DEM

 OSLAIS, Key part of the Beijing-Tianjin Sand Source Region.

3.3.2 STUDY AREA AND DATA COLLECTION

3.3.2.1 Study area



 EO data Sentinel-2  Covering growing season (July-August)
3.3.2.2 EO data

Imaging time Scenes Month/date Cloud coverage and quality

2015 2 10th , August Clouds<1%, Good quality

2016 34 Jul- Aug Good quality

2017 55 Jul- Aug Clouds<1%, Good quality

Table of sentinel-2 data acquisition



 EO data GF-1

Year Jul Aug Sep Total Cloud coverage and quality Coverage

2015 - - 6* 6 Clouds<1%,Good quality 100%

2016 - 6 - 6 Clouds<1%,Good quality 100%

2017 5 - - 5 Clouds<1%,Good quality 100%

* Single scene image width 200km.

Table of GF-1 WFV data acquisition

2016

2017



Year July-August Grassland Mixing(shrub + grass) 

2016 30 24 6 

2017 40 31 9 

Total 70 45 15 

 

Sampling sites implantation and AGB 
evaluation by the “Harvest method”

3.3.2.3 Field survey data

Year July-August Grassland Mixing(shrub + grass) 

2015 52 37 15 

2016 15 11 4 

2017 31 21 10 

Total 98 69 29 

 

Samples using for AGB estimation - S2 data
Samples using for AGB estimation –GF-1 data
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3.3.3 EO DATA PROCESSING AND METHODS

Technical flow chart in this study

Cloud platform provided 
through the ESA Network of 

Resource Initiative



3.3.3.1 EO data processing

Before Atmospheric correction After Atmospheric correction

AC of S2 by using the  Sen2cor provided by ESA



Before Atmospheric correction After Atmospheric correction

AC of GF-1 by using the FLAASH algorithm
Geometric correction (GC)
The processing was conducted
in ENVI 5.0, and no fewer than
50 evenly distributed control
points were selected for each
image.

Gaofen forestry demonstration 
platform for remote sensing 

applications-CAF



3.3.3.2 Information 

extraction from EO data for 

AGB estimation

Type Variable S2 GF-1 Type variable S2 GF-1

Band
Reflectance 

Blue √ √

VI

NDVI √ √

Green √ √ SAVI √ √

Red √ √ TSAVI √ √

Vegetation-red edge1 √ MSAVI √ √

Vegetation-red edge2 √ DVI √ √

Vegetation-red edge3 √ RVI √ √

NIR √ √ PVI √ √

Narrow NIR √ GNDVI √ √

Texture information
(GLCM)

Contrast √ √ NDI45 √

Dissimilarity √ √ MTCI √

Homogeneity √ √ MCARI √

Angular second
moment

√ √ REIP √

Energy √ S2REP √

Maximum probability √ IRECI √

Entropy √ √ PSSRa √

GLCM mean √ √

GLCM Variance √ √

GLCM Correlation √ √

Bands reflectance

Texture information

Vegetation index

S2:103

GF-1:44



Texture information

• Gray-Level Co-occurrence Matrix (GLCM)

• Window size GF-1 :“3×3” and S2 : “5×5” 

“Raster-->Image Aanlysis-->Texture Analysis”

SNAP



Vegetation index

Not contain red edge band Contain red edge band

VI Equation VI Equation

NDVI (NIR - R)/( NIR + R) NDI45 (B5-B4)/(B5+B4)

SAVI ((NIR - R)/( NIR + R +L))(1+L) * MTCI (B6-B5)/(B5-B4)

TSAVI a(NIR-aR-b)/(aNIR+R-ab+c(1+a2) ** MCARI [(B5-B4)-0.2× (B5-B3)] × (B5-B4)

MSAVI ((2NIR+1-((2NIR+1)2-8(NIR-R))^0.5)/2 REIP 700+40×[(B4+B7/2-B5)/(B6-B5)]

DVI NIR - R S2REP 705+35×[(B4+B7/2-B5)/(B6-B5)]

RVI NIR / R IRECI (B7-B4)/(B5/B6)

PVI sin(a) ×B8-cos(a) × R PSSRa B7/B4

GDVI (NIR -G)/( NIR +G)

Equations of the fourteen VIs calculation based on Sentinel-2 image

Note: NIR= Near infrared band reflectance; R= Red band reflectance; G= Green band 
reflectance;  *L=0.5 ; **a=0.5, b=0.5, c=0.08; Bi is the i band reflectance of sentinel-2 image.



“Opitical-->Thematic 
Land processing
-->Vegetation 
Radiometric Indices”

Vegetation index

SNAP



Values extraction from the EO data

“Raster-->Export-->
Extract Pixel Values”

SNAP

Window size 

• GF-1 :“3×3” and S2 : “5×5” VI BR

• GF-1 :“1×1” and S2 : “1×1” TI



3.3.3.3 Variable selection

3.3.3.4 AGB estimation and validation

 Simple linear regression

 Random forest (RF)

 Gradient boosting Decision Tree (GBDT)

 Support Vector Machine (SVM)

 Multi-Linear Regression (MLR)

Empirical modeling approaches Validation

 5-fold cross validation

 Training (80%) and testing (20%)

 R2 , RMSE and MAE

 Python package (vers. 3.6.8) 

 RF bootstrap method and Multiple times iteration 

 Half-Half in every iteration

 4 times iteration
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3.3.4. RESULTS AND ANALYSIS

Variables of importance for AGB estimation based on S2 and GF-1 data

3.3.4.1 Importance of the variables for the AGB estimation



Accuracy assessment of the AGB estimation models using  
5-fold cross validation method based on S2 images.

Approach R2 RMSE MAE Models 

SVM 0.71 23.76 19.84 Non-linear 

RF 0.57 28.97 22.17 Non-linear 

GBDT 0.55 29.91 22.00 Non-linear 

MLR* 0.67 25.51 19.59 Linear 

 

3.3.4.2 Construction of AGB estimation models and validation



Accuracy curve of training and validation corresponding 
the variation of the two key parameters in SVM model

Kernel functions （RBF），gama and penalty factor C



Approach R2 RMSE MAE Models 

SVM 0.52 43.15 36.13 Non-linear 

RF 0.58 40.25 31.04 Non-linear 

GBDT 0.54 42.10 31.56 Non-linear 

MLR 0.43 46.96 36.89 Linear 

 

Accuracy assessment of the AGB estimation models using  
5-fold cross validation method based on GF-1 WFV images.



3.3.4.3 Distribution of AGB  in Otingdag sandyland

Spatial distribution of 
AGB in the OSLAIS based 
on S2 and GF-1 WFV data  

in 2016 and 2017

Generally consistent



S2 GF-1



VI Model Sentinel-2 R² Model GF-1 R²

DVI y = 1301 x 1.2583 0.2557 y = 724.88 x +15.62 0.1342

SAVI y = 600.07 x1.1093 0.3187 y = 91.38ln (x)+253.56 0.2516

TSAVI y = 67.692 e-0.271 x 0.1048 y = 0.1401x+95.20 0.1016

MSAVI y = 722.94 x 1.1449 0.3067 y = 498.68 x +12.91 0.2207

PVI y = 2012.2 x 1.2583 0.2557 y = 955.69 x +101.47 0.3100

RVI y = 48.513 x 1.0387 0.2062 y = 76.539ln (x)+46.638 0.2223

NDVI y = 317.94 x 0.9024 0.3232 y = 290.48 x 1.0206 0.3028

GNDVI y = 244.58 x 0.9247 0.2330 y = 480.4 x 1.9815 0.3146

VI Model Sentinel-2 R²

NDI45 y = 555.12 x 0.8052 0.2116

MTCI y = 36.419 e0.7078 x 0.2895

MCARI y = 412.95 x 0.4285 0.0809

REIP y = 1825.3e-0.004 x 0.0027

S2REP y = 1.089 x - 651.91 0.0224

IRECI y = 323.04 x 0.6513 0.2181

PSSRa y = 53.65 x 0.8918 0.1725

Equations of the fifteen VIs calculation based on Sentinel-2 and GF -1 image

3.3.4.4 Compared with the VI-based method



3.3.4.4 Compared with the VI-based method

GF-1 Central 
Wavelength

Band
width

Resolution S2 Central 
Wavelength

Band
width

Resolution

B1 485 70 16m B2 490    65 10m
B2 555 70 16m B3 560 35 10m
B3 660 60 16m B4 665 30 10m
B4 830 120 16m B8 842 115 10m

Relationship of the four band reflectance between GF-1 and Sentinel-2 data at the same location

Wavelengths and Bandwidths of the Sentinel-2  and GF-1 at the same band

0.73
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3.3.5 DISCUSSION

• Advantages and disadvantages of using machine learning algorithm in 
AGB estimation in spare vegetation areas

• Comparison of Sentinel-2 MSI and GF-1 WFV for AGB estimation in 
sparse vegetation areas

• Whether the red edge bands in Sentinel-2 MSI could improve the 
estimation accuracy of AGB in spare vegetation areas?

• Variables for AGB estimation in spare vegetation areas

• Outlook

0.39 and 0.27

B5 and NDI45
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3.3.6 CONCLUSIONS

The main conclusions of the study are as follows.

(1) Sentinel-2 MSI and GF-1 WFV data could provide substantial support for

vegetation monitoring in large areas of the dryland.

(2) Machine learning algorithm could improve the accuracy of sparse

vegetation AGB estimation in Otingdag sandy land. Compared with the

traditional VI-based method, the R2 of estimated model was increased

0.39 and 0.27 achieved by S2 and GF-1, respectively; And,

(3) combining texture information and red-edge-derived vegetation indices

has relatively higher prospects of improving the estimation accuracy of

AGB in sparse vegetation areas.
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Data and Method

Net primary productivity（NPP）: Energy utilization 

model (EC-LUE model) , The accuracy is 75.6%。

PE

P
MI 

（ Recommended by UNCCD ，
Thornthwait ，1948）

MI: Wetness index; P: Annual precipitation; PE:

Contemporaneous potential evapotranspiration.

Moisture-Responded NPP（MNPP）

100*MI

NPP
MNPP 

Land cover change: Driving force of land 

degradation



Data and Method

Climatic type
Extreme 

drought

Dryland
Sub-humid area and 

humid areaDry area Semi-arid area Arid dry-humid area

Wetness index 0-0.05 0.05-0.2 0.2-0.5 0.5-0.65 >0.65

Climate regionalization index of desertification(Thornthwait)

Distribution of the global drylands

Dryland：

• Dry area, Semi-arid area, Arid dry-humid area;

• Called dry land internationally；

• Potential areas of desertification.



Data and Method

Indicators and trends
NPP

Sig.↓ No Sig. Sig.↑

MNPP

Sig.↑
Sig.(MI)↓ Degr. Fluc. Impr.

Others Degr. Impr. Impr.

Insig. Degr. Fluc. Impr.

Sig.↓
Sig. (MI)↓ Degr. Fluc. Impr.

Others Degr. Degr. Impr.

Types Change level
5-year average change 

rate of NPP（%）

Degrading

Very sig. degrading <-9.0

Sig. degrading -9.0~-6.0

Mod. Degrading -6.0~-3.0

Sli. Degrading -3.0~0

Improving

Sli. Improving 0~3.0

Mod. Improving 3.0~6.0

Sig. improving 6.0~9.0

Very sig. improving >9.0

Grading for Land degrading and improving assessment

Land degradation change detection

Data

Assessment 
System for 

Global  Trend 
of  Land 

Degradation

Trend in global land degradation

since 2000

 NPP (GLASS NPP) 

 MNPP (NPP/MI)

 MI (Thornthwaite)

 Land cover 

Change 
detection

Grading  

Degrading 
and 

Improving 
Assessment

Land degrading and 

improving assessment

Remote sensing data  
Meteorological data

Other auxiliary data

Indicators 
and Data

Land use and cover Ground 
data



DegradingImproving Distribution of global land degrading and improving since 2000

Trend in Global Land degradation since 2000

Distribution： Asia and North America

Area： 1.648107km2(12.23%)

Improving
Distribution： The southern hemisphere

Area： 1.609107km2(11.95%) 

Degrading



Trend in Global Land degradation since 2000

Many traditional land degradation and restoration areas(UNEP, FAO) are reflected.

Challenge

SDGs Large-scale forest degradation in tropical 

rainforest areas has occurred since 2000

Amazon Plain

Congo Basin

 Africa>South America>Asia>North 
America>Europe>Oceania

 Moderate>Slight>Significant>Very significant

Degrading

 Asia>North America>South 
America>Africa>Europe>Oceania

 Moderate>Very significant>Slight>Significant

Improving

A new challenge to the realization of land degradation prevention and control objectives in UN SDGs.

Degradation: North of the Caspian and Black Seas; Sahel region; Eastern Brazil Plateau, etc.

Improment: China, South Asian Subcontinent, etc.



Land degrading and improving areas of major land cover types

Trend in Global Land degradation since 2000

Distribution of global degrading land of major land cover types Distribution of global improving land of major land cover types

Improving:
Forest(37.35%)>Farmland(25.78%)>Grassland(17.17
%)>Shrub(8.74%)

Degrading:
Forest(54.21%)>Shrub(17.01%)>Farmland(15.6%)>
Grassland(8.34%)



Distribution of global dryland
Distribution of degrading and improving areas of dryland since 2000

Dryland:3.995106km2(29.65%)

Semi–arid area> Arid area > Dry sub-humid arid area 

Trend in Global Land degradation since 2000

Degrading process in dryland since 2000:

2.785106km2 (6.97%)

Mainly distributed in Sahel, East African Plateau,

north of the Black and Caspian Seas, Brazil Plateau

and southern Africa.

 Improving process in dryland since 2000:

4.341106km2 (10.86%)

Mainly distributed in Asia, especially in East and

South Asia



Land degradation and improvement in key areas

Amazon Plain Congo Basin

Degrading area of Amazon

Plain:4.47106 km2.

The area of forest degrading is

4.05106 km2.

Degrading area of Congo

Basin:3.3106 km2.

The area of forest degrading is

2.02106 km2.

NPP change NPP change

Since 2000, a large area of

forest degradation has

occurred in tropical rainforest

such as the Amazon Plain and

the Congo Basin.



Land degradation and improvement in key areas

The length of the dry season in the Congo Basin was increasing(Joshua Stevens，2019)
Precipitation and NPP variations in the Congo 

Basin and Amazon Plain

Amazon Plain

Congo Basin

https://earthobservatory.nasa.gov/about/joshua-stevens


China South Asian Subcontinent

 The land improvement in both

China and India were significant.

 The contribution rate of these two

countries to the global land

improvement reached up to

26.78%.

China contributed almost 20% to

the global land improvement.

China(Improving):

3.15106km2

South Asian Subcontinent :

1.56106km2

Land degradation and improvement in key areas

NPP Change in South Asian Subcontinent NPP Change in China



Land degradation and improvement in key areas

Precipitation and NPP changes in the Loess Plateau of China

Precipitation and NPP changes in South Asian Subcontinent

 The implementation of national-level

ecological projects have made the

forest area in China increased from

1.75108 ha2 to 2.20 108 ha2 in the

past 20 years

 Promote agricultural modernization

and improve water irrigation systems,

including well-water irrigation system,

reservoir irrigation, canal irrigation

system.



Land degradation and improvement in key areas

Landsat TM/year of 2001                      Landsat TM /year of 2019

 Degrading significantly

 Forest degrading area was 
1.760105 km2, occupied 92.2% of 
total degrading area

Precipitation
NPP

Forest 

disturbance 

was serious

Precipitation and NPP variations in middle Siberia

Distribution of land improvement and degradation in middle Siberia



Land degradation and improvement in key areas

Sahel region

Ethiopian and East African Plateaus
Eastern Brazil Plateau

North of the Caspian SeaNorth of the Black Sea

Northwestern North America Eastern Siberia



Conclusions and recommendations

(1) From 2000 to 2018, the processes of global land degradation and improvement occurred simultaneously. The total

areas of both processes are basically the same.

(2) The global desertification control has achieved remarkable results due to the implementation of UNCCD.

(3) Large-scaled forest degradation in tropical rainforest areas has occurred since the beginning of this century and

it posed a new challenge to the realization of land degradation prevention and control objectives in UN SDGs.

(4) It is recommended that international cooperation in monitoring, assessment and prevention of land degradation

should be strengthened.

(5) The successful land degradation management experiences in Asia should be consolidated and extended to other

drylands in Africa, South America and other traditional land degradation regions. The best practices will support

to the achievements of the United Nations SDGs and Land Degradation Neutrality (LDN).
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