

Land degradation monitoring and assessment

ESA-MOST China Dragon 4 Cooperation

NRSCC

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

Land degradation monitoring and

assessment

Prof. Gao Zhihai & Dr. Bin Sun

Institute of Forest Resource Information Techniques (IFRIT),

Chinese Academy of Forestry (CAF)

Nov. 22th, 2019

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

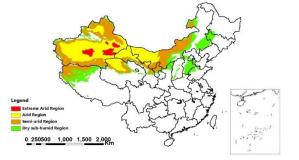
Contents

1 Definitions and reviews

2 Desertification Status & Monitoring in China

3 Extraction of Desertification Information from Remote Sensing data

4 Trend in Global Land Degradation since 2000



1 Definitions and reviews

Land degradation is a process that land productive capacity continues to decline or even lose completely under the influence of natural forces and human activities.

- **Desertification** in drylands is an important problem worldwide, but the concept is ambiguous in terms of specific processes, conditions, and solutions.
- UNCCD: Persistent and severe reductions in biological productivity due to unsustainable land uses in drylands, often associated with climatic and societal factors such as poverty and migration.

Scope of the general potential extent of desertification in China (1981-2010)

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Diverse types of land degradation and desertification

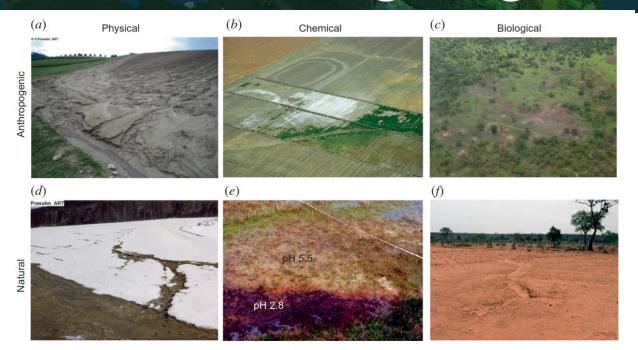
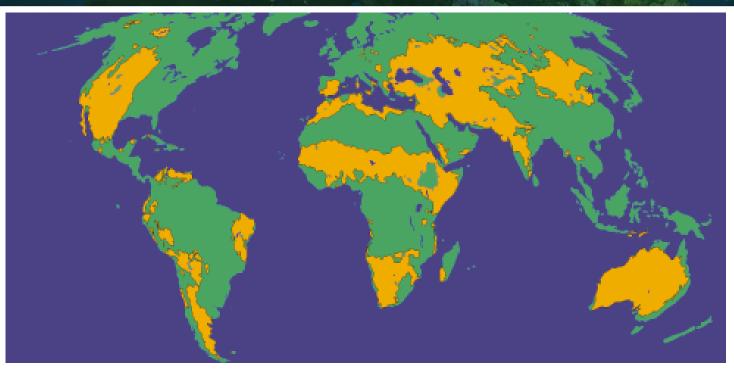


Figure 1. Examples of land degradation. (a) Man-induced soil erosion on agricultural fields (Volker Prasuhn, website); (b) secondary (man-induced) salinity in farmland, California (USDA Agricultural Research Service); (c) loss of forest cover through shifting agriculture, Wau district, Sudan (UNEP website); (d) soil erosion induced by snowmelt (Volker Prasuhn); (e) acid sulphate scald caused by drainage change (Gardner *et al.* 2004), which may be natural or man-made; and (f) drought-induced vegetation decline and soil erosion (WMO).



· eesa

NRSCC

Regions sensitive to desertification

Dryland regions of the world (yellow), cover about 54 million km², amounts to 40% of the global land area.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

- I 1991, Global Assessment of Human-induced Soil Degradation, GLASOD(Expert interpretation, 12 classes); ASSOD, Relative degradation(FAO,UNEP,UNDP)
- □ 1992, World Atlas of Desertification (First edition)(GLASOD,GLADIS),UNEP
- □ 1997, World Atlas of Desertification (Second edition), UNEP
- □ 2002, Land Degradation Assessment in Drylands, LADA;GLADA;GLADIS
- □ 2007, Global Environment Outlook 4, UNEP
- □ 2018, World Atlas of Desertification (Third edition),EU
- \square 2018, The Assessment Report on Land Degradation and Restoration, IPBES

GLADA

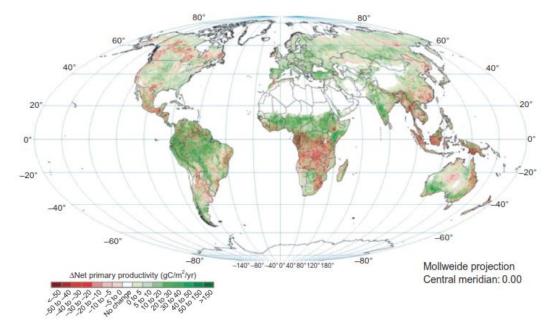


Figure 4. Linear trends in net primary production (NPP) from the global assessment of land degradation and improvement (GLADA). Reproduced from Bai *et al.* (2008).

Contents

1 Definitions and reviews

2 Desertification Status & Monitoring in China

3 Extraction of Desertification Information from Remote Sensing data

4 Tend in Global Land Degradation since 2000

2.Desertification status in China

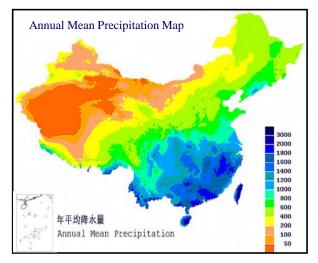
Desertification: land degradation in arid, semi-arid and dry subhumid areas.

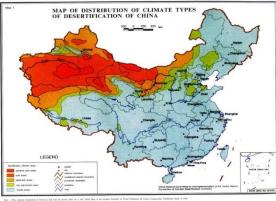
Harms: About a quarter of the global land is affected by desertification hazards. China is one of the most seriously affected countries by desertification.

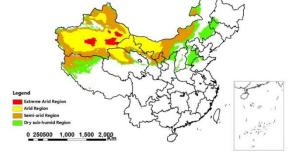
Causes:

(1)Climatic variation: Climatic change, drought...

(2)Human activities: over-grazing, over-reclamation, mismanagement of water resources etc.






Climatic Types of Desertification in China

Climate Type	Moisture Index (MI)
Extreme arid area*	$MI \leq 0.05$
Arid area	0.05< MI < 0.20
Semi-arid area	0.20< MI < 0.50
Dry sub-humid area	0.50< MI < 0.65
Sub-humid and Humid area*	MI > 0.65

*Means the climate scope without possible occurrence of desertification

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Moisture Index (MI)— Calculated with the Thornthwaite method (UNCCD) $MI=P/E_0$ $E_0=16(10T/I)^a$ $a=(0.675I-77.1I^2+17920I+492390) \times 10^{-6}$ $I=\Sigma(T/5)^{1.514}$ $APE=E_0 \times CF$

P: precipitation (mm), E_0 : potential evapotranspiration (PE, mm), T: monthly temperature (°C), I: annual thermal index, APE: modified PE (mm), CF: coefficient of sunshine hours varied with latitudes.

Land Use/Cover Types of Desertification

- (1) Cropland;
- (2) Rangeland & pastures;
- (3) Woodlands & Forest;
- (4) Resident settlements & industry/transport facilities and mining areas;
- (5) Waste lands.

Desertification Types

- (1) Caused by wind erosion: in sandy areas of North, Northwest and Northeast China
- (2) Caused by water erosion: in Loess of Plateau of North and Northwest China and some mountainous areas
- (3) Caused by soil salinization or alkilization: in Northwest and Northeast China
- (4) Caused by Freezing and thawing processes: in Tibet Plateau
- (5) Caused by other interacted factors.

Grading of Severity of Desertification

- (1) Slight desertification
- (2) Medium desertification
- (3) Severe desertification

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Sandy desertification and sandstorm

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Soil and water erosion in Loess Plateau

Salinization In Hexi corridor, Gansu

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Tree planting

Sandy Desertification Control

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

straw checkerboard barriers

Sandy Desertification Control

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Control of water erosion

Vegetation recovery in a small watershed of the Loess Plateau

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Terraced farmlands in Loess Plateau

Desertification Monitoring

Definition: Monitoring of desertification is to detect the dynamic changes of desertified lands and inherent mechanical change of desertification process within a defined spatial and temporal area with practical measures, to understand the developing process and grading stage of desertification.

Significances:

- a) Providing data for establishing national pre-alarming and forecasting system of desertification disaster;
- b) Framing the national policies for combating desertification;
- c) Distributing projects for combating desertification.

Resolutions

Spectral resolution: the specific wavelength intervals that are a sensor can record;

Spatial resolution: the area on the ground represented by each pixel;

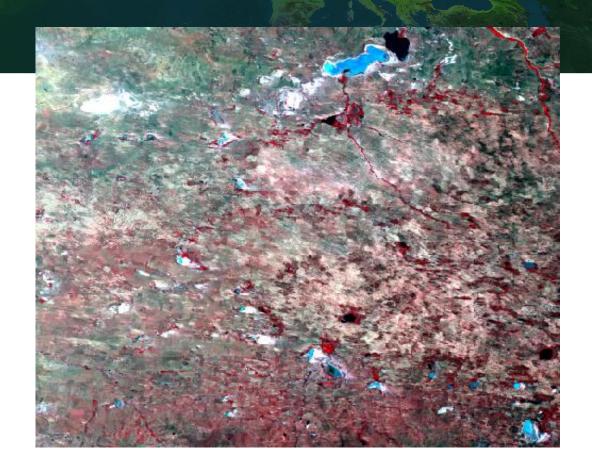
<u>Radiometric resolution:</u> the number of possible data file value in each band (indicated by bit);

Temporal resolution: how often a sensor obtains imagery of a particular area.

Remotely Sensed Data

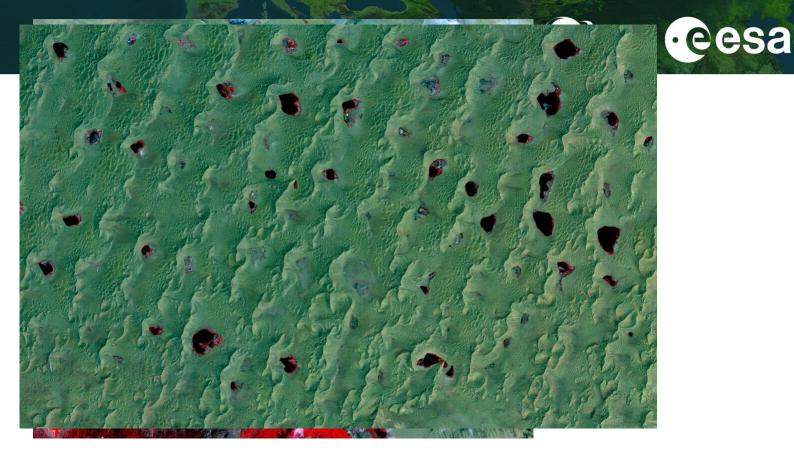
Airborne data

Early stages: 1950-1970's, plastic films or photo copy;


Modern stage: 1980's - , digital data, Higher spatial & spectral resolutions.

Spaceborne data (Satellite data)

Multispectral data: NOAA, MODIS, CBERS-1/2, Beijing-1, HJ-1A/B, Landsat MSS/TM/ETM, EO-1 ALI, SPOT-4/5, etc; Hyperspectral data: PROBA CHRIS, EO-1 Hyperion, HJ-1A, etc.

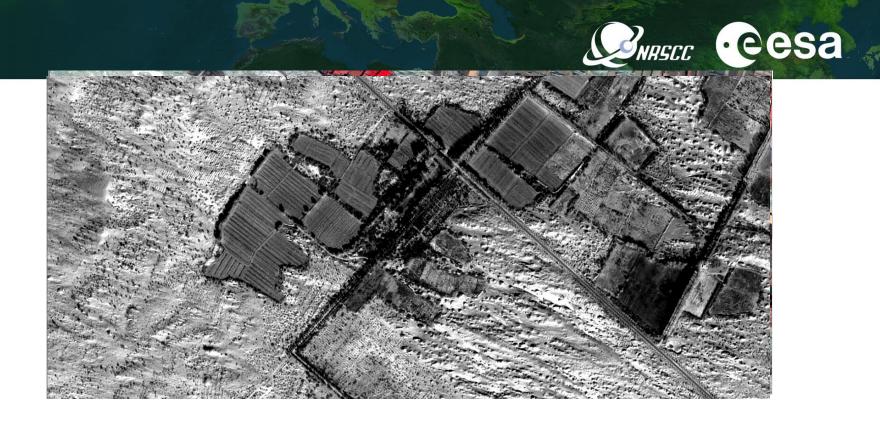


GF-1 16m data (Otindag sandy land) April 26, 2013

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

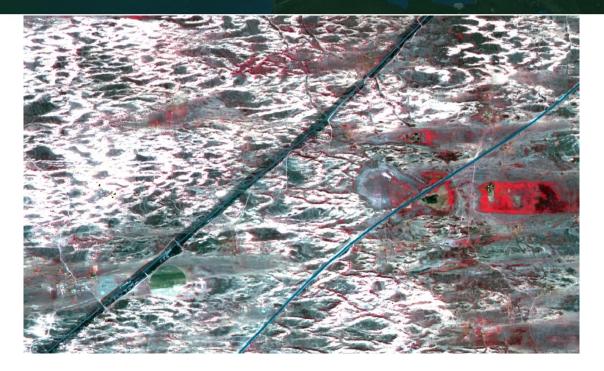
GF-1 multispectral image (16m)

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China


中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

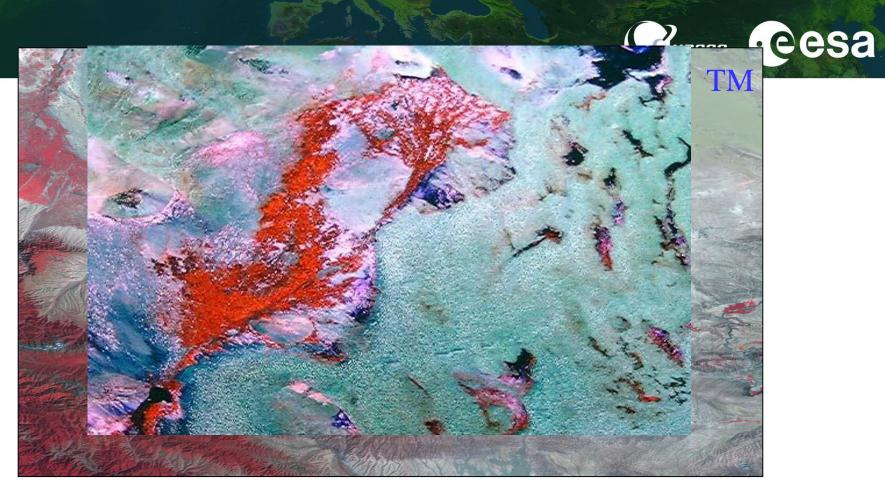
GF-2 Multispectral images (Otindag sandy land) August 19, 2014

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

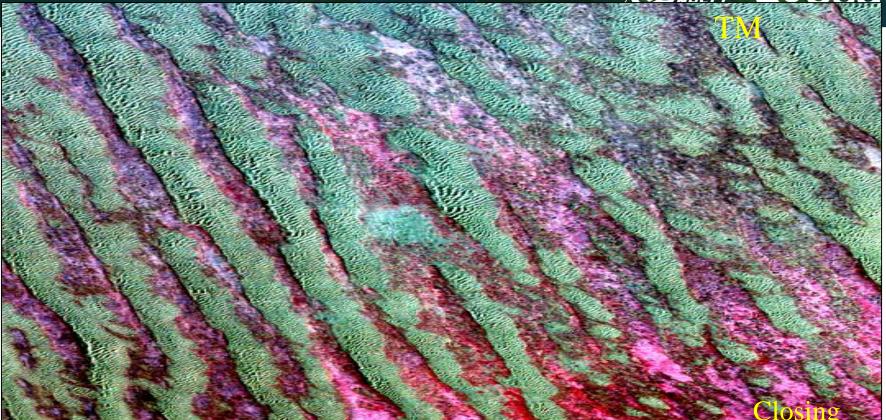


GF-2 Multispectral and panchromatic images (Minqin, Gansu)

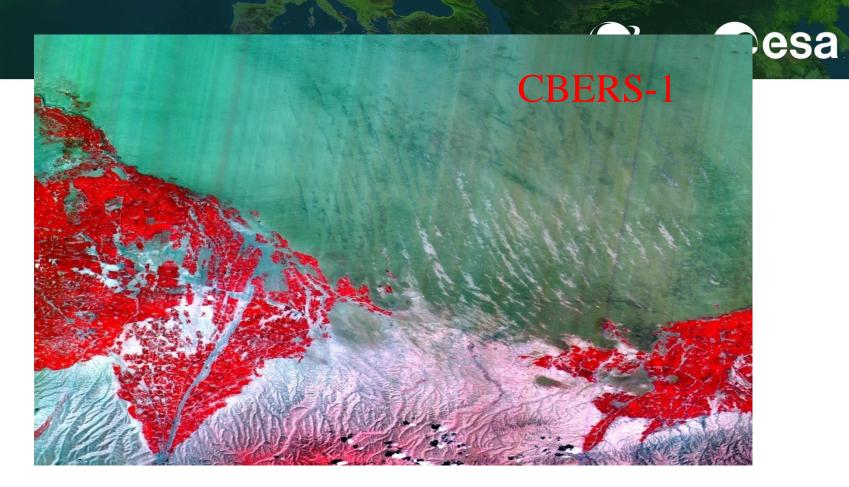
2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

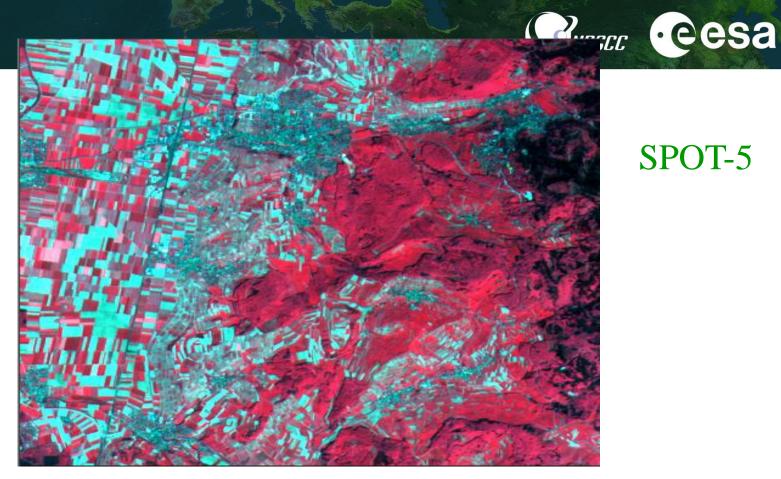


ZY-3 Multispectral images (Otindag sandy land) January 9, 2012



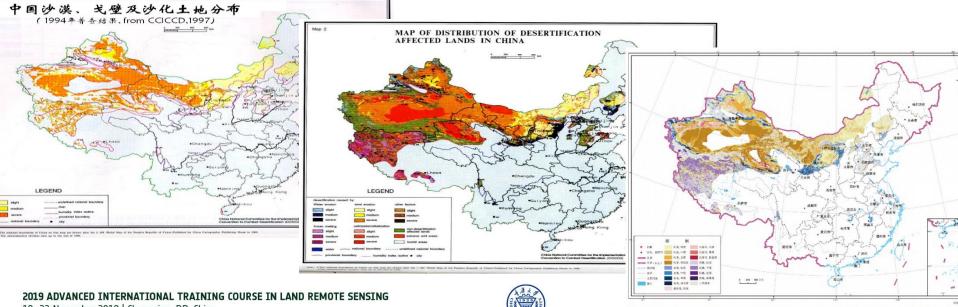
-





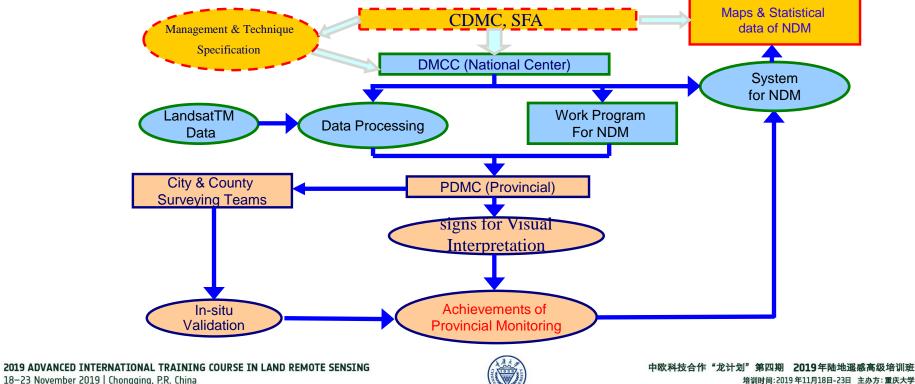
EO-1 HYPERION

EO-1 ALI


2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

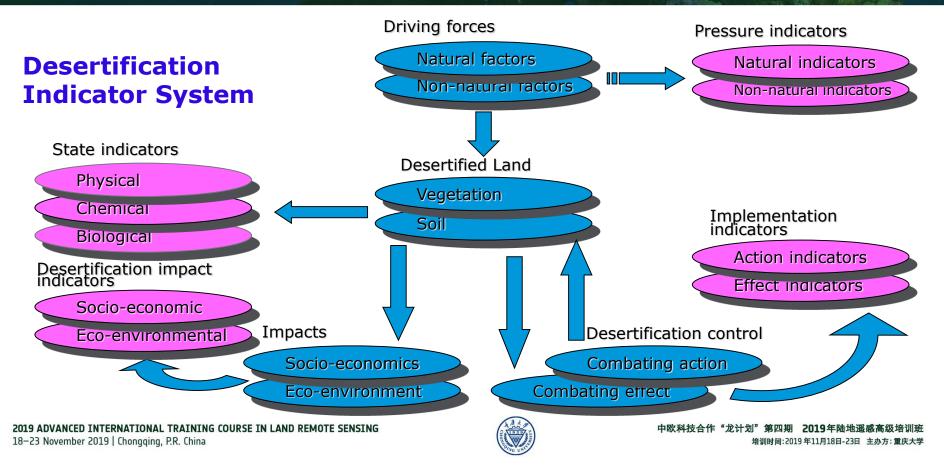
National Desertification Monitoring in China

Five times of *The national desertification and sandification monitoring* have been organized with integration of remote sensing and in situ survey from 1994 to 2014.



18-23 November 2019 | Chongqing, P.R. China

培训时间:2019年11月18日-23日 主办万:重庆大学



Flow Chart of National Desertification & Sandification Monitoring (NDM)

18-23 November 2019 | Chongqing, P.R. China

Grading indicators of various desertification

- Desertification caused by wind erosion
 - ✓ Slight:
 - Vegetation cover is >30%; Land surface is covered by stable dunes or sandy field, Water-leakage sandy land; Cultivated fields transformed from sandy land.

✓ <u>Medium:</u>

Vegetation cover is between 10% and 30%, and is evenly distributed;

Sand drift are under control by plant community;

Sand movement ripples are prevailing on sand dunes or sand fields.

✓ <u>Severe:</u>

The surface is composed of Gobi;

Vegetation cover is less than 10%;

Sand dunes are stabilized with non-biological measures;

Surface landform is composed of denuded residuals, unfertilized fields, Yardang landforms, clay mounds and wind blowouts.

Table 2. Indicato	Table 2. Indicators for grading severity of desertification caused					
	by water erosion					
Severity	Erosion Modulus	Mean annual loss				
	(t/km².a)	Depth (mm)				
Slight	1000 -2500	2				
Medium	2500 -8000	2-6				
Severe	> 8 000	> 6				

Desertification caused by water erosion

Table 3. Indicators for grading the severity of desertificationcaused by frozen and melting processes at cold plateau

Severity	Locations of the occurrence of desertification
Slight	Extreme highlands, high mountains, gentle slope
	meadow and flooded depression and ridge area on
	plateau.
Medium	Extreme highlands, high & cold hills and desert
	steppe.
Severe	Extreme highlands, high mountains, high & cold
	mountain deserts and cold deserts.

Desertification caused by frozen and melting

Desertification caused by Soil salinization

 Table 4. Soil salinization classification & grading indicators

	0-30 cm salt content (%)					
Туре	West	East Region				
Type	Region	(Inner	Reclam possibility			
	(Xinjiang)	Mongolia)				
			With favorable conditions to			
Slight	0.5-1.0	0.1-0.3	be reclaimed by simple			
			improvement only			
			water conservancy project			
Medium	1.0-1.5	0.3-0.7	and improvement			
			measurement are required.			
Severe	1.5-2.0	0.7-1.0	Reclaim condition is poor&			
Severe	1.3-2.0	0.7-1.0	integrated measures needed.			

Desertification and Sandification Areas from 1994 to 2014

Inventoried Year	Desertification Area (M km ²)	Wind Erosion Area (M km²)	Sandification Area (M km²)
1994	2.622	1.607	1.714
1999	2.674	1.873	1.743
2004	2.636	1.839	1.740
2009	2.624	1.832	1.731
2014	2.611	1.826	1.721

Issues and challenges

- (1) Indicators for desertification monitoring and assessment;
- (2) Thresholds of indicators proposed;
- (3) Bench mark of Desertification
- (4) Quantitative inversion of the surface parameters by remote sensing.

Contents

1 Definitions and reviews

2 Desertification Status & Monitoring in China

3 Extraction of Desertification Information from Remote Sensing data

4 Tend in Global Land Degradation since 2000

Contents

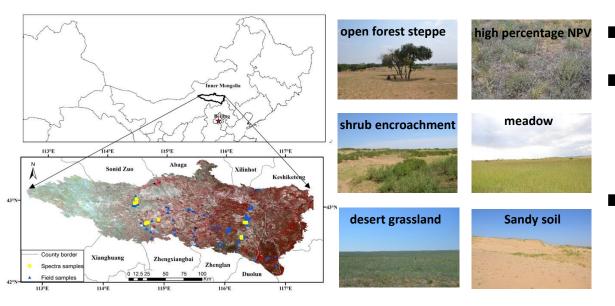
3.1 PV/NPV estimation

3.2 Sandy Land detection by Spectral Mixture Analysis

3.3 Estimating AGB by using EO data and ML

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

3 Extraction of Desertification Information from Remote Sensing data 3.1 PV/NPV estimation


- Vegetation coverage, a key indicator of desertification. Remote sensing offers a unique opportunity for the retrieval at large scale.
- From a functional perspective, vegetation could be divided into PV(green leaves) and NPV(wood, senescent material, litter). PV, well studied, based on difference in visible and NIR reflectance. NPV estimation receives less attention, because of spectral similarity with soils.
- It is wroth noting that NPV widely existed in arid and semi-arid regions, and play a key role in controlling wind and water erosion. Thus, estimating fractional coverage of PV and NPV simultaneously is very important for desertification monitoring in drylands.
- **Examining the performance of different SMA techniques in estimating the fractional cover of PV and NPV** simultaneously in relation to in *situ* fractional cover measurements, with GF-1 WFV data(only visible and

NIR bands), in a complex landscape , the Otinday sandy land

3.1.1 Study Area- Otindag sandy land

 semi-arid area, strong wind, less precipitation.
 Because of desertification process, most grasslands have experienced different degrees of shrub encroachment.
 The NPV account for a high

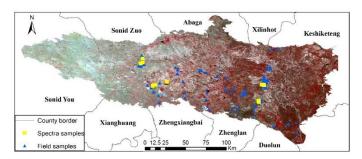
percentage and vary seasonally and inter-

annually.

山脉对社人任《孙礼制》 贫困期 2010 年时地汉武宣派 议训

3.1.2 Data acquisition

Remote Sensing Data

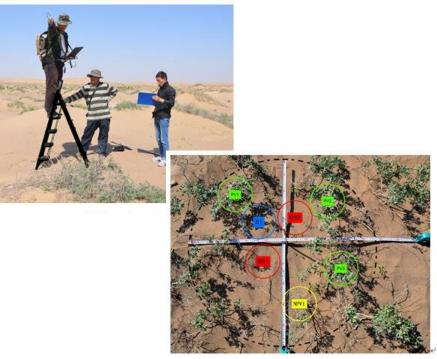

Radiometric correction: DN value was converted to radiance using the calibration coefficients obtained from the CRESDA.

Atmospheric correction: Radiance was transformed to surface reflectance through FLAASH algorithm provided by ENVI 5.0.

Geometric correction: Landsat-8 OLI data provided by USGS, proved geometrically consistent with the field GPS values, were selected as the base map for geometric correction (ENVI 5.0). The geometric correction error was less than one pixel of the Landsat-8 pan data (15m).

5 GF-1 WFV scenes, from 3 cameras

Sensor	Acquisition date	Seriel number			
WFV3	2014/07/31	291592			
WFV3	2014/07/31	291593			
WFV4	2014/07/31	291607			
WFV4	2014/07/31	291608			
WFV2	2014/08/04	294882			
http://www.cresda.com/					

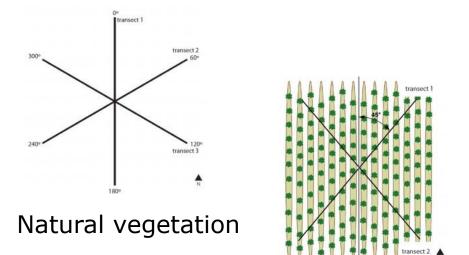


- Device: ASD full-range (350-2500 nm) Fieldspec® 4.
- Methods: Collected within 2 hour of local solar noon on clear sky days. The sensor, held 1m above the top of the PV, NPV or bare soil surface in vertical downward position.
- Acquired spectra: Synchronous with GF-1 data acquisition, 29 PV spectra, 14 NPV spectra and 12 bare soil spectra were measured. For acquiring more NPV spectra, 14 NPV spectra and 3 bare soil spectra were acquired in November.
- Pre-process: Based on the spectral response function of GF-1 WFV sensor, the field spectra were resampled to the GF-1 WFV bands.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Field Spectra

中欧科技合作 "龙计划" 第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学


Time: late July and early August, season of max vegetation cover.

Sample design:121 sites were selected ,based on stratified random design and accessibility, one 32×32 m plot was set up in each site.

Methods: Along the 2 or 3 transects, the surveyors recorded the cover type (PV, NPV, SOIL) at 1m interval directly under a thin tape. Vegetation is divided into three categories: non-woody or ground cover; woody less than 2 meters; and woody greater than 2 meters.

Position: The coordinates of the cross point of two transects were recorded by GPS to match with GF-1 WFV data 2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

In situ data

Artificial vegetation

3.1.3 Method SMA methods adopted(Linear)

Reflectance of a pixel is assumed to be a linear combination of the reflectance of the spectra of the EMs, weighted by their fractional cover.

Traditional SMA

□ Fixed EMs, the average spectra of PV, NPV and bare soil were utilized as the EM spectra.

- MESMA
 - □ All EM combinations are calculated, the best-fit model (lowest RMSE) is determined for each pixel.

AutoMCU

■ A large number of EM combinations for each pixel are calculated by randomly selecting spectra from a spectral library. Assumed *fcover* distributed normally, when the number of EM combinations are sufficient, the average value of *fcover* would be taken as the final results.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Unmixing approach

Three approaches are different in EM selection. For the calculation of f_k in each time, the Fully Constrained Least Square (FCLS) algorithm would be applied. Through using FCLS, two important constraints on f_k :

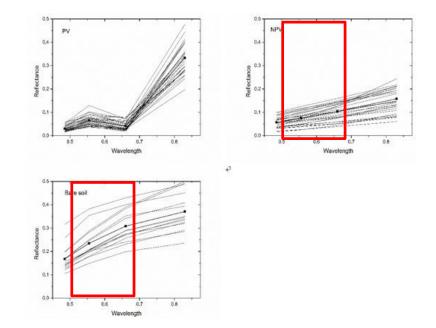
- **fraction sum-to-one constraint** (ASC) $\sum_{k=1}^{n} f_k = 1$
- **fraction nonnegativity constraint** (ANC) $f_k \ge 0$

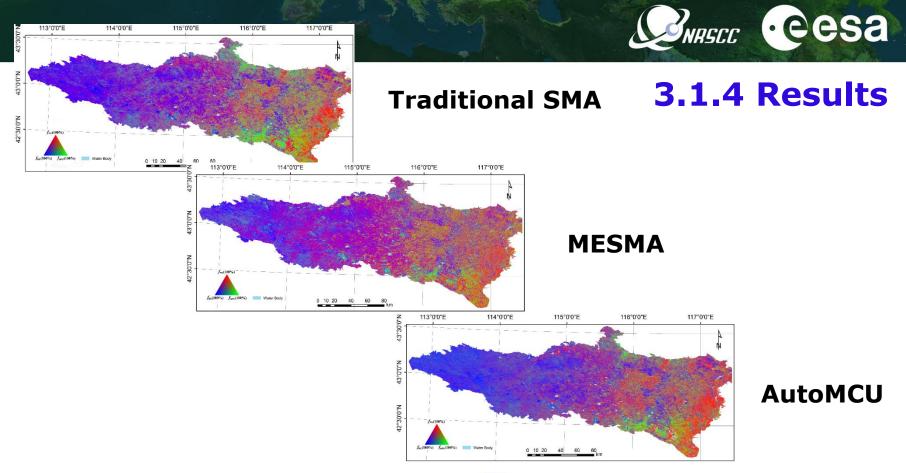
Performance assessment

To compare the performance of different SMA techniques on PV/NPV fractional cover estimation, two metrics were calculated against in *situ* data, RMSE and coefficient of determination (R^2) of linear regression.

$$RMSE = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2 / n}$$

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China


$$R^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$



EM library and variability

- General: PV spectra is easily distinguishable from NPV and bare soil spectra, but the NPV and bare soil are similarly.
- Differences between BS and NPV: Higher reflectance of BS, mainly due to the extensive bright sandy substrate. Bow-shaped protuberance existed for BS, while not emerging in NPV.
- Intra-variability: The PV and NPV spectra are relatively concentrated, while the bare soil spectra varies greatly.

Comparisons among different methods

AutoMCU performs best for f_{pv}, f_{npv} estimation compared to SMA and MESMA, with R² of 0.49, and RMSE of 0.17 and 0.09 for for f_{pv}, f_{npv}. The problems of f_{npv} overestimation and f_{pv} underestimation in SMA and MESMA were resolved effectively.
 MESMA would produce higher error in f_{npv} estimation , while improve the accuracy

Unmissing onnunach	R ²		RMSE			
Unmixing apprpach	PV	NPV	BS	PV	NPV	BS
AutoMCU	0.49*	0.49*	0.48*	0.17	0.09	0.20
MESMA	0.48^{*}	0.11	0.15	0.21	0.24	0.21
SMA	0.47^{*}	0.41^{*}	0.47*	0.27	0.20	0.17

of	$f_{\rm pv}$	estimation,	compared	to	SMA.
----	--------------	-------------	----------	----	------

Cross-multispectral sensors comparison

- For f_{pv} estimation, this study showed relative lower accuracy, the lowest RMSE acquired by AutoMCU was 17%, the numbers based on the range from 7% to 14.7%.
- For f_{npv} estimation, this study showed some advantage , the lowest RMSE acquired by AutoMCU was 9%, compared to the previous study's 12-20.5%.

#	Reference	Source data	Study region and area	Study periond	Approach	Validation points	$RMSE of f_{pv}$	RMSE of f _{npv}
1	Guerschman et al. (2012)	MODIS NDVI and the ratio of MODIS bands 7 and 6	Australia ~7.7 ×10 ⁶ km²	2000-2010	SMA	567	14.7%	20.5%
2	Okin et al.(2013)	MODIS	Rain-fed cropping region of South Australia. ~150 km ²	Apr, Jul and Oct 2010	SMA, MESMA	27	7-23%	12-29%
3	Guerschman et al. (2015)	Landsat and MODIS	Australia ~7.7 $\times 10^{6}$ km ²	2000-2013	SMA	1171	11.2-11.9%	16.2-17.4%
4	Current study	GF-1 WFV	Otindag sandy land of North China. $\sim 3.0 \times 10^4 \text{ km}^2$	Peak growing season, 2014	SMA, MESMA and AutoMCU	121	17-27%	9-24%

3.1.5 Conclusions

- 1. Despite of the spectral similarity of NPV and bare soil, there do exist some differences at GF-1 WFV bands in Otindag sandy land, which could be utilized.
- 2. Due to the complex ecosystem structure of the Otinday sandy land, the PV, NPV and bare soil endmember libraries showed great intra-variability.
- **3.** SMA should be used with more cautious in quantitative study. MESMA can not be assumed performing always better than SMA, due to the coupling of the NPV and bare soil EMs. AutoMCU was proved effective for dealing with the EM variability .
- 4. GF-1 WFV data was proved to be capable for fpv and fnpv estimation in Otinday sandy land, although lacking the important SWIR bands. With GF-1 WFV's unique advantage of high spatial resolution, wide coverage and high revisit frequency, great potential existed for relevant analysis in the future.

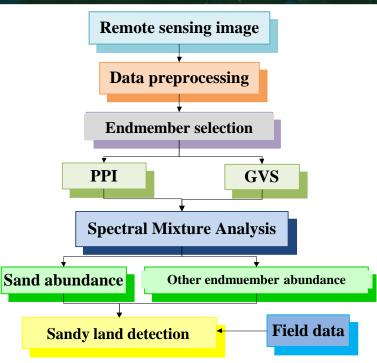
Contents

3.1 PV/NPV estimation

3.2 Sandy Land detection by Spectral Mixture Analysis

3.3 Estimating AGB by using EO data and ML

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China


3 Extraction of Desertification Information from Remote Sensing data

3.2 Sandy Land detection by Spectral Mixture Analysis

- Vegetation covers the soil information to a great extent, it is difficult to detect the sandy Land or desertification based on remote sensing image;
- Transitional sandy land is difficult to extract, its boundary is hard to define exactly, and efficiency of qualitative classification is relatively lower;
- Against the problems above, Spectral Mixture Analysis (SMA) was applied to solve vegetation cover and transitional sandy land detection.

Flowchart of technique route

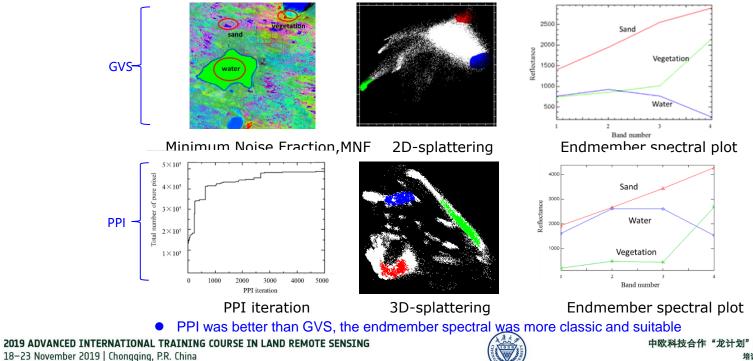

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

3.2.1 Test site and data

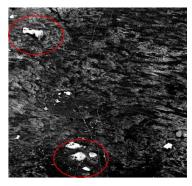
- Image type: GF-1
- Spatial resolution : 16m
- Imaging time: 2014.04.27

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China



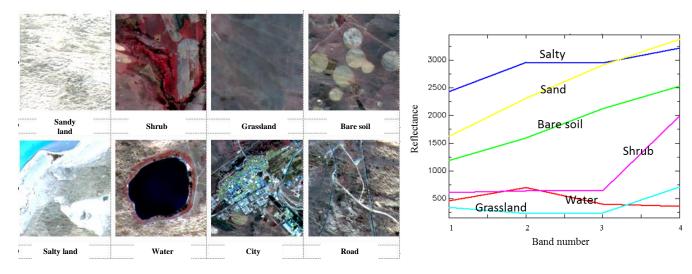
中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

3.2.2 Endmember selection method


- Pure Pixel Index (PPI)
- Geometric vertex of scatterplot (GVS)

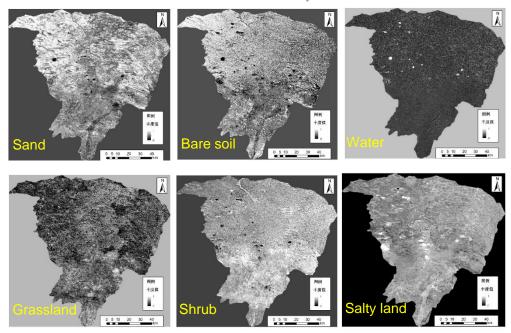
作 "龙计划" 第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

Endmember number


N=6

- if the number was greater than 6, it was prone to generate noise and error;
- if the number was less than 5, the mixed pixel couldn't be decomposed effectively;
- the endmember number was 5 or 6 in this study was more suitable, the decomposition result would be more accurate in the degraded land detection.

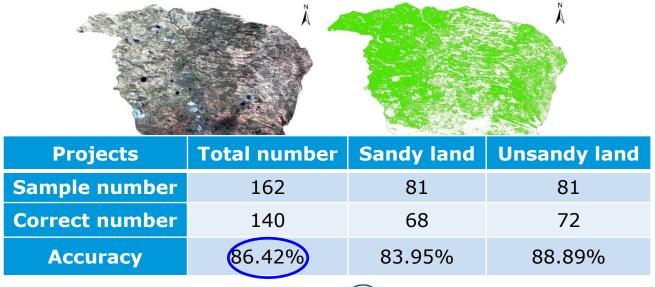
Endmember type


Pictures of several typical lands in GF-1 image during the ungrowing season

Endmembers spectral plots

Spectral Mixture Analysis Linear Spectral Unmixing (LSU) $D_{Ni} = \sum_{i=1}^{p} m_{ij} \alpha_{j} + e_{i}$ $\alpha_{1} + \alpha_{2} + ... + \alpha_{j} = 1$

Abundance distribution of different endmember based on PPI


2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

3.2.3 Sandy Land detection

- If sand abundance accounted for more than 50% in the remaining endmember abundance except for vegetation, or less than 50% but it was the maximum, the pixels would be determined as sandy land.
- Othe total accuracy was 86.42%, the transitional sandy land with high vegetation coverage could be also extracted accurately and effectively.

Contents

3.1 PV/NPV estimation

3.2 Sandy Land detection by Spectral Mixture Analysis

3.3 Estimating AGB by using EO data and ML

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Estimating Above Ground Biomass of Otindag Sandy land by Using Chinese and European Earth Observation data and Machine Learning

CONTENTS

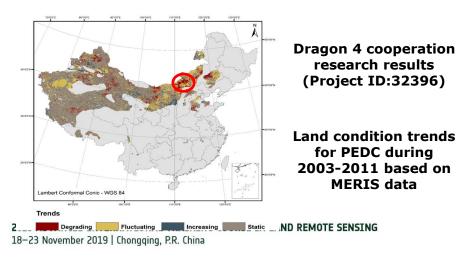
$1\!\!\!/$ introduction

 $2\!\!\!/$ study area and data collection

 $3\!\!\!/$ EO data processing and methods

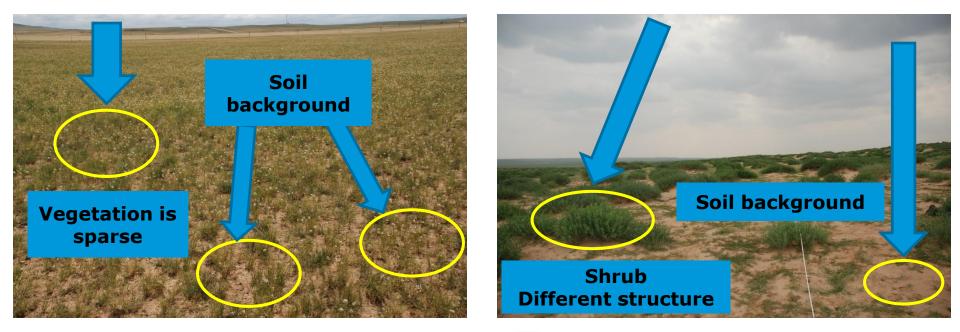
 $4 \checkmark$ results and analysis

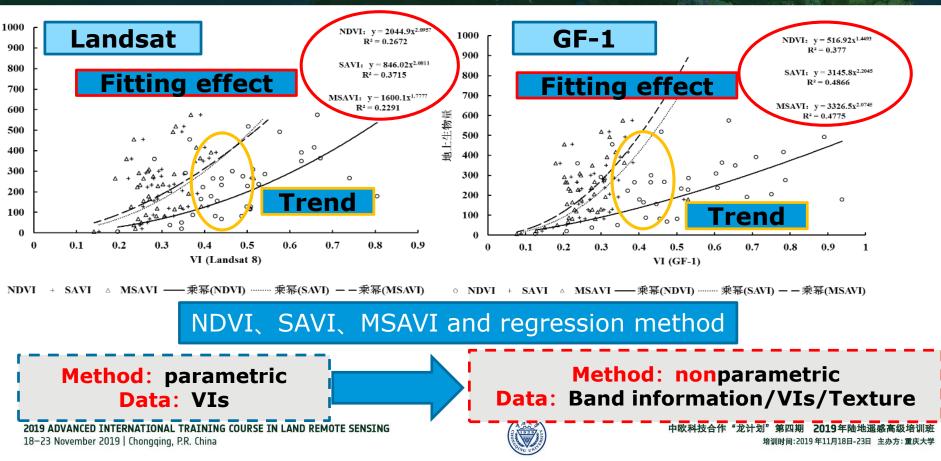
5⁄ DISCUSSION


6 CONCLUSIONS

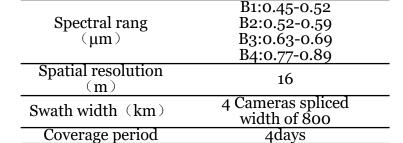
3.3.1 Introduction

- Land degradation in dryland has become one of the major environmental problems.
- Land degradation indicators identification is one of the most important tasks in achieving of UN 's sustainable development goals (SDGs) 15: Life on Land and 2: Zero Hunger.
- Vegetation above ground biomass (AGB) could reflect the land productive capacity well.
- Refined estimation of AGB in dryland has a great scientific significance to the dryland ecosystem management and desertification assessment and monitoring.




3.3.1 Introduction

Challenges for AGB estimation in dryland


16m WFV

Wavelengths and Bandwidths of the three Spatial Resolutions of the MSI instruments Sentinel-2 Product

Technical parameters of GF-1 WFV

Parameters

Spatial Resolution (m)	Band Number	Central Wavelength (nm)	Bandwidth (nm)
	2	490	65
10	3	560	35
	4	665	30
	8	842	115
	5	705	15
20	6	740	15
20	7	783	20
	8a	865	20
	11	1610	90
	12	2190	180
60	1	443	20
	9	945	20
	10	1380	30
			1.2.310.202.7

✓ To develop a useful method for sparse vegetation aboveground biomass inversion in dryland by integrating remote sensing information and field survey data.

 ✓ To compare the application ability of EO data from Chinese and European side in the extraction of sparse vegetation aboveground biomass in dryland.

> 中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

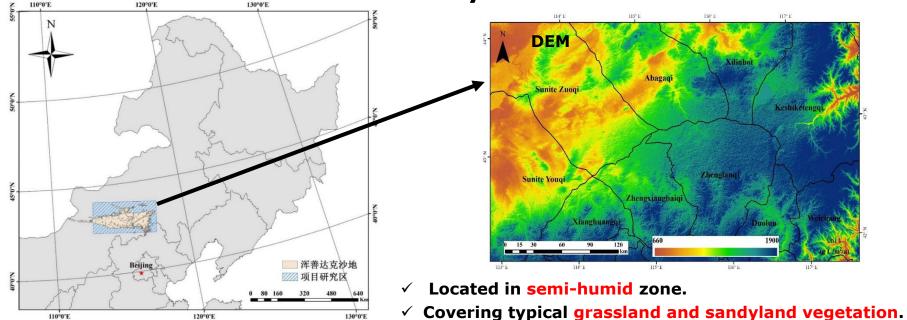
 $1\!\!\!/$ introduction

 $2\!\!\!/$ study area and data collection

 $3\!\!\!/$ EO data processing and methods

4/ RESULTS AND ANALYSIS

5⁄ DISCUSSION


6 CONCLUSIONS

3.3.2 STUDY AREA AND DATA COLLECTION

3.3.2.1 Study area

✓ OSLAIS, Key part of the Beijing-Tianjin Sand Source Region.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

中欧ペキスマロTF ルロンジ 第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

3.3.2.2 EO data **EO data Sentinel-2** Covering growing season (July-August)

40

35

30

20

10 5 0

gC/m² a) 25

Ú

NPP 15

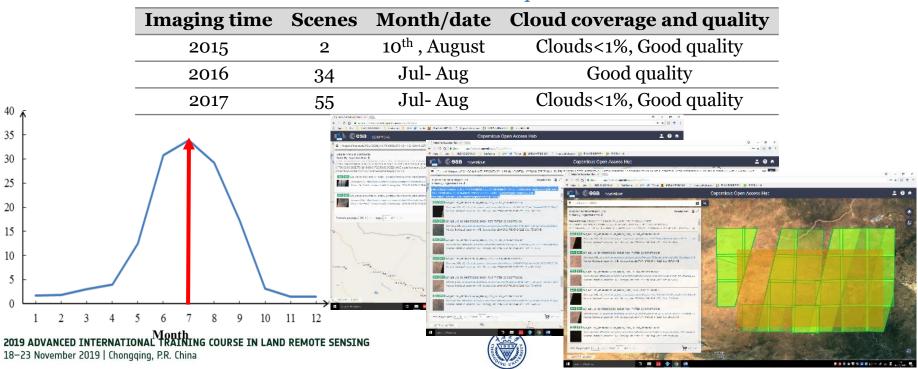
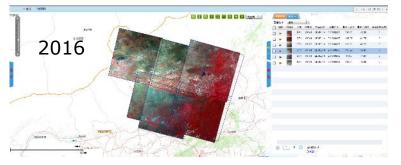
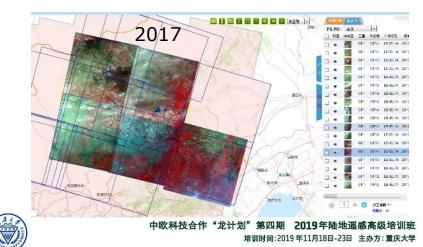


Table of sentinel-2 data acquisition

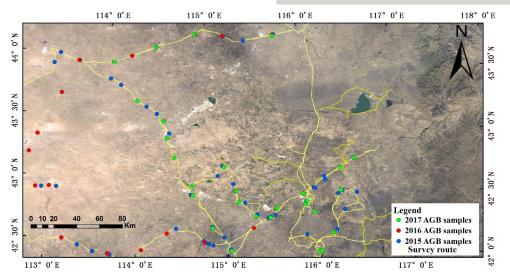


EO data GF-1


Table of GF-1 WFV data acquisition

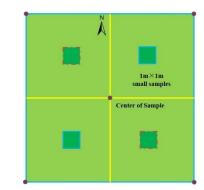
Year	Jul	Aug	Sep	Total	Cloud coverage and quality	Coverage
2015	-	-	6*	6	Clouds<1%,Good quality	100%
2016	-	6	-	6	Clouds<1%,Good quality	100%
2017	5	-	-	5	Clouds<1%,Good quality	100%

* Single scene image width 200km.



2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

3.3.2.3 Field survey data



Samples using for AGB estimation –GF-1 data

	Year	July-August	Grassland	Mixing(shrub + grass)
_	2016	30	24	6
	2017	40	31	9
9	ADVTOTATIO	ERNATION A OTRAININ		

2019 ADVA ROGOLINTERNATIONAO TRAINING COURSESIN LAND REMOTE SENSING

18-23 November 2019 | Chongqing, P.R. China

Sampling sites implantation and AGB evaluation by the "Harvest method"

Samples using for AGB estimation - S2 data

Year	July-August	Grassland	Mixing(shrub + grass)
2015	52	37	15
2016	15	11	4
2017	31	21	10
Total	98	69	29
	中欧		第四期 2019年陆地遥感高级培训班

培训时间:2019年11月18日-23日 主办方:重庆大学

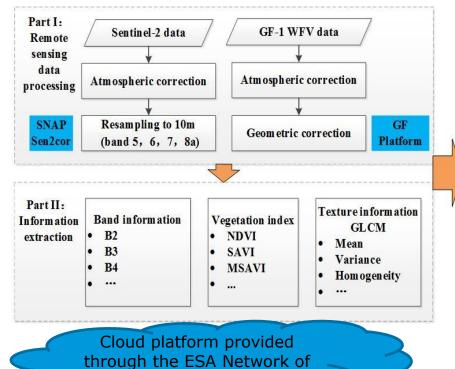
CONTENTS

 $1\!\!\!/$ introduction

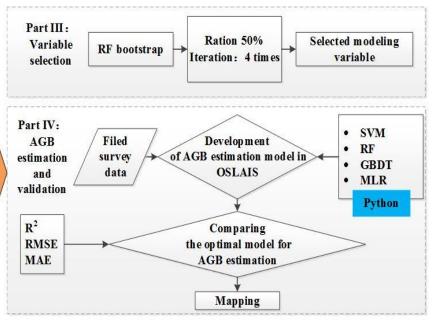
 $2\!\!\!/$ study area and data collection

 $3\!\!\!\!/$ EO DATA PROCESSING AND METHODS

 $4 \checkmark$ results and analysis


5⁄ DISCUSSION

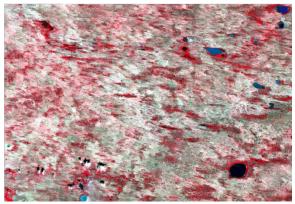
6 CONCLUSIONS

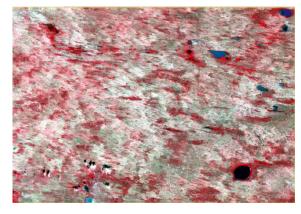

3.3.3 EO DATA PROCESSING AND METHODS

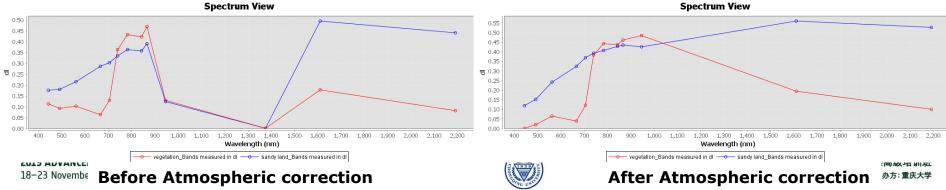
Resource Initiative

2019

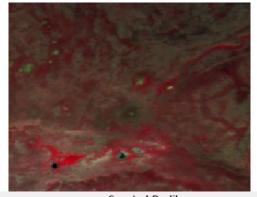
18-23 November Com

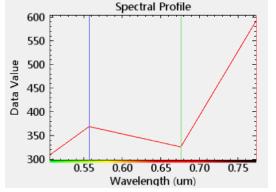


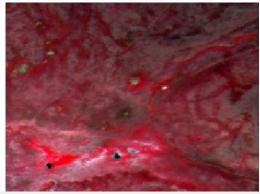

Technical flow chart in this study

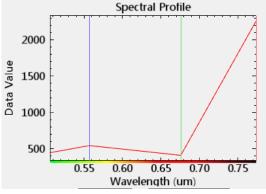

3.3.3.1 EO data processing

AC of S2 by using the Sen2cor provided by ESA




Spectrum View




AC of GF-1 by using the FLAASH algorithm

Before Atmospheric correction

REM After Atmospheric correction

Geometric correction (GC) The processing was conducted in ENVI 5.0, and no fewer than 50 evenly distributed control points were selected for each image.

Gaofen forestry demonstration platform for remote sensing applications-CAF



3.3.3.2 Information

extraction from EO data for

_	Туре	Variable	<mark>52</mark>	GF-1	Туре	variable	<mark>52</mark>	GF
		Blue	\checkmark	\checkmark		NDVI	\checkmark	٦
	Band	Green	\checkmark	\checkmark		SAVI	\checkmark	٦
		Red	\checkmark	\checkmark		TSAVI	\checkmark	٦
		Vegetation-red edge1	\checkmark			MSAVI	\checkmark	٦
	Reflectance	Vegetation-red edge2	\checkmark			DVI	\checkmark	٦
		Vegetation-red edge3	\checkmark			RVI	\checkmark	٦
		NIR	\checkmark	\checkmark		PVI	\checkmark	٦
		Narrow NIR	\checkmark		VI	GNDVI	\checkmark	٦
		Contrast	\checkmark	\checkmark		NDI45	\checkmark	
		Dissimilarity	\checkmark	\checkmark		мтсі	\checkmark	
		Homogeneity	\checkmark	\checkmark		MCARI	\checkmark	
		Angular second moment	\checkmark	\checkmark		REIP	\checkmark	
	Texture information	Energy	\checkmark			S2REP	\checkmark	
	(GLCM)	Maximum probability	\checkmark			IRECI	\checkmark	
		Entropy	\checkmark	\checkmark		PSSRa	\checkmark	
		GLCM mean	\checkmark	\checkmark				
		GLCM Variance	\checkmark	\checkmark				
^1		GLCM Correlation	\checkmark	\checkmark				

2019 ADVANCED INTERNATIONAL TRAINING COOKSE IN LAND REPORT SENSING 18–23 November 2019 | Chongqing, P.R. China

Texture information

- Gray-Level Co-occurrence Matrix (GLCM)
- Window size GF-1 :"3×3" and S2 : "5×5"

"Raster-->Image Aanlysis-->Texture Analysis"

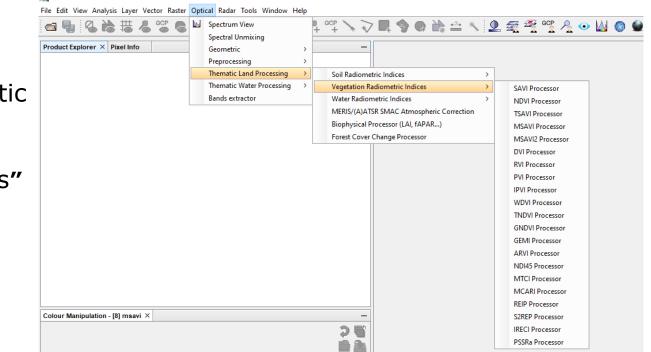
C GLCM					
File Help					
I/O Parameters Proces	ssing Parameters				
Source Bands:					
Window Size:	5x5	•			
Angle:	ALL	•			
Quantizer:	Probabilistic Quantizer	•			
Quantization Levels:	32	•			
Displacement:		4			
Contrast					
🔽 Dissimilarity					
V Homogeneity					
🔽 Angular Second Mon	ment				
🔽 Energy					
📝 Maximum Probabili	ty				
V Entropy					
✓ GLCM Mean					
✓ GLCM Variance					
GLCM Correlation					
	Run	lose			

WRSEC Cesa

Vegetation index

Equations of the fourteen VIs calculation based on Sentinel-2 image

	Not contain red edge band	Contain red edge band		
VI	Equation	VI	Equation	
NDVI	(NIR - R)/(NIR + R)	NDI45	$(B_5 - B_4) / (B_5 + B_4)$	
SAVI	((NIR - R)/(NIR + R +L))(1+L) *	MTCI	$(B_6 - B_5) / (B_5 - B_4)$	
TSAVI	a(NIR-aR-b)/(aNIR+R-ab+c(1+a²) **	MCARI	$[(B_5-B_4)-0.2 \times (B_5-B_3)] \times (B_5-B_4)$	
MSAVI	((2NIR+1-((2NIR+1) ² -8(NIR-R))^0.5)/2	REIP	700+40×[(B ₄ +B ₇ /2-B ₅)/(B ₆ -B ₅)]	
DVI	NIR - R	S2REP	705+35×[(B ₄ +B ₇ /2-B ₅)/(B ₆ -B ₅)]	
RVI	NIR / R	IRECI	$(B_7 - B_4)/(B_5/B_6)$	
PVI	sin(a) ×B8-cos(a) × R	PSSRa	B ₇ /B ₄	
GDVI	(NIR -G)/(NIR +G)			


Note: NIR= Near infrared band reflectance; R= Red band reflectance; G= Green band reflectance; *L=0.5; **a=0.5, b=0.5, c=0.08; Bi is the i band reflectance of sentinel-2 image.

Vegetation index

SNAP

"Opitical-->Thematic Land processing -->Vegetation Radiometric Indices"

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Values extraction from the EO data

Window size

- GF-1 :"3×3" and S2 : "5×5" VI BR
- GF-1 :"1×1" and S2 : "1×1" TI

"Raster-->Export--> Extract Pixel Values"

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Pixel Extraction			X
File Help			
Input/Output Para	neters		
Source Paths:		Ð	
Time extraction:	Extract time from product filename Date/Time pattern: yyyyMMdd		
	Time extraction pattern in filename: *\${startDate}*\${endDate}*		
Output directory:	D:\DATA		
File prefix:	pixEx		
	Extract Close	He	lp

3.3.3.3 Variable selection

- Python package (vers. 3.6.8)
- *RF* bootstrap method and Multiple times iteration

3.3.3.4 AGB estimation and validation

Empirical modeling approaches

- Simple linear regression
- Random forest (RF)
- Gradient boosting Decision Tree (GBDT)
- Support Vector Machine (SVM)
- Multi-Linear Regression (MLR)

- Half-Half in every iteration
- 4 times iteration

Validation

- 5-fold cross validation
- Training (80%) and testing (20%)
- R² , RMSE and MAE

CONTENTS

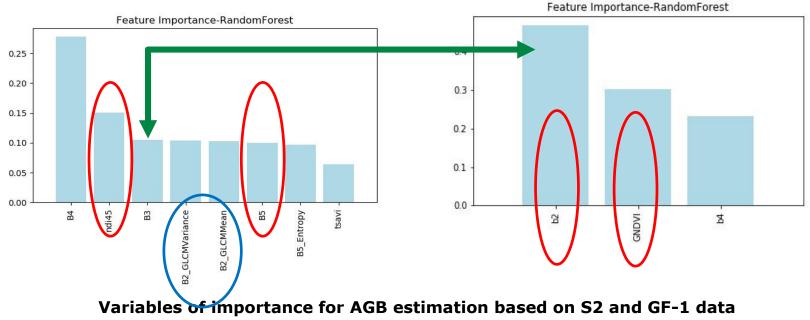
 $1\!\!\!/$ introduction

 $2\!\!\!/$ study area and data collection

 $3\!\!\!/$ EO data processing and methods

4/ RESULTS AND ANALYSIS

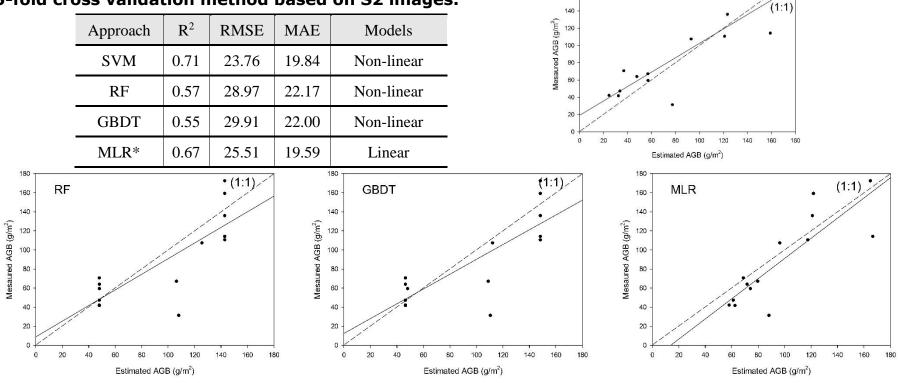
5⁄ DISCUSSION


6 CONCLUSIONS

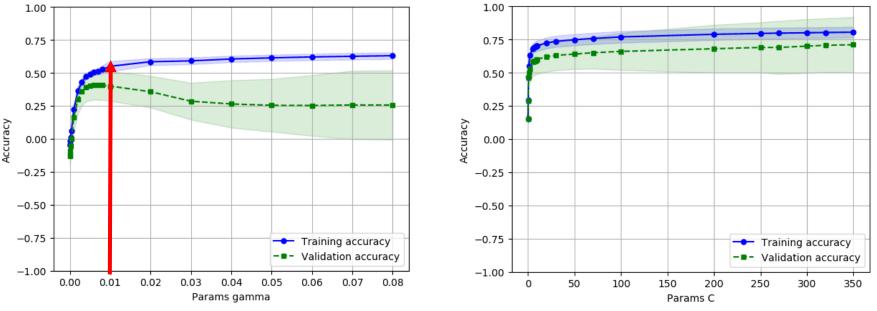
3.3.4. RESULTS AND ANALYSIS

3.3.4.1 Importance of the variables for the AGB estimation

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

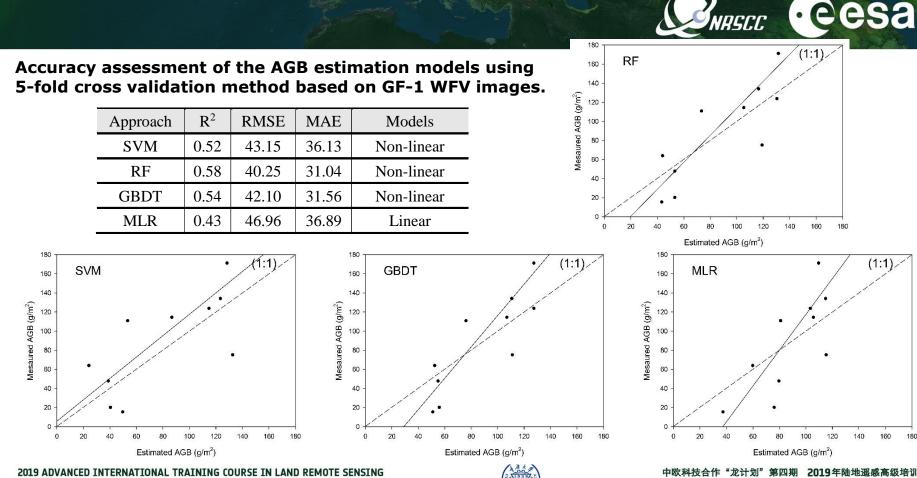

3.3.4.2 Construction of AGB estimation models and validation

180


160

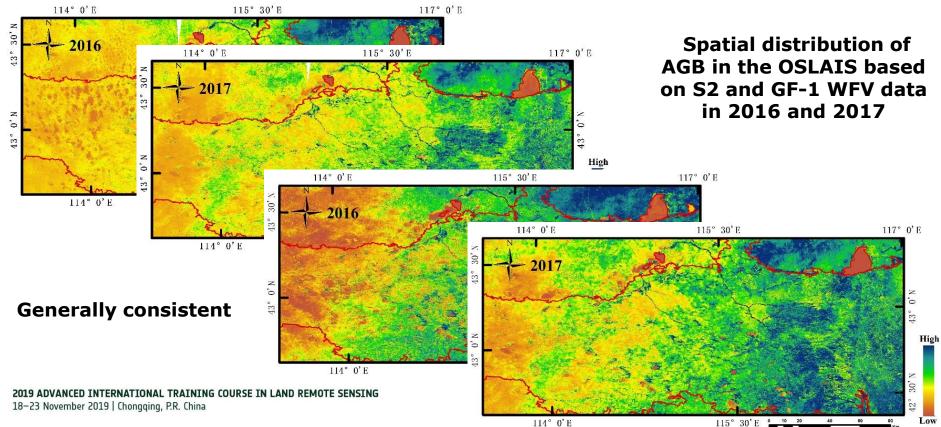
SVM

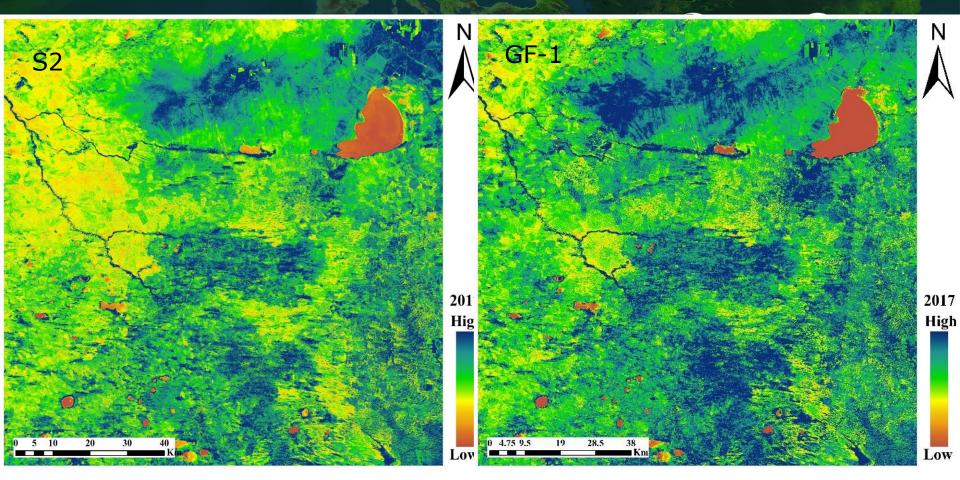
Accuracy assessment of the AGB estimation models using 5-fold cross validation method based on S2 images.



Kernel functions (RBF), gama and penalty factor C

Accuracy curve of training and validation corresponding the variation of the two key parameters in SVM model




18-23 November 2019 | Chongqing, P.R. China

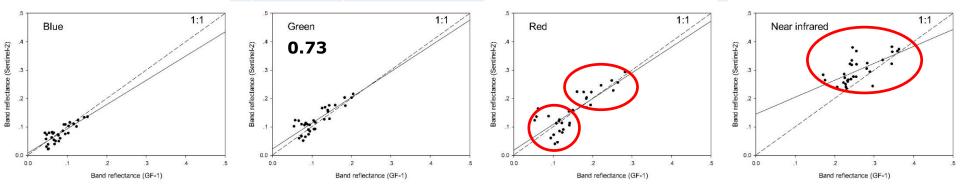
3.3.4.3 Distribution of AGB in Otingdag sandyland

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

3.3.4.4 Compared with the VI-based method

Equations of the fifteen VIs calculation based on Sentinel-2 and GF -1 image

VI	Model Sentinel-2	R ²	Model GF-1	R ²	VI	Model Sentinel-2	R ²
DVI	y = 1301 x ^{1.2583}	0.2557	y = 724.88 x +15.62	0.1342	NDI45	$y = 555.12 x^{0.8052}$	0.2116
SAVI	y = 600.07 x ^{1.1093}	0.3187	y = 91.38ln (x)+253.56	0.2516	MTCI	$y = 36.419 e^{0.7078 x}$	0.2895
TSAVI	$y = 67.692 e^{-0.271 x}$	0.1048	y = 0.1401x + 95.20	0.1016	MCARI	$y = 412.95 x^{0.4285}$	0.0809
MSAVI	y = 722.94 x ^{1.1449}	0.3067	y = 498.68 x +12.91	0.2207	REIP	$y = 1825.3e^{-0.004x}$	0.0027
PVI	y = 2012.2 x ^{1.2583}	0.2557	y = 955.69 x +101.47	0.3100	S2REP	$y = 1.089 x^{-651.91}$	0.0224
RVI	y = 48.513 x ^{1.0387}	0.2062	y = 76.539ln (x)+46.638	0.2223	IRECI	$y = 323.04 x^{0.6513}$	0.2181
NDVI	y = 317.94 x ^{0.9024}	0.3232	$y = 290.48 \times 1.0206$	0.3028	PSSRa	$y = 53.65 x^{0.8918}$	0.1725
GNDVI	y = 244.58 x ^{0.9247}	0.2330	y = 480.4 x ^{1.9815}	0.3146			



3.3.4.4 Compared with the VI-based method

Wavelengths and Bandwidths of the Sentinel-2 and GF-1 at the same band

GF-1	Central Wavelength	Band width	Resolution	S2	Central Wavelength	Band width	Resolution
B1	485	70	16m	B2	490	65	10m
B2	555	70	16m	B3	560	35	10m
B3	660	60	16m	B4	665	30	10m
B4	830	120	16m	B8	842	115	10m

Relationship of the four band reflectance between GF-1 and Sentinel-2 data at the same location

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

CONTENTS

 $1\!\!\!/$ introduction

 $2\!\!\!/$ study area and data collection

 $3\!\!\!/$ EO data processing and methods

 $4 \checkmark$ results and analysis

5⁄ DISCUSSION

6 CONCLUSIONS

3.3.5 DISCUSSION

- Advantages and disadvantages of using machine learning algorithm in AGB estimation in spare vegetation areas
- Comparison of Sentinel-2 MSI and GF-1 WFV for AGB estimation in sparse vegetation are 39 and 0.27
- Whether the red edge bands in Sentinel-2 MSI could improve the estimation accuracy of AGB in spare vegetation areas?
- Variables for AGB eBisating spring spring
- Outlook

CONTENTS

$1\!\!\!/$ introduction

 $2\!\!\!/$ study area and data collection

 $3\!\!\!/$ EO data processing and methods

 $4 \checkmark$ results and analysis

5⁄ DISCUSSION

6 CONCLUSIONS

3.3.6 CONCLUSIONS

The main conclusions of the study are as follows.

- (1) Sentinel-2 MSI and GF-1 WFV data could provide substantial support for vegetation monitoring in large areas of the dryland.
- (2) Machine learning algorithm could improve the accuracy of sparse vegetation AGB estimation in Otingdag sandy land. Compared with the traditional VI-based method, the R2 of estimated model was increased 0.39 and 0.27 achieved by S2 and GF-1, respectively; And,
- (3) combining texture information and red-edge-derived vegetation indices has relatively higher prospects of improving the estimation accuracy of AGB in sparse vegetation areas.

VRSCC

Contents

1 Definitions and reviews

2 Desertification Status & Monitoring in China

3 Extraction of Desertification Information from Remote Sensing data

4 Tend in Global Land Degradation since 2000

Data and Method

Net primary productivity (NPP) : Energy utilization model (EC-LUE model), The accuracy is 75.6% .

Moisture-Responded NPP (MNPP)

$$MI = \frac{P}{PE}$$
 (Recommended by UNCCD,
Thornthwait, 1948)

MI: Wetness index; P: Annual precipitation; PE: Contemporaneous potential evapotranspiration.

2000
2000

$$\frac{2}{5}$$
, 1500
 $\frac{1}{5}$, \frac

$$MNPP = \frac{NPP}{MI * 100}$$

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China **Land cover change:** Driving force of land degradation

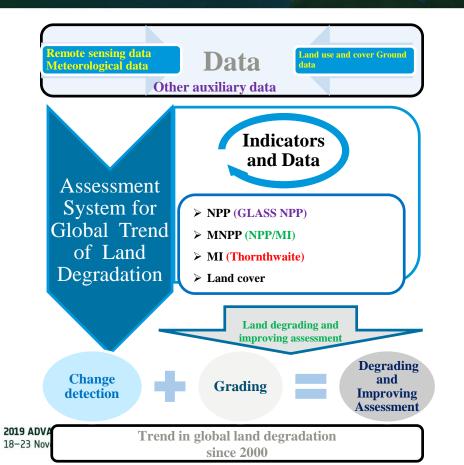
2500

Data and Method

Climate regionalization index of desertification(**Thornthwait**)

	T					
Climatic type	Extreme drought	Dry area Semi-arid area		Arid dry-humid area	Sub-humid area and humid area	
Wetness index	0-0.05	0.05-0.2	0.2-0.5	0.5-0.65	>0.65	

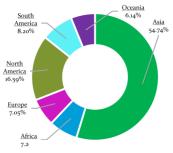
- Dry area, Semi-arid area, Arid dry-humid area;
 - Called dry land internationally;
 - Potential areas of desertification.


Distribution of the global drylands

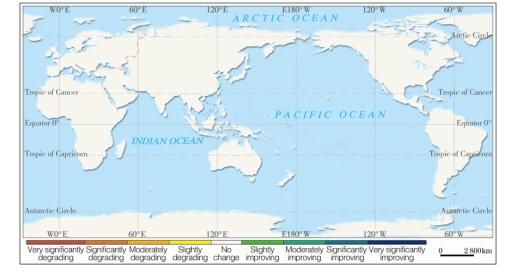
Dryland:

Data and Method

Land degradation change detection


Indicators and trends			NPP			
				No Sig.	Sig.↑	
	Sig.↑	Sig ↑ Sig		Degr.	Fluc.	Impr.
		Others	Degr.	Impr.	Impr.	
MNPP		Insig.	Degr.	Fluc.	Impr.	
	Sig.↓	Sig. (MI)↓	Degr.	Fluc.	Impr.	
		Others	Degr.	Degr.	Impr.	

Grading for Land degrading and improving assessment


Types	Change level	5-year average change rate of NPP (%)
	Very sig. degrading	<-9.0
Descriptions	Sig. degrading	-9.0~-6.0
Degrading	Mod. Degrading	-6.0~-3.0
	Sli. Degrading	-3.0~0
	Sli. Improving	0~3.0
Turning	Mod. Improving	3.0~6.0
Improving	Sig. improving	6.0~9.0
	Very sig. improving	>9.0
<i>¶</i>	培训时间:2019	9年11月18日-23日 主办方:重庆大学

Trend in Global Land degradation since 2000

The total areas of both degrading and improving processes are basically the same

Improving

Distribution of global land degrading and improving since 2000

Degrading

Distribution: The southern hemisphere

Area: 1.609×10⁷km²(11.95%)

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Improving

Distribution: Asia and North America

Area: 1.648×10⁷km²(12.23%)

· eesa

SNRSCC

■ Many traditional land degradation and restoration areas(UNEP, FAO) are reflected.

Degradation: North of the Caspian and Black Seas; Sahel region; Eastern Brazil Plateau, etc.

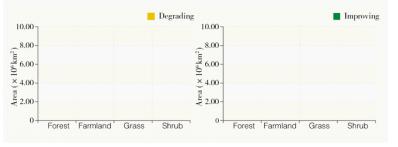
Improment: China, South Asian Subcontinent, etc.

Large-scale forest degradation in tropical rainforest areas has occurred since 2000

Amazon Plain Congo Basin

A new challenge to the realization of land degradation prevention and control objectives in UN SDGs.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China


Trend in Global Land degradation since 2000

Distribution of global degrading land of major land cover types

Distribution of global improving land of major land cover types

The areas of both forest degrading and forest improving were the largest among major land cover types

Land degrading and improving areas of major land cover types

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

LEGEND

Degrading:

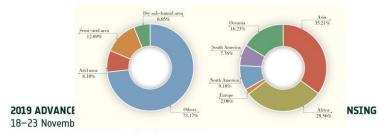
Forest(54.21%) > Shrub(17.01%) > Farmland(15.6%) > Grassland(8.34%)

SNRSCC

Improving:

Forest(37.35%) > Farmland(25.78%) > Grassland(17.17%) > Shrub(8.74%)

· eesa


Trend in Global Land degradation since 2000

Distribution of global dryland

Dryland:3.995×10⁶km²(29.65%)

Semi-arid area> Arid area > Dry sub-humid arid area

NRSCC

eesa

Distribution of degrading and improving areas of dryland since 2000

- Degrading process in dryland since 2000: 2.785×10⁶km² (6.97%)
 Mainly distributed in Sahel, East African Plateau, north of the Black and Caspian Seas, Brazil Plateau and southern Africa.
- Improving process in dryland since 2000: 4.341×10⁶km² (10.86%)
 Mainly distributed in Asia, especially in East and South Asia

Land degradation and improvement in key areas

Tropical Forests Degradation

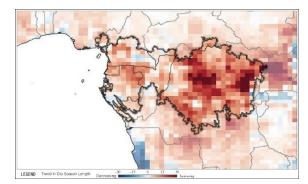
Moderately Signity No Signity Moderate

Congo Basin

NPP change 2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China Since 2000, a large area of forest degradation has occurred in tropical rainforest such as the Amazon Plain and the Congo Basin.

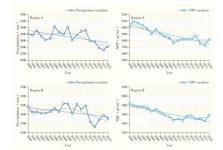
 Degrading area of Congo Basin:3.3×10⁶ km².
 The area of forest degrading is 2.02×10⁶ km².

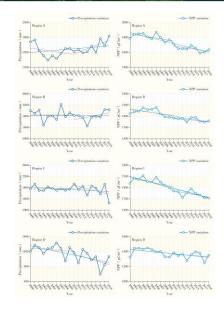
 Degrading area of Amazon Plain:4.47×10⁶ km².
 The area of forest degrading is 4.05×10⁶ km².


Land degradation and improvement in key areas WARSEE

Tropical Forests Degradation

Successive droughts caused by climate warming and El Nino
 Extensive deforestation


Reclamation

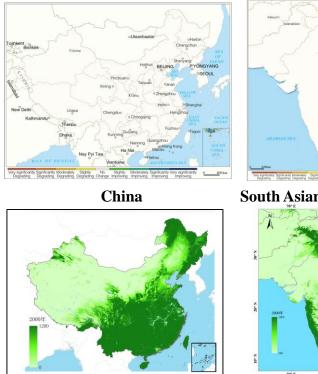

Frequent fire disturbance in the context of global change

The length of the dry season in the Congo Basin was increasing(Joshua Stevens, 2019)

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

· eesa

Congo Basin


Amazon Plain

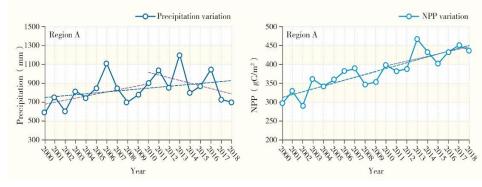
Precipitation and NPP variations in the Congo

Land degradation and improvement in key areas Sursec CESA

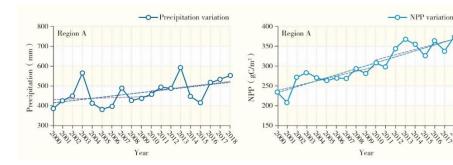
Land Improvement in Asia

NPP Change in China NPP Change in 2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

NPP Change in South Asian Subcontinent


The land improvement in both China and India were significant.
 The contribution rate of these two countries to the global land improvement reached up to 26.78%.

China contributed almost 20% to the global land improvement.

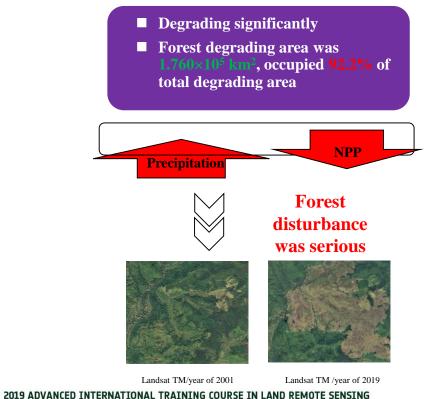

China(Improving): 3.15×10⁶km²

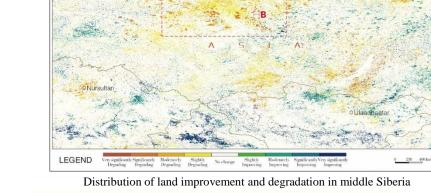
South Asian Subcontinent : 1.56×10⁶km²

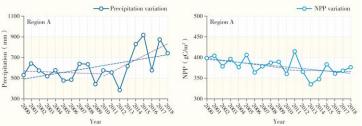
Land degradation and improvement in key areas WARSEE CESA

Precipitation and NPP changes in South Asian Subcontinent

Precipitation and NPP changes in the Loess Plateau of China


2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China Promote agricultural modernization and improve water irrigation systems, including well-water irrigation system, reservoir irrigation, canal irrigation system.


■ The implementation of national-level ecological projects have made the forest area in China increased from 1.75×10⁸ ha² to 2.20 ×10⁸ ha² in the past 20 years



Land degradation and improvement in key areas

Middle Siberia

Precipitation and NPP variations in middle Siberia

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

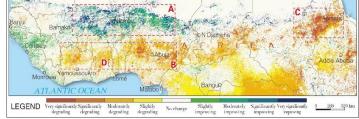
· eesa

18–23 November 2019 | Chongqing, P.R. China

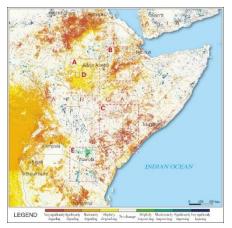
Land degradation and improvement in key areas Consce CESA

Other key areas

North of the Black Sea



Northwestern North America



North of the Caspian Sea

Sahel region

Ethiopian and East African Plateaus

Eastern Brazil Plateau

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Conclusions and recommendations

- (1) From 2000 to 2018, the processes of global land degradation and improvement occurred simultaneously. The total areas of both processes are basically the same.
- (2) The global desertification control has achieved remarkable results due to the implementation of UNCCD.
- (3) Large-scaled forest degradation in tropical rainforest areas has occurred since the beginning of this century and it posed a new challenge to the realization of land degradation prevention and control objectives in UN SDGs.
- (4) It is recommended that international cooperation in monitoring, assessment and prevention of land degradation should be strengthened.
- (5) The successful land degradation management experiences in Asia should be consolidated and extended to other drylands in Africa, South America and other traditional land degradation regions. The best practices will support to the achievements of the United Nations SDGs and Land Degradation Neutrality (LDN).

· eesa

NRSCC

Thanks for your attention

E-mail:<u>zhihai_gao@163.com;</u> <u>sunbin@ifrit.ac.cn</u> Phone: 010-62888307;

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

