

ESA-MOST China Dragon 4 Cooperation

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

12 to 17 November 2018 | Shenzhen University | P.R. China

Sea Surface Salinity from S3 OLCI ※ Xiaobin Yin(殷晓斌, yinxiaobin@piesat.cn) PIESAT, China

Hosted by

- Introduction
- Optical SSS estimation method
- Optical SSS in the East China Sea
- Conclusion & Remarks

0.75

SSS a tool to better monitor the oceanic branch of the Hydrological Cycle:

SSS=f(Evaporation, Precipitation, Run off)

→ ADVANCED

Coastal zone

- Salinity is mainly determined by riverine freshwater (Landocean interaction)
- Salinity changes are important to ocean biology (e.g. influencing the fishing resource).

Hosted by

SSS Averaged from Sep 17 through Sep 27

Ensemble of *in situ* SSS Data collected from 1874 to 2002

a

Number of Observations by 1° Square

white - N < 10 Blue- 10 < N < 100 Green- 100 < N < 1000 Red - 1000 < N

Bingham et al., 2002

ARGO floats TAO/PIRATA/RAMA moorings TSG CTD Drifters Equipped Mammals Glidders...

60°N

SMOS

Aquarius

SMAP

Chinese Ocean Salinity Mission

Specification	Value
System	L/C/K band radiometers+ L-band DBF SCAT
Frequency	Radiometer: 1.4GHz, 6.9GHz, 18.7GHz, 23.8GHz Scatterometer: 1.26GHz
Sensitivity	L-band: 0.1K; C/K band: 0.5K
Polarization	L-band: H, V, T3; C/K band: H, V
SSS accuracy	<0.1psu, 200km, monthly
FOV	>1000km

Hosted by

Shenzhen University | P.R. China

In coastal area, microwave induced SSS is limited due to

RFI, land contamination et al.

→ ADVANCED TRAINING COURSE IN

Motivation

- Mapping SSS in the coastal zone from space with high resolution optical data
- Supplement to microwave salinity mapping

- Introduction
- Optical SSS estimation method
- Optical SSS in the East China Sea
- Conclusion & Remarks

Method

- Salinity does not influence ocean color directly
- Salinity is influenced by riverine freshwater, which is related to and can be figured by CDOM (colored dissolved organic matter) concentration
- Basic hypothesis: the more freshwater, the higher riverine CDOM, the lower salinity (the conservative mixing is a precondition)
- Optical estimation of SSS is indirect (via CDOM) and thus empirical

Group 1: Rrs——>SSS

SSS estimated by spectral remote sensing reflectance (Rrs) based on statistical regression or neural network:

Group 2: Rrs——>CDOM——>SSS

SSS estimated by Rrs-retrieved CDOM

Group 1: Rrs——>SSS

Empirical statistical regression of in situ SSS and spectral radiances from Landsat or SPOT image:

$$y = a + bx_4 + cx_6 + dx_7$$

Khorram et al. (1982); Baban(1997); Dewidar&Khedr (2001); Lavery et al.(1993); Wang&Xu (2008).

Group 1: Rrs——>SSS

MODIS image

✓ Wong et al. (2007)

 $SSS = 14.256 - 240.163 \times Band 1 - 72.533 \times Band 2 + 124.700 \times Band 3$

 $+191.266 \times Band \, 4+36.044 \times Band \, 5-11.117 \times Band \, 6-39.789 \times Band \, 7$

✓ Marghany et al. (2010)

 $SSS = 27.65 + 0.2 \times \text{Band 1} - 21.11 \times \text{Band 2} + 14.23 \times \text{Band 3}$

+ 62.12 × Band 4 + 148.32 × Band 5 + 1.22 × Band 6 - 11.41 × Band 7

✓ Geiger et al. (2011)

ADVANCED TRAIN Neural network models

Group 2. Rrs——>CDOM——>SSS

- Jerlov (1968) noted the negative correlation between SSS and CDOM concentration.
- Binding & Bowers (2003) established a similar relationship and applied it to SeaWiFS data.

	SSS = 0			
time	$\alpha \pm SD$	$\beta \pm SD$	R ²	Ν
Jun. 1996	-11.58 ± 0.12	34.89 ± 0.08	0.9995	7
May. 2000	-13.3 ± 0.77	35.76 ± 0.31	0.974	10
Apr. 2001	-7.02 ± 1.12	34.63 ± 0.45	0.7983	12

Bowers & Brett (2008); Ahn et al. (2008); Palacios et al. (2009); Bai et al. (2012)

T. Cui, FIO

 $lg(SSS) = \frac{0.8 \times R_{rs}(490) - 2.39 \times R_{rs}(560) + 0.837 \times R_{rs}(665)}{+ 1.534}$

12 to 17 November 2018

Hosted by

esa

, ADVANCED MERIS mapped SSS in the Bohai Sea on October 14th, 2009 T. Cui, FIO

1983

→ ADVAN(

antilline

- Introduction
- Optical SSS estimation method
- Optical SSS in the East China Sea
- Conclusion & Remarks

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

 $_{^{12 \text{ to } 17 \text{ No}}}$ Y. Ahn et al., 2008

Salinity (psu) = $A \times a_{CDOM}(\lambda) + B$,

Algorithms	$a_{\text{CDOM}}(\lambda)$	A	В	R^2	N
Salinity	aCDOM (400)	-30.6416	36.6551	0.86	24
Salinity	aCDOM (412)	-37.3089	36.7550	0.85	24
Salinity	aCDOM (443)	-48.9630	36.3301	0.77	24
Salinity	aCDOM (490)	-64.4025	35.6943	0.66	24
Salinity	aCDOM (400)	35.064	-0.3357	0.98	37

Y. Ahn et al., 2008

OLCI is an optical instrument used to provide data continuity for ENVISAT'S MERIS.

OLCI is a push-broom imaging spectrometer at a ground spatial resolution of 300 m, in 21 spectral bands.

- The OLCI is a push-broom instrument with five camera modules sharing the field of view.
- Each camera has an individual field of view of 14.2° and a 0.6° overlap with its neighbours.

OLCI Band characteristics

Band	λ centre (nm)	Width (nm)	Function
Oa01	400	15	Aerosol correction, improved water constituent retrieval
Oa02	412.5	10	Yellow substance and detrital pigments (turbidity)
Oa03	442.5	10	Chlorophyll absorption maximum, biogeochemistry, vegetation
Oa04	490	10	High Chlorophyll,
Oa05	510	10	Chlorophyll, sediment, turbidity, red tide
Oa06	560	10	Chlorophyll reference (Chlorophyll minimum)
Oa07	620	10	Sediment loading
Oa08	665	10	Chlorophyll (2nd Chlorophyll absorption maximum), sediment, yellow substance/vegetation
Oa09	673.75	7.5	For improved fluorescence retrieval and to better account for smile together with the bands 665 and 680 nm
Oa10	681.25	7.5	Chlorophyll fluorescence peak, red edge

OLCI Band characteristics

	Band	λ centre (nm)	Width (nm)	Function
	Oa11	708.75	10	Chlorophyll fluorescence baseline, red edge transition
	Oa12	753.75	7.5	O2 absorption/clouds, vegetation
	Oa13	761.25	2.5	O2 absorption band/aerosol correction.
	Oa14	764.375	3.75	Atmospheric correction
	Oa15	767.5	2.5	O2A used for cloud top pressure, fluorescence over land
	Oa16	778.75	15	Atmos. corr./aerosol corr.
	Oa17	865	20	Atmospheric correction/aerosol correction, clouds, pixel co- registration
	Oa18	885	10	Water vapour absorption reference band. Common reference band with SLSTR instrument. Vegetation monitoring
	Oa19	900	10	Water vapour absorption/vegetation monitoring (maximum reflectance)
	Oa20	940	20	Water vapour absorption, Atmospheric correction/aerosol correction
→ ADVANCED TRA	Oa21	1 020	40	Atmospheric correction/aerosol correction
				1983

sss [psu]

OCLI mapped SSS on 8th April, 2018

1980

- Introduction
- Optical SSS estimation method
- Optical SSS in the East China Sea
- Conclusion & Remarks

- Salinity optical estimation models are reviewed.
- > Spatial pattern of salinity in the East China Sea are revealed by OCLI images.
- Satellite optical image could provide reliable, high spatial resolution salinity mapping in the coastal zone, which is the necessary supplement to the microwave remote sensing.
- Salinity from optical images is indirect and is related to CDOM. Thus the relationship between salinity and Rrs varies from region to region and seasonally.

Acknowledgement

- ESA for providing the OCLI data
- Contributors of the China Sea
- Sponsors and local organizing committee of the training course.

Thanks for your attention !

Hosted by

