

ESA-MOST China Dragon 4 Cooperation

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

12 to 17 November 2018 | Shenzhen University | P.R. China Radar Altimetry Principle and Data Processing by M.-H. Rio

Radar Altimetry Principle and Data Processing

Sea Level Anomalies maps

Lecture #1

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

Ocean surface Currents

Lecture #2

Basic radar altimetry principle

- Active radar sends a microwave pulse towards the ocean surface at a given frequency.
- The radar signal is reflected by the sea surface and goes back to the satellite.
- The backscattered power as a function of time is called the altimeter waveform.
- The time needed by the signal to go and come back provides information about the distance satellite-sea surface = the range.
- Other parameters (wave height, wind speed) are deduced from the waveform shape.

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

esa

Altimeters provide pointwise, along-track measurements (no imaging!)

Global coverage in a few days or weeks = 1 cycle

The altimeter waveform

Calm sea

In case of a perfectly flat surface, the backscattered power as a function of time is characterized by a very sharp, linear rise

The altimeter waveform

Rough sea

- In sea swell or rough seas, the radar signal strikes the crest of one wave and then a series of other crests which cause the reflected signal's amplitude to increase more gradually.
- the slope of the curve is proportional to wave height

The altimeter waveform

The amplitude of the waveform depends on the mean roughness over the altimeter footprint, which can be empirically related to wind speed.

Physical parameters in the waveforms

NRSCC

esa

Various noises alter the signal. As it is difficult to directly extract the information from the individual waveform (~ 2000 / s)

sea surface

We average them to consider the mean of individual waveforms

20 Hz signal (i.e. 20 waveform estimations per second) \leftrightarrow ~**350 m along-track**

1 Hz signal (i.e 1 waveform estimation per second) $\leftrightarrow \sim 7km$ along the track

The retracking function

A mathematical model is used to adjust the ideal waveform and extract the different parameters (Epoch, amplitude, Leading edge slope). This is the **RETRACKING** step.

The retracking function

A mathematical model is used to adjust the ideal waveform and extract the different parameters (**Epoch**, **amplitude**, **Leading edge slope**). This is the **RETRACKING** step.

$$S(t) = RI(t) \otimes Q(t) \otimes PFs(t)$$

RI(t) : Point target response of the radar *Q(t)* : Probability density function of the scatterers *PFs(t)*: Radar response to a calm sea to a short pulse

$$S(t) = \frac{hc\pi p_0 \sqrt{2}}{\varkappa} [1 + \operatorname{erf}(\eta)] exp(-\alpha \tau)$$

c propagation speed of radar pulse h altitude of the radar r radius of the annulus

$$K = 1 + h/R \qquad \eta = \tau / \sqrt{2}\sigma$$

Brown (1977)

More than 30 years of altimeter measurements

The set of the set

More than 30 years of altimeter measurements

Satellite	Agency	Launch	Altitude	Frequency	Repetitivity	Inclination
Geosat	US Navy	1985	800 km	Ku-band	17 days	108
ERS-1	ESA		785	Ku	35	98.5
TOPEX/ Poseidon	NASA/CNES	1992	1336	Ku and C	10	66
ERS-2	ESA	1995	785	Ku	35	98.5
GFO	US Navy/NOAA	1998	800	Ku	17	108
Jason-1	CNES/NASA	2001	1336	Ku and C	10	66
Envisat	ESA	2002	800	Ku and S	35	98.5
Jason-2	CNES/NASA	2008	1336	Ku and C	10	66
Cryosat	ESA	2008	720	Ku	369	92
HY2	China	2010	963	Ku and C		99.3
Saral	ISRO/CNES	2013	800	Ка	35	92
Sentinel-3	ESA	2016 (A) 2018 (B)	814	Ku and C	27	98.5
Jason-3	CNES/NASA/EU METSAT/NOAA	2016	1336	Ku and C	10	66

Illustration of the waveform diversity

esa

In addition, each overflown surface has its own reflecting properties (ocean, hydrological and polar regions)

Envisat (Ku)

Muller et al, 2017

esa

Illustration of the waveform diversity

Coastal waveforms

When the satellite nadir point reaches the coast line, the presence of land in the footprint may alter the shape of ocean waveforms.

→ How the waveform is affected depends on Area_{Land} times $\sigma_{0,Land}$ relative to Area_{Ocean} times $\sigma_{0,Ocean}$.

- **Small effect** if $\sigma_{0,Land} < \sigma_{0,Ocean}$ (often true). If the coastal land is not mountainous and σ_0 is low, the waveform distortion may be mild until quite close to the coast, and simple (Brown model) retracking may work
- In some environments, however (coral atolls) $\sigma_{0,Land}$ > $\sigma_{0,Ocean}$ and **the effect is large** on the waveform

→ The waveform can also be corrupted by the modification of the sea state within its footprint (basic assumption of the Brown ocean model = homogeneity of the reflective surface)

In addition, each overflown surface has its own reflecting properties (ocean, hydrological and polar regions)

Analysing the altimeter waveform shape, backscatter coefficient and return power can also be useful tools for determining:

 topographic changes over ice sheets, lakes and rivers, and over other surfaces

• for estimating ice and snow thickness (see Cryosat).

• for dectecting sea ice

From conventional altimetry to Fully Focused SAR.

SAR mode altimeter waveform

Hosted by

Many retrackers for many waveforms

Many versions of retrackers have been developped over ocean, cryosphere, hydrological and coastal zones, but also solutions for estimation over rain cells, sigma0 bloom events (J.Tournadre or G.Quartly in particular) and sea-ice regions

esa

NRSCC

- Specific retrackers to account for instrumental issues (on Topex for example :E.Rodriguez and P.Callahan) or platform mispointing (for Jason-1)
- Specific retrackers for the new SAR and SARin modes (The SARvatore and the SARINvatore retrackers)
- > the retracker must clearly be designed/chosen depending on these features and depending on the final application

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

Hosted by

Wave height estimations

Significant wave height is estimated from the slope of the waveform's leading edge.

Sentinel-3A Significant Wave Height One full repeat cycle of 27 days, from 28 June to 25 July 2016

Wind speed estimations

The power of the return signal is related to the wind-induced roughness of the sea-surface. **Wind speed** is then estimated from empirical formulae. Wind direction cannot be resolved.

Sentinel-3A wind speed

One full repeat cycle of 27 days, from 28 June to 25 July 2016

Wind speed estimations

The power of the return signal is related to the wind-induced roughness of the sea-surface. **Wind speed** is then estimated from empirical formulae. Wind direction cannot be resolved.

Sentinel-3A Sea Level Anomaly

One full repeat cycle of 27 days, from 28 June to 25 July 2016

Sea Surface Height (SSH) estimations

SSH = Orbit – Range = Sea Surface Height above a reference ellipsoid

The evolution in precise orbit determination

Tracking system on board altimeter missions for precise orbit determination (DORIS, LRA, GPS)

Sea Surface Height (SSH) estimations

SSH = Orbit – Range = Sea Surface Height above a reference ellipsoid

Sea Surface Height (SSH) estimations

SSH = Orbit – Range = Sea Surface Height above a reference ellipsoid

•Errors on the range affected by :

- Instrumental noise
- Instrumental errors
- •Environnemental errors (wet and dry troposphere and ionosphere)
- Sea state

Sea Surface Height (SSH) estimations

$SSH = Orbit - Range - \sum Correction$

Instrumental corrections

• <u>USO</u> (Ultra-Stable Oscillators) :

The internal clock that controls the system of the measure. The ageing of the instrument leads to measure errors of some mm/year

• Doppler Effect :

To take into account the fact that the satellite is moving during the measurement \underline{Ex} : ± 13 cm for Topex/Poseidon

• Mispointing :

To correct the angle of the antenna respect to the nadir <u>Ex:</u> \sim 2 cm for a 0.2° mispointing

• Pursuit bias :

To take into account the imprecision of the algorithm on board the satellite It varies from some cm to ${\sim}45~{\rm cm}$

• Internal Calibration :

To take into account the transit-time inside the instruments that induces an error of some cm

The radar signal is not absorbed by the atmosphere, but the unhomogeneities of the atmosphere modify the propagation of the signal (deviation and slowing)

• Dry troposphere :

Due to the presence of dry gas in the atmosphere. Estimated thanks to meteorological models (ECMWF $6h - N400 \sim 1/4^{\circ}$)

Ex: 1 year of the Jason 1 mission (2004 : cycles 73 to 109).

Correction mean

Correction variance

The radar signal is not absorbed by the atmosphere, but the unhomogeneities of the atmosphere modify the propagation of the signal (deviation and slowing)

Wet troposphere :

Due to the presence of water vapor into the atmosphere. It is calculated from **radiometer measurements** and/or meteorological models (ECMWF).

Ex: 1 year of the Jason 1 mission (2004 : cycles 73 to 109).

Even 1 year of the locar 1 mission (2004 yearlos 72 to

The radar signal is not absorbed by the atmosphere, but the unhomogeneities of the atmosphere modify the propagation of the signal (deviation and slowing)

• lonosphere :

Due to the presence of free electrons. Estimated thanks to the bi-frequency measure when available: Ku (13.6 GHz) and C/S (5.3-3.2 GHz) band If not (case for Envisat for instance): use of models (GIM)

Ex: 1 year of the Jason 1 mission (2004 : cycles 73 to 109).

• Sea-state bias :

The energy reflected by the trough of the wave is more important than the one reflected by the ridge.

The sea surface state is continuously modified by various parameters : Wind speed and direction, air/water temperature, water viscosity, non linear wave interaction, ...

- >One of the most difficult corrections
- >At this time determined thanks to an empirical model but still room for further improvements

>Error on this correction is particularly difficult to assess. It is geographically correlated at basin scale: residual long wavelength signal in the SLA

Ex: 1 year of the Jason 1 mission (2004 : cycles 73 to 109).

SSB correction mean

SSB correction variance

• <u>The ocean tides</u>: Periodic variations of the ocean sea level due to the actions of celestial bodies in rotation around the Earth. More than 400 tidal waves with periods ranging from less than half a day to years.

Major tidal waves have much higher frequency (12-24 h) than the sampling of the altimetry satellites (10 days at best), which generates aliased signals in the altimetry SSH (example : the semi-diurnal M2 main tidal constituent is aliased at a period of 62 days in the TP/Jason SSH data). The aliasing issue

- Need to remove tides from altimeter measurements
 => need accurate global tide models !
- Amplitude from a few centimeters in the open ocean to several meters in the shelf regions (up to ~10 m in the Bay of Fundy and in the English Channel)

• Load effect :

Earth deformation due to the weight it is supporting. Directly depending on the ocean tide effect

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

NRSCC

With a sampling period of T_0 , we cannot reconstruct a periodic signal of period lower than $2T_0$ (Nyquist period)

If $T_0 > T/2 \rightarrow T_a$ is the aliased period

The ocean tide correction

Global tidal models can be categorized into three groups: hydrodynamic, empirical and assimilation models

- > Hydrodynamic models are derived by solving the Laplace Tidal Equation and using bathymetry data as boundary condition. *Example: HIM, OTIS-GN, STORMTIDE, OTIS-ERB, STM-1B, HYCOM*
- Empirical models are derived by extracting ocean tidal signal from satellite altimetry and they describe the total geocentric ocean tides, which include the ocean loading effect. Example: GOT, OSU, DTU, EOT
- Assimilation models are derived by solving the hydrodynamic equations with altimetric and tide gauge data assimilation. *Example: HAMTIDE, FES, TPXO*

All above mentioned models are barotropic models. However barotropic tides may interact with the bottom topography giving rise to baroclinic tides (internal tides). Contribution may be significant in coastal areas.

Ex: 1 year of the Jason 1 mission (2004 : cycles 73 to 109).

SNRSCC

GOT00.2 correction mean

esa

GOT00.2 correction variance

• Dynamical Atmospheric Correction (DAC)

Ex: 1 year of the Jason 1 mission (2004 : cycles 73 to 109).

□The ocean static response to atmospheric pressure forcing (inverse barometer) is removed along-track: (1 mbar ↔1 cm) [Low frequency (> 20 days) signal only]

✓ Pressure anomalies P' are calculated using pressure estimates from the ECMWF model

 \checkmark P'=Pressure-<P> where <P> is the spatial average (over the ocean) of the instantaneous pressure map (every 6 hours).

✓ Motivation: known, static response + necessity to remove this signal before mapping

Barotropic response to pressure and wind from the MOG2D model is removed along-track [High frequency (<20 days) signal only]

✓ **Motivation :** avoid high frequency oceanic signal to be aliased in the final products.

MOG2D-HR correction mean

Corrections depend on missions

	ERS-1	ERS-2	EN	T/P	J1	J2	GFO	C2
Orbit	Reaper	Reaper	GDR-D	GFSC STD08	GDR-D	GDR-D	GSFC	GDR-D
Major Instr. correction			PTR FPAC					
Sea State Bias	BM3 (Gaspar, Ogor, 1994)	Non parametric Mertz et al., 2005	Tran 2012 compatible enhanced MWR	Non parametric SSB [N. Tran et al. 2010]	Tran 2012 (OSTST)	Tran 2012	Non parametric SSB [Tran and Labroue, 2010]	Non parametric SSB from J1 (GDR-C) with unbiased sig0
Ionosphere	Reaper	Bent (cycle 1- 49), GIM from cycle 50	Bi frequency $(c \le 64)$, GIM $(c \ge 65)$ corrected for 8mm bias	Bi frequency (TOPEX) DORIS (POSEIDON)	Dual frequency		GIM	GIM
Wet troposphere	MWR	MWR+Minimisati on of TB drift [Scharoo et al. 2004]	c≤64 :MWR(dist≥50k m from the coasts), ECMWF (dist≤50km from th coast) <≥65: MWR	TMR (Scharoo et al, 2004)	MWR replacement product	GDR-D (MWR JPL enhancement product)	From GFO radiometer	From ECMWF model
Dry troposphere	Era Interim	based	ECMWF Gaussian grids based	Era Interim based	ECMWF rectangular grids based	ECMWF Gaussian grids based	ECMWF rectangular grids based	ECMWF Gaussian grids based
Combined atmospheric correction	MOG2D High Resolution forced with Era Interim pressure and wind fields wi		MOG2D High Resolution forced with ECMWF pressure and wind fields + IB	MOG2D High Resolution forced with Era Interim pressure and wind fields	MOG2D High Resolution forced with ECMWF pressure and wind fields + IB computed from rectangular grid		MOG2DHighResolutionforcedwithECMWFpressureandfields+IBfromrectangulargrids	
Ocean tide	GOT4V8	GOT4V8						
Solid Earth tide	Elastic response to tidal potential [Cartwright and Tayler, 1971], [Cartwright and Edden, 1973]							
Pole tide	[Wahr, 1985	_Wahr, 1985]						
MSS	CNES-CLS-2	CNES-CLS-2011 + reference period change [1993, 2012]						

CNES-CLS-2011 + reference period change [1993, 2012]

From SSH to Absolute Dynamic Topography

 $SSH = Orbit - Range - \Sigma Correction$

SINASCE CSA

SSH=h+Geoid

h=Absolute Dynamic Topography

The surface of an ocean of homogeneous density covering an Earth at rest would coincidate with an Earth Gravity Equipotential surface called GEOID

E : Reference Ellipsoid Equipotential of the gravity field The surface of an ocean of homogeneous density covering an Earth at rest would coincidate with an Earth Gravity Equipotential surface called GEOID

Gravity forces generating tides

Variations of the Atmospheric pressure

Thermal forcing

Wind effects

Hydrological Cycle

Coriolis Force due to the Earth Rotation

As a consequence, at a given time, at a given place, the sea level differs from its position at rest, the geoid. The difference between the two positions is the ocean dynamic topography h

Tidal currents

Stokes drift

Geostrophic currents

Ekman currents

Inertial oscillations

High frequency ageostrophic currents

Geoid estimation

Satellite-only geoid models

Model	Year	Max DO	Data
GRIM4S4	1995	70	Geodetic satellites
GRIM5S1	1999	99	Geodetic satellites
CHAMP3S	2003	140	33 months of CHAMP
GGM02S/ EIGEN3S	2005	150	2 years of GRACE
ITG- GRACE2010s	2010	180	7 years of GRACE
GOCE	2009- 2013	200- 250	2 months (R1) 6 months (R2) 1 year (R3) Full mission (R5)

RMS differences (in cm) between geoid models and GOCE-DIR-R5 filtered at 100km (on oceans)

Hosted by

From SSH to SLA

Some very simple equations SSH=h+G MSSH=MDT+G SSH-MSSH=h-MDT + C C =SLA Along-track processing: would require a cm accuracy geoid at the SSH resolution (300m-7km)!

MSSH=Mean Sea Surface Height

MDT=Mean Dynamic Topography

SLA=Sea Level Anomaly = Time variable part of the signal in reference to a given time period (1993-2012 for the latest MSSH)

Mean Sea Surface estimation: 25 YEARS IMPROVEMENTS

From SSH to gridded maps of SLA

Step 1 : Reduction of the crossover differences

•Purpose : Reduce orbit error and ensure coherence between different altimetric missions by using the most accurate mission as a reference to correct the others.

•Method : Estimation of errors with a cubit-spline estimator (Le Traon and al., 1995, JAOT 12)

At a same point (crossover) and within less than 5 days, the difference in measured SLA is considered as a monomission or multi-mission orbit error. Smooth cubic-spline functions provide a continuous estimation of the orbit error over time.

Step 2 : Empirical reduction of Long-Wave Errors (LWE)

•Purpose : Correction of the long-wavelength errors (LWE) due to residual errors on tides, aliased HF residual signals, ...

•Method : Reduction of the inter-track bias with Objective Analysis (Le Traon and al., 1998, JAOT 15)

- \checkmark Spatial scales considered for LWE : 300 to 800 km
- ✓ A-priori mean LWE Variance : 8.5 (TP/J1) to 9 (EN) cm². Can locally reach 30-40 cm² or more

•**Purpose** : To be sure of their reliability, the data are submitted to successive tests of selection/ validation of increasing complexity, in order to eliminate inaccurate data

•Selection 1: data over the ocean

 \rightarrow use of a geographical mask

 \rightarrow use of radiometric measure (sensitive to the presence of emerged land and ice) Editing of ~30% of the data flow

•Selection 2 : pertinent data

 \rightarrow selection by analysis of the quality the MSSH used as reference : no SLA computation where MSSH's quality is not assured.

Objective Analysis

•Purpose : Construct a regular-gridded data set merging along-track SLA data from different altimetric missions, taking into account the errors due to the measure's imperfections

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

Objective Analysis

Example of JASON altimeter noise

Objective Analysis

Isotropic field hypothesis is made

 \rightarrow Use of correlation function model defined by Le Traon et Hernandez (JAOT 1992):

$$C(r,t) = \left(1 + r + \frac{1}{6}r^{2} - \frac{1}{6}r^{3}\right)e^{-r}e^{-t} \qquad r = \frac{\delta r}{r_{0}} \qquad t = \frac{\delta t}{t_{0}}$$

Correlation Radii r₀ and t₀ depend on:

✓ Spatial and temporal scales characteristic of the observations

✓ Spatial and temporal sampling of the observations

✓ Spatial and temporal sampling of the maps constructed / characteristics of the field to be reconstructed.

Global: spatial correlation scales range from 400 (zonal)-300 (meridian) km at the equator to 100km in sub-polar regions. Time correlation scales vary from 10 days (equator) to 30-50 days in subtropics and middle latitudes.

MAGCC

12 to 17 November 2018 | Shenzhen University | P.R. China

	GEOSAT	ERS/ENVISAT	TOPEX/JASON
Altitude	785 km	800 km	1336 km
Inclinaison	108°	98.5°	66°
Inter-trace à l'équateur	163 km	77 km	315 km
Répetitivité	17 jours	35 jours	10 jours

Donnees TP (bleu), ERS-2 (rouge) et GFO (vert) du 14/12 au 23/12/2000

The spatio-temporal resolution of the mapped SLA depends on the number of flying altimeters at a given time.

System resolution

From radar echo to gridded maps of Sea Level Anomalies

Hosted by

From Sea Level Anomalies to ocean surface currents

Next talk!

