
BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual

SOFTWARE USER MANUAL
(BRAT version 4.2.1)

version : 2.0

date : 14/06/2018

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 2 of 158

This page intentionally left blank

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 3 of 158

Document Information

Contract Data

Contract
Number:

4000113810/15/I-LG

Contract
Issuer:

ESA

 Name Function Signature

Prepared by BRAT development team - -

Reviewed by Ana Friaças PA Manager

Approved by Miguel Terra-Homem Project Manager

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 4 of 158

Document Change Log

Issue Author Section Change Description Date

1.0 BRAT Dev
team

All SUM version aligned with the new BRAT GUI. 02/05/2016

1.1 BRAT Dev
team

All SUM version aligned with the new BRAT GUI (BRAT
V4.0.0-beta).

30/06/2016

1.2 BRAT Dev
team

All SUM version aligned with the new BRAT GUI (BRAT
V4.0.0).

15/09/2016

 Sec. 4.2.5.1 Added section 4.2.5.1 Export

 Sec. 18 Added Annex I: BRAT-Python Algorithms

 Sec. 19 Added Annex J: Compilation in GPOD Environment

1.3 BRAT Dev
Team

Sec. 3 Update on the installation notes 25/10/2016

1.4 BRAT Dev
Team

Sec. 3 Update on the installation notes 17/01/2017

 Sec. 3.6 Added section regarding RADS service

 Sec. 4.2.2.1 Added section “RADS datasets”

 Sec. 4.3.3 Added section “RADS Datasets tab”

1.5 BRAT Dev
Team

 Minor updates for BRAT V4.1.0 17/04/2017

 Sec. 3.6,
Sec. 4.2.2.1

Updated RADS sections

1.6 BRAT Dev
Team

All Reviewed and updated for BRAT V4.2.0 04/09/2017

1.7 BRAT Dev
Team

 Added sections 3.7 and 4.1.1 04/10/2017

 Updated Figure 5, Figure 13 and Figure 27

 Major updates on sections 4.3.4, 4.3.5.1, 4.3.5.3,
4.3.5.4, 6 and 7

 Minor updates on sections 4.2.4, 4.2.4.2.1, 4.2.4.2.2,
4.2.4.3, 4.2.5, 4.3.1 and 4.3.6

1.8 BRAT Dev
Team

 Updated Figure 1 02/11/2017

 Updated section 4.1.1

1.9 BRAT Dev
Team

 Added section 4.2.3.1 10/05/2018

 Added section 4.2.4.2.3

 Updated section 4.3.5.4.5

 Updated Figure 25

2.0 BRAT Dev
Team

 Updated section 4.2.3 to explain the options for applying
an area filter without time variable

14/06/2018

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 5 of 158

Table of Contents

1. INTRODUCTION ... 10

1.1. Project history and background ... 10

1.2. Global overview ... 10

1.3. Toolbox contents ... 11

2. DATA READ AND PROCESSED ... 13

2.1. Background ... 13

2.2. Level 1B/2 data products .. 13

2.3. Higher level products ... 14

3. HOW TO INSTALL AND UNINSTALL BRAT ... 16

3.1. Supported platforms .. 16

3.2. The BRAT distribution DVD .. 16

3.3. MS Windows .. 16

3.3.1. Installing the binary distribution .. 16

3.3.2. Installing from source .. 17

3.3.3. Uninstalling .. 17

3.4. Linux.. 17

3.4.1. Installing the binary distribution .. 17

3.4.2. Installing from source .. 18

3.4.3. Uninstalling .. 19

3.5. Mac OS X .. 19

3.5.1. Installing the binary distribution .. 19

3.5.2. Installing from source .. 20

3.5.3. Uninstalling .. 20

3.6. The RADS Service .. 20

3.6.1. Installing the RadsService .. 20

3.6.1.1. Required Permissions ... 20

3.6.1.2. Installation and configuration procedures ... 21

3.6.2. Uninstalling the RadsService ... 21

3.7. Troubleshooting OpenGL issues ... 21

3.8. Sample Build in Debian 8 ... 22

4. BRAT GRAPHICAL USER INTERFACE (GUI) ... 23

4.1. Overview ... 23

4.1.1. The Application Settings (Options) ... 23

4.2. Starting with BRAT GUI ... 24

4.2.1. Create a workspace ... 25

4.2.2. Create a dataset ... 25

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 6 of 158

4.2.2.1. RADS datasets .. 27

4.2.3. Create a filter ... 27

4.2.3.1. Customizing filter application .. 29

4.2.4. Create an operation ... 29

4.2.4.1. Select source data ... 30

4.2.4.2. Define expressions .. 31

4.2.4.3. Output ... 33

4.2.4.4. Export .. 34

4.2.5. Create a view ... 34

4.2.5.1. Export .. 35

4.3. BRAT GUI tabs description ... 36

4.3.1. Workspace menu .. 36

4.3.2. Datasets tab ... 36

4.3.2.1. Creation of a dataset ... 37

4.3.2.2. Management of the data files list ... 37

4.3.2.3. Data file information .. 38

4.3.3. RADS Datasets tab .. 38

4.3.4. Filters tab ... 38

4.3.5. Operations tab .. 40

4.3.5.1. Manage Operations .. 40

4.3.5.2. Define source data .. 41

4.3.5.3. Define expressions .. 42

4.3.5.4. Expression information and parameters.. 43

4.3.6. Logs tab ... 56

5. ALIASES ... 57

5.1. Using aliases .. 57

5.2. Structure ... 57

5.3. Modifying an alias .. 58

5.4. Creating an alias .. 58

5.4.1. For a field for which no alias exists .. 58

5.4.2. For a field for which an alias has already been defined ... 58

6. VISUALISATION INTERFACE .. 60

6.1. 2D Plots ... 60

6.2. Map Plots ... 62

6.3. 3D Plots ... 64

6.4. Colour tables ... 66

6.5. Vector Plots ... 66

7. BRAT SCHEDULER INTERFACE .. 67

8. USING BRAT IN ‘COMMAND LINES’ MODE WITH PARAMETERS FILE 68

8.1. Creating an output netCDF file ... 68

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 7 of 158

8.2. Visualising an output netCDF file through BRAT .. 70

8.3. Using the parameter files to process many datasets .. 71

9. BRATHL APPLICATION PROGRAMMING INTERFACES (APIS) ... 73

9.1. Data reading function .. 73

9.2. Cycle/date conversion functions .. 74

9.3. Date conversion/computation function ... 75

9.4. Named structures .. 76

10. ANNEX A: list of datasets read by BRAT ... 78

10.1. Cryosat product overview .. 78

10.2. Cryosat Ocean products overview .. 78

10.3. Jason-2 product overview .. 79

10.4. Envisat product overview .. 79

10.5. Jason-1 product overview .. 79

10.6. Topex/Poseidon product overview .. 79

10.7. ERS-1 and 2 product overview ... 80

10.8. GFO product overview ... 80

10.9. PODAAC product overview ... 80

10.10. River and Lake product overview ... 80

10.11. NetCDF products .. 80

10.11.1. Aviso Altimetry data in netCDF .. 81

10.11.2. ERS REAPER data in netCDF .. 81

10.11.3. Sentinel 3 data in netCDF ... 82

11. ANNEX B: Y=F(X) parameter file keys ... 83

12. ANNEX C: Z=F(X,Y) parameter file keys ... 86

13. ANNEX D: Display parameter file keys ... 91

14. ANNEX E: BRATHL-MATLAB API ... 99

15. ANNEX F: BRATHL-Fortran API .. 114

16. ANNEX G: BRATHL-C API .. 121

17. ANNEX H: BRATHL-PYTHON API .. 140

18. ANNEX I: BRAT-PYTHON ALGORITHMS .. 151

19. Annex J: Compilation in GPOD Environment .. 156

19.1. Dependencies .. 156

19.2. Source and Build directories .. 156

19.3. Configure and make ... 156

List of Tables

Table 1: Level 1B/2 data products .. 13

Table 2: Higher level products .. 14

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 8 of 158

Table 3: BRAT functions .. 45

Table 4: BRAT algorithms .. 50

Table 5: 10.1. Cryosat product overview ... 78

Table 6: Cryosat Ocean products overview ... 78

Table 7: Jason-2 product overview .. 79

Table 8: Envisat product overview .. 79

Table 9: Jason-1 product overview .. 79

Table 10: Topex/Poseidon radar altimetry products ... 79

Table 11: ERS-1 and ERS-2 radar altimetry products .. 80

Table 12: GFO product overview ... 80

Table 13: Physical Oceanography Distributed Active Archive Center radar altimetry products for Jason-1
and Topex/Poseidon .. 80

Table 14: ENVISAT-ERS Exploitation River and Lake Products .. 80

Table 15: Aviso Altimetry data in netCDF ... 81

Table 16: ERS REAPER data in netCDF .. 81

Table 17: Sentinel 3 data in netCDF .. 82

List of Figures

Figure 1: The start-up section of the BRAT settings dialog ... 24

Figure 2: 'Create a new workspace' window. You can choose to save it wherever you want on your hard
drive or local network, and name it as you prefer (preferably in such a way you will remember what's in
it). .. 25

Figure 3: The Dataset tab as it appears when opening a new Workspace. The “New” button enables to
create a new dataset. .. 26

Figure 4: Several datasets. On the top, the list of files; on the centre, the description of the netCDF data
file, bottom (left) enumeration of the available fields inside the netCDF file, bottom (right) field
description. The satellite tracks for the selected data file are plotted on the map at the right (red line). 27

Figure 5: The filters tab. The “New Area Selection” tool enables to draw a selection over the map or enter
its values in the coordinates fields; the “Create area” button creates a new area from current map
selection. ... 28

Figure 6: The 'Operations' tab in the advanced mode. The “Create operation” button enables to create a

new operation. ... 30

Figure 7: On the top, the dataset dropdown list; below, the tree with records and data fields. 31

Figure 8: Dialog shown when “Window>Workspace views” menu is triggered that allows the selection and
visualization of a certain operations .. 34

Figure 9: A 'Display’ window with one view created. Note the list of available views 35

Figure 10: Examples of standard and RADS datasets with netCDF data selected. 37

Figure 11: Filters tab showing applied filter .. 39

Figure 12: Operations tab, with an operation being built. ... 40

Figure 13: Operations tab, with the Workspace Elements pane detached and the main map extended to
the boundaries of the application window... 42

Figure 14: Example of menu that appears by right-click on a data expression (’SLA’). Note that here one
data field ('equator_time') is selected (left-click); if no data field is selected, this item is inactive. 43

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 9 of 158

Figure 15: ''Show Aliases' pop-up window. Here for a Jason2 NetCDF file. Note the 'Syntax' column,
where the alias syntax is given, while the 'Value' column gives the original field name (or combination).

 .. 44

Figure 16: The 'Formulas' pop-up window, with the list of available formulas, top (sorted in alphabetical
order). .. 49

Figure 17: use of a pre-defined formula (Ocean_data_editing_GFO_from_cycle_83). Note the use in this
particular expression of the formula as alias %{Ocean_data_editing_GFO_from_cycle_83} 49

Figure 18: Insert Algorithm pop-up, with the BratAlgoGeosVelGridV selected. 53

Figure 19: Operation resulting from the insertion of algorithms. ... 53

Figure 20: Choice of the data computation ... 54

Figure 21: Configuration parameters for output grid data .. 55

Figure 22: Example of the definition of an alias. This example is for Envisat RA2 and MWR products, by
default for data within the “ra2_mds” record. “ku_band_ocean_range” is the name given by default in
the documentation and thus in BRAT. To keep it simpler, we call it here “range”. 58

Figure 23: An example Y=F(X) visualisation with two curves .. 60

Figure 24: Data Options tab of the visualisation tool ... 61

Figure 25: Y-axis properties of a Y=F(X) plot, with only one field selected for view. Label (including the
unit), number of ticks in the axis, min and max of the axis are shown. X-axis properties are similar. 61

Figure 26: Two curves overlaid, with different point glyphs defined ... 62

Figure 27: Map plot type to display a simple z=f(lon,lat) graph type. .. 63

Figure 28: The “Data Options” tab. ... 63

Figure 29: You can also trigger the Globe Plot for this type of data by clicking under the “3D” button. ... 64

Figure 30 – Plotting a z=f(x,y) graph. ... 65

Figure 31 – Same plot but with a hidden spectrogram plot by clicking under the 2D button. 65

Figure 32: Example parameter file for creating a Z=F(X,Y) output .. 69

Figure 33: Example ‘display’ parameter file .. 70

Figure 34: An example parameter file for creating output netCDF for several cycles (SLA from Jason-1
GDRs) ... 71

Figure 35: An example script for DOS (to be inserted in a .bat file) to launch a parameter file over several
cycles .. 72

Figure 36: An example Shell script for Linux for launching a parameter file over several cycles 72

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 10 of 158

1. INTRODUCTION

1.1. Project history and background

The Broadview Radar Altimetry Toolbox (BRAT) and the Radar Altimetry Tutorial (RAT) were originally
produced by CLS and S&T in 2006-2011 under contract with ESA and CNES (the toolbox name at the
time was called Basic Radar Altimetry Toolbox). Since April 2015 under ESA contract within the SEOM
program, with additional support from CNES, the current consortium formed by DEIMOS Engenharia S.A.,
isardSAT UK, and TU Delft is continuing the work, updating the content of the tutorial and redesigning

and improving the toolbox.

1.2. Global overview

The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools and tutorial documents designed to
facilitate the processing of radar altimetry data. BRAT is able to handle most distributed radar altimetry
data formats, providing support for ingesting, processing, editing (to a certain extent), generating

statistics, visualising and exporting the results.

BRAT consists of several modules operating at different levels of abstraction. These modules can be
Graphical User Interface (GUI) applications, command-line tools, interfaces to existing applications (such
as IDL and MATLAB) or application program interfaces (APIs) to programming languages such as C,
Fortran and Python.

The main BRAT functions are:

• Data Import and Quick Look: basic tools for extracting data from standard formats and generating
quick-look images.

• Data Export: output of data to the netCDF binary format, ASCII text files, or GeoTiff+GoogleEarth
(KMZ/KML export); raster images (PNG, JPEG, BMP, TIFF, and PNM) of visualisations can be saved.

• Statistics: calculation of statistical parameters from data.

• Combinations: computation of formulas involving combinations of data fields (and saving of those
formulas).

• Resampling: over and under-sampling of data; data binning.

• Data Editing: data selection using simple criteria, or a combination of criteria (that can also be saved).

• Exchanges: data editing and combinations can be exchanged between users.

• Data Visualisation: display of results, with user-defined preferences. The viewer enables the user to
display data stored in the internal format (netCDF).

• Download and periodic synchronization of satellite products with RADS database.

APIs are available with data reading, date and cycle/pass conversion and statistical computation functions
for C, Fortran, IDL, (only using previous versions of BRAT), MATLAB and Python, allowing the integration
of BRAT functionality in custom applications. For the most common use cases (selection, combinations,

visualisations, etc.), command-line tools are available that can be configured by creating parameter files.
For beginners, we recommend using the BRAT GUI application, which enables the operator to easily
specify the processing parameters required by each tool (and then invoke those tools at the push of a
button).

BRAT is provided as Open Source Software, enabling the user community to participate in further
development and quality improvement.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 11 of 158

1.3. Toolbox contents

BRAT consists of the following parts:

• BRAT Library

The core part of the toolbox is the BRAT library package itself. This package provides data ingestion
functionality for each of the supported data products. The data access functionality is provided via two
different layers, called CODA and BRATHL.

• CODA

The first BRAT layer (formerly known as BRATLL) is implemented using the Common Data Access
framework CODA. CODA allows direct access to product data, supporting a very wide range of products

and formats. It provides a single consistent hierarchical view on data independent of the underlying
storage format.

The version of CODA that comes with BRAT supports over 200 altimetric product files. All product file
data is accessible via the CODA C library. Furthermore, the version of CODA in BRAT also comes with a
set of command-line tools (codacheck, codacmp, codadump, and codafind). Typically, BRAT users will not
need to deal with the CODA library directly (although it is included if it is needed), but the CODA
command-line tools can be useful for investigating or debugging product data files directly.

More information about the CODA framework and tools can be found in the CODA documentation,
supplied in the BRAT doc/coda/ directory in (HTML format). Be aware that in order for the CODA
command-line tools to function correctly in a BRAT environment, the user must manually set the
CODA_DEFINITION path environment variable to include the location of the BRAT data directory (i.e. the
bin/data/ subdirectory of the BRAT installation root directory). This is necessary because the CODA
command-line tools need to be told where to find the BRAT product format definition files. In order to

check if everything is set properly, the command:

 codadd list

will yield a list of all the products CODA recognises. (For a correct BRAT configuration, this list will e.g.
include JASON and River_Lake products.)

More information about the specific altimetry product formats made accessible from BRAT through CODA
can be found in the CODA definitions documentation, supplied in the BRAT doc/codadef/ directory (HTML
format), and in Chapter 2, Data read and processed and Annex A, List of Datasets read by BRAT.

• BRATHL

The second layer of BRAT provides an abstraction to the product data to make it easier for the user to get

the most important data from a product. A single function will allow the user to ingest selected altimetric
product data values (from one or more files), into an array. It is also possible (in the same function call)

to request statistics on the ingested data and to perform calculations on the data values (e.g. field1 +
field2). In addition to the ingestion function, a number of date and cycle data structures and conversion
functions are also available.

The BRATHL library is implemented in C++, and built on top of the CODA framework (plus various other

third-party libraries). It is possible to develop programs that make direct use of the C++ classes that
make up the BRATHL library, but this is mainly intended for the (rare) case in which users need to
develop BRATHL itself.

Instead, the simple public BRATHL functionality described earlier is accessible via C, Fortran, IDL, (only if
using BRAT v3.1), MATLAB and Python interfaces.

More information about the various BRATHL APIs can be found in Chapter 9, BRATHL Application
Programming Interfaces (APIs).

More information about the C++ BRATHL API can be found in the BRAT reference manual, supplied in the

BRAT doc/ directory (PDF format).

• BRAT Console Applications

Most BRAT users will not be programers and will interact with the BRAT library via the use of one or more
of the supplied executable applications.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 12 of 158

The toolbox contains a number of console applications that are to be run from the command-line. These
applications shield the user from the library and the programming level by providing a set of the most

commonly needed BRAT functionalities (data computations, data conversions, etc.). These functionalities
are in turn user-configurable by so-called parameter files that can easily be created, stored, and shared.

The console applications included in BRAT are: BratCreateYFX, BratCreateZFXY, BratListFieldNames,
BratShowInternalFile, BratStats, BratExportAscii and BratExportGeoTiff.

In addition, BRAT also contains the lower-level CODA console applications mentioned in Section 1.2.1.1,
as well as the similarly low-level ncdump and ncgen utilities. These latter two are part of the netCDF

library and can be used to inspect (ncdump) or create (ncgen) data files in the netCDF format.

More information about the BRAT Console Applications can be found in Chapter 8, Using BRAT in
‘command lines’ mode with parameter files.

• BRAT GUI Applications

In order to provide a truly pleasant, user-friendly interface to the BRAT functionality, BRAT also contains
two applications that present a Graphical User Interface (GUI). It is expected that most BRAT users will
primarily interact with BRAT through these applications.

• Brat

Brat is the main BRAT application. It allows the user to create and manage Workspaces, Datasets,
Operations and Views at a very high level of abstraction, and with all the power and convenience of a

modern-day graphical user interface. Brat is built on top of the BRAT Console Applications, which it
invokes 'under the hood', shielding the user from having to deal with command line options or parameter
files directly.

There is a price to pay for the convenience of Brat: not all functionality of the console applications is
available through Brat. If the users reach the limits of what can be done with Brat, they will have to learn

to work with the console applications after all. For a majority of important uses, however, the
functionality of Brat should be sufficient.

More information about Brat can be found in Chapter 4 BRAT Graphical User Interface (GUI).

• Scheduler

Scheduler enables BRAT user to delay the execution of an Operation (e.g. having it running at night). It
will be available through Brat application, and also through its own icon/executable (to check and modify
a scheduled task, in particular).

More information about Scheduler can be found in Chapter 7 BRAT scheduler interface.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 13 of 158

2. DATA READ AND PROCESSED

2.1. Background

The Broadview Radar Altimetry Toolbox is able to read most distributed radar altimetry data, from (ERS-1
& 2 (ESA), Topex/Poseidon (NASA/CNES), Geosat Follow-On (US Navy), Jason-1 (CNES/NASA), Envisat
(ESA), Cryosat (ESA) and), Jason-2 (CNES/NASA/EUMETSAT/NOAA) and the to be launched Sentinel-3
(ESA/EU) missions. The different types of data readable and processed by the Broadview Radar Altimetry
Toolbox are listed below (for a description of the exact datasets with their nomenclature, see 85, List of

datasets read by BRAT).

Note that data stored in arrays (e.g. waveforms) are not available individually (i.e. you can't access one
value in the array) through the Graphical User Interface, but “only” through the API (See Chapter 9,
BRATHL Application Programming Interfaces (APIs)), except for high-resolution GDR data (10, 18 and 20-
Hz data) that you can access individually via the GUI.

NetCDF COARDS-CF compliant data can be read by BRAT. Note, however, that no warning/error message
will be issued if different data are mixed, thus leading to incoherent datasets.

2.2. Level 1B/2 data products

Table 1: Level 1B/2 data products

Data Satellite(s) Data center Format

Level 1B & level 2 Cryosat ESA ESA PDS

Level 1B & Level 2 Ocean Products Cryosat ESA ESA PDS

RA-2 wind/wave product for Meteo Users
(RA2_WWV_2P)

Envisat ESA ESA PDS

RA-2 Fast Delivery Geophysical Data Record
(RA2_FGD_2P)

Envisat ESA ESA PDS

RA-2 Geophysical Data Record (RA2_GDR_2P) Envisat ESA ESA PDS

RA-2 Intermediate Geophysical Data Record
(RA2_IGD_2P)

Envisat ESA ESA PDS

RA-2 Sensor Data Record (RA2_MWS_2P) Envisat ESA ESA PDS

Interim Geophysical data record (IGDR) Jason-1, Topex/Poseidon AVISO
PO.DAAC

Binary

Geophysical data record (GDR) Jason-1, Topex/Poseidon AVISO
PO.DAAC

Binary

Operational Sensor Data Record (OSDR) Jason-1 AVISO
PO.DAAC

Binary

Sensor Geophysical data record (SGDR) Jason-1 AVISO
PO.DAAC

Binary

Operational / Interim / Geophysical data record
(O/I/GDR)

Jason-2 AVISO
EUMETSAT
NOAA

netCDF

Sensor (Interim) Geophysical data record (S(I)GDR) Jason-2 AVISO
EUMETSAT
NOAA

netCDF

Sea Surface Height Anomaly Operational / Interim /
Geophysical data record (SSHA O/I/GDR)

Jason-2 AVISO
EUMETSAT

netCDF

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 14 of 158

Data Satellite(s) Data center Format

NOAA

Topex waveforms Topex/Poseidon PO.DAAC Binary

RA OPR ERS-1 and 2 CERSAT ESA PDS

RA WAP ERS-1 and 2 CERSAT ESA PDS

ERS REAPER Level 2 Products ERS-1 and 2 ESA netCDF

Geophysical data record (GDR) GFO NOAA Binary

Level 1 & Level 2 Products Sentinel 3* ESA netCDF

2.3. Higher level products

Table 2: Higher level products

Data Satellite(s) Data center Format

Along-track Delayed-Time and Near Real Time Sea
Level Anomalies (DT- & NRT-SLA) (Ssalto/Duacs
multimission products)

Cryosat, Jason-1, Jason-2,
Topex/Poseidon, GFO, Envisat,
ERS-2, ERS-1

AVISO netCDF

Along-track Delayed-Time and Near Real Time
Absolute Dynamic Topography (DT- & NRT-ADT)
(Ssalto/Duacs multimission products)

Cryosat, Jason-1, Jason-2,
Topex/Poseidon, GFO, Envisat,
ERS-2, ERS-1

AVISO netCDF

Gridded Delayed-Time and Near Real Time Maps of
Sea Level Anomalies (DT- & NRT-MSLA)
(Ssalto/Duacs multimission products)

Merged AVISO netCDF

Gridded Delayed-Time and Near Real Time Maps of
Sea Level Anomalies mapping error (DT- & NRT-
MSLA) (Ssalto/Duacs multimission products)

Merged AVISO netCDF

Gridded Delayed-Time and Near Real Time Maps of
Sea Level Anomalies geostrophic velocities (DT- &
NRT-MSLA) (Ssalto/Duacs multimission products)

Merged AVISO netCDF

Gridded Delayed-Time and Near Real Time Maps of
Absolute Dynamic Topography (DT- & NRT-MADT)
(Ssalto/Duacs multimission products)

Merged AVISO netCDF

Delayed-Time and Near Real Time Absolute Dynamic
Topography geostrophic velocities (DT- & NRT-MADT)
(Ssalto/Duacs multimission products)

Merged AVISO netCDF

Along-track Delayed-Time Sea Level Anomalies (DT-
SLA) (monomission product)

Cryosat, Jason-1, Jason-2,
Topex/Poseidon, Envisat, ERS-
2

AVISO netCDF

Along-track Delayed-Time Corrected Sea Surface
Height (DT-CorSSH) (monomission product)

Cryosat, Jason-1, Jason-2,
Topex/Poseidon, Envisat, ERS-
2

AVISO netCDF

Along-track Sea Surface Height Anomalies (AT-
SSHA)

Topex/Poseidon, Jason-1 PO.DAAC Binary

Along-track Gridded Sea Surface Height Anomalies
(ATG-SSHA)

Topex/Poseidon, Jason-1 PO.DAAC Binary

Gridded Near Real Time Maps of Significant Wave
Height (NRT-MSWH) (mono- and multi-mission
products)

Jason-1, Jason-2,
Topex/Poseidon, Envisat, GFO,
merged

AVISO netCDF

Gridded Near Real Time Maps of Wind Speed
modulus (NRT-MWind)

Jason-1, Jason-2,
Topex/Poseidon, Envisat, GFO,
merged

AVISO netCDF

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 15 of 158

Data Satellite(s) Data center Format

Heracles along-track land-ice (multimission products)* Cryosat, Envisat ESA netCDF

Heracles crossover land-ice (multimission products)* Cryosat, Envisat ESA netCDF

Gridded Heracles SHA land-ice (multimission
products)*

Cryosat, Envisat, merged ESA netCDF

Gridded Heracles Sigma0 land-ice (multimission
products)*

Cryosat, Envisat, merged ESA netCDF

Gridded Heracles Leading Edge Width (LEW) land-ice
(multimission products)*

Cryosat, Envisat, merged ESA netCDF

River & Lake products Envisat ESA Binary

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 16 of 158

3. HOW TO INSTALL AND UNINSTALL BRAT

3.1. Supported platforms

BRAT binaries are available as single-file installer packages for the three major operating systems, in 32
and 64 bit processor architectures: Windows1, Linux2 , and Mac OS X3 . These standalone installers can
be downloaded from the BRAT Website (http:// www.altimetry.info/toolbox/) or copied from the top-level
directory of the BRAT Distribution DVD.

On not directly supported platforms and for certain purposes, BRAT will have to be compiled from source.

A source archive is therefore also available, but as compilation is a rather complex affair it is highly

recommended to try one of the binary installers first.

3.2. The BRAT distribution DVD

The BRAT Distribution DVD contains:

• The binary installers for the supported platforms.

• The source archive.

• A copy of all the BRAT documentation (also already included in the binary installers).

• A large directory of sample data files (which is too large to be included in the binary installers).

3.3. MS Windows

3.3.1. Installing the binary distribution

BRAT supports Windows XP and higher, 32 and 64 bit. The binary distribution contains pre-built versions
of the full toolbox as well as all the BRAT documentation and examples. For the MATLAB and Python
interfaces, pre-built versions are included that will work with MATLAB V8.1/R2013a or higher and Python
3.0 or higher. For the IDL interface, BRAT version 3.1.0 should be used; it will work with IDL 6.3 or

higher.

The BRAT Windows binary installers are found in the files:

 brat-4.2.1-Win32-installer.exe (32 bit)

 brat-4.2.1-x64-installer.exe (64 bit)

In order to install BRAT, select and double-click the installer file that matches the architecture of your
Windows version and follow the instructions.

By default, BRAT will be installed in C:/Program Files/BRAT-4.2.1/4, or in the user's local profile directory

when installed as a user without Administrator privileges. It is also possible to specify a custom
installation location during the installation process.

After installation, the BRAT Console and GUI applications are immediately ready for use. A shortcut to the
BRAT application will have been placed on the desktop and is also accessible via the Start > Programs >
Broadview Radar Altimetry Toolbox<version><architecture> menu. In order to use the Console
Applications, open a command window and call the applications directly from their installed location

1 Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.
2 Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
3 Mac OS X® is a registered trademark of Apple Inc. in the U.S. and other countries.
4 This is valid for 32 bit installers in 32 bit systems and 64 bit installers in 64 bit systems. 32 bit installers in 64 bit
systems will install BRAT by default in C:/Program Files (x86)/BRAT-4.2.1/.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 17 of 158

(C:/Program Files/BRAT-4.2.1/bin/ by default, or else wherever you instructed the installer to install
BRAT).

There are a number of optional software prerequisites to using BRAT after installation:

• If you plan on using the C interface, you should have a C or C++ compiler installed on your system.
The C interface has been verified to work with Microsoft Visual Studio 13 and 15, but it is expected to be
compatible without major issues with the same tools that could build BRAT 3.1.0, in the same or higher
versions, with the exception of Visual Studio 6 and earlier.

• If you plan on using the Fortran interface, you should have a FORTRAN 77 or Fortran 90 compiler
installed on your system.

• If you plan on using the IDL interface, besides installing BRAT 3.1.0 side-by-side with BRAT 4.2.1, you

need a recent version of IDL for Windows: The IDL interface has been verified to work with IDL version
6.3 and higher.

• If you plan on using the MATLAB interface you need a recent version of MATLAB for Windows: The
MATLAB interface will only work with MATLAB version V8.1/R2013a or higher.

• If you plan on using the Python interface you need to have a version of Python 3.x installed on your
Windows system, and it must match the installed BRAT architecture (32 bit or 64 bit). You will then be
able to open a console in the sub-directory \examples\python of your installation root and run

\> python example.py

• If the Python executable is not referenced in your PATH environment variable, you must invoke
python with the full path; so, if Python is installed in C:\Python34\, the command will be:

\> C:\Python34\python example.py

Check example.py and the annex concerning the Python API to find more details about setting up the
proper environment for running Python code that interfaces with the BRATHL library.

3.3.2. Installing from source

Generally, installation from source will be necessary if:

• You want to use the MATLAB interface to BRAT for a version that is incompatible with the pre-compiled
interface in BRAT.

• You want to use the Fortran interface.

The BRAT source distribution can be found in the file:

 brat-4.2.1.tar.gz

After unpacking this archive in a suitable location, instructions for configuring, compiling and installing
BRAT for Windows can be found in the top-level file INSTALL.

3.3.3. Uninstalling

Open the ‘Add/Remove Programs’ or ‘Programs and Features’ control panel, and select the BRAT-
<version>-<architecture> entry. Everything created during installation will then be removed. Files added
after installation will remain, for the user to check if they can be safely deleted. Alternatively, choose the
'Uninstall BRAT' menu item from Start > Programs > BRAT<version><architecture> – this will have the
same result.

These uninstall methods only work for BRAT installations created through the binary installers. For BRAT
installations from source, you will need to remove the various files and directories manually.

3.4. Linux

3.4.1. Installing the binary distribution

BRAT is developed on platforms running the Debian GNU/Linux 8.x operating systems, 32 bit (PAE) and

64 bit. The following dependencies are required for BRAT to run:

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 18 of 158

• Libcurl
• Libgdal
• libspatialindex
• rsync
• libgeos-c1

• libxerces-c3.1
• libproj0
• libegl1-mesa

Other Linux distributions could work equally well, depending on their compatibility with the Debian 8
distribution. Install the BRAT binary distribution and simply see if it works or not (if it does not, you can

always try to compile BRAT from source – see below for details).

The binary distribution contains pre-built versions of the full toolbox as well as all the BRAT
documentation, examples, C, Fortran and Python interfaces. Because of inherent library versioning and
path issues on the Linux platform, no MATLAB interface is included in the binary installation. If desired, it
can be created by compiling from source for your specific installed version of MATLAB. For the IDL
interface, BRAT version 3.1.0 should be used.

The BRAT Linux binary installers are found in the files:

 brat-4.2.1-i386-installer.run (32 bit)

 brat-4.2.1-x86_64-installer.run (64 bit)

In order to install BRAT, double-click on the installer file from a desktop manager window (or execute it

from a command-line shell) and follow the instructions. (If you downloaded the installer via a network it
may have been given the wrong file permissions and not be recognised by the system as executable. You
should run the command ‘chmod +x brat-4.2.1-x-installer.run’, replacing “x” by “i386” or “x86_64” as

appropriate, in order to make it executable.)

By default, BRAT will be installed in $HOME/brat-4.2.1-<architecture>/ (where $HOME stands for the
user's home directory and <architecture> is i386 or x86_64). It is also possible to specify a custom
install location during the installation process.

After installation, the BRAT Console and GUI applications are immediately ready for use. A shortcut to the
BRAT application will have been placed on the desktop. In order to use the Console Applications, open a
command-line shell and call the applications directly from their installed location ($HOME/BRAT-4.2.1-

<architecture>/bin or else wherever you instructed the installer to install BRAT).

There are a number of optional software prerequisites to using BRAT after installation:

• If you plan on using the C interface, you should have the GNU C or C++ compiler installed on your
system. The C interface has been verified to work with GNU C/C++ 4.7.2.

• If you plan on using the Fortran interface, you should have a FORTRAN 77 or Fortran 90 compiler
installed on your system. The Fortran interface has been verified to work with GNU Fortran 4.7.2.

• If you plan on using the Python interface you need to have installed a version of Python 3.x matching
the installed BRAT architecture (32 bit or 64 bit). You will then be able to open a console in the sub-
directory /examples/python of your installation directory and run

$ python3 example.py

Please see the "Known Issues" section of the README file if you are using the Gnome desktop and notice

missing buttons in the windows title bars (close, minimize and maximize buttons); this is a known issue

that affects all GUI applications in Gnome.

3.4.2. Installing from source

Generally, installation from source on Linux will only be necessary if:

• You want to use the MATLAB interface to BRAT.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 19 of 158

• You are on a system not compatible with the one used to create the BRAT Linux binary distribution (in
which case BRAT will fail to run if installed as a binary).

The BRAT source distribution can be found in the file:

 brat-4.2.1.tar.gz

After unpacking this archive in a suitable location, instructions for configuring, compiling and installing
BRAT on Linux (or other Unix-based systems) can be found in the top-level file INSTALL.

3.4.3. Uninstalling

In the installation folder (the default one or the one chosen), there is an executable called Uninstall-brat-
4.2.1-i386 or Uninstall-brat-4.2.1-x86_64 which can be executed to remove everything created during

the installation. Any files created by BRAT or the user after the installation process will remain, so that

the user can check if they should be kept or can be safely deleted.

There is also a shortcut, called ‘Uninstall BRAT-4.2.1-<architecture>’, which can be double-clicked from
within your desktop manager (if you use the KDE or GNOME desktop environment) to get the same
result.

3.5. Mac OS X

3.5.1. Installing the binary distribution

BRAT 4.2.1 is supported on Intel-based systems running Mac OS X versions 10.8 or later (32 and 64 bit
kernels).

This binary distribution contains pre-built versions of the full toolbox as well as all the BRAT

documentation, examples, C, Fortran and Python interfaces. Because of inherent library versioning issues
on the Mac OS Unix-based platform, no MATLAB interface is included in the binary installation. If desired,
these can be created by compiling from source for your specific installed version of MATLAB. For the IDL
interface, BRAT version 3.1.0 should be used.

The BRAT Mac OS X binary installers can be found in the disk image files:

 brat-4.2.1-macosx-i386.dmg (32 bit)

or:

 brat-4.2.1-macosx-x86_64.dmg (64 bit)

In order to install BRAT, double-click on the image file to mount and open it. Copy ”BRAT” and
”SCHEDULER” application bundles (brat.app and scheduler.app) that are inside the disk image to your
Applications folder.

In order to use the Console Applications, open the Terminal application in the MacOS sub-directory of the
brat.app application bundle and run the applications directly from there.

To do a full installation, including the several documentation items (README, INSTALL, manuals, etc.),
you can copy the mounted installation folder to Applications. This is also recommended if you have other
versions installed, or if you plan to use both 32 and 64 bit versions on the same system. Each complete
version will then be located in its own folder, properly identified, without overwriting any file previously
installed, as would be the case if the separate items were dragged directly into Applications.

After installation, the BRAT Console and GUI applications are immediately ready for use. BRAT can be
started by double-clicking the brat.app icon.

There are a number of optional software prerequisites to using BRAT after installation:

• If you plan on using the C interface, you should have the clang compiler installed on your system.

• If you plan on using the Fortran interface, you should have a FORTRAN 77 or Fortran 90 compiler
installed on your system. The Fortran interface has been verified to work with GNU Fortran 5.1.0.

• If you plan on using the Python interface you need to have Python 3.x for Mac OS X installed on your
system. You will then be able to open a console in the sub-directory /examples/python of the
‘brat.app/Contents’ folder and run

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 20 of 158

$ python3 example.py

Or, to use 32 bit Python,

$ arch –i386 python3 example.py

The Python version that you invoke must match the architecture (32 bit or 64 bit) of the BRAT
installation where is located the example you are trying to run.

Check example.py and the annex concerning the Python API to find more details about setting up the
proper environment for running Python code that interfaces with the BRATHL library.

3.5.2. Installing from source

Generally, installation from source on Mac OS X will only be necessary if:

• You want to use the MATLAB interface to BRAT.

The BRAT source distribution can be found in the file:

 brat-4.2.1.tar.gz

After unpacking this archive in a suitable location, up-to-date instructions for configuring, compiling and
installing BRAT on Mac OS X can be found in the top-level file INSTALL.

3.5.3. Uninstalling

To uninstall any version of BRAT, simply move to the trash any items you copied when installing that
version.

3.6. The RADS Service

To use BRAT with RADS data, periodically synchronized with the RADS servers, you have to install the

RadsService. This service or daemon starts when you login to the operating system, checking at specified
time intervals if there is new data in RADS, and downloading it to a predefined location. You can define
the period, in days, to check for new data, as well as specific missions, mission’s phases, and a storage
location to save locally the downloaded files, organized in the same folder tree structure as in their origin.

3.6.1. Installing the RadsService

The RadsService installation is done from inside the BRAT GUI, using the Options dialog, or Preferences

dialog in Mac OS X, which you can access in the “Tools” or the “brat” menu. Once in the dialog, click the
RADS button to display the “RADS” configuration page. At the top you have the “Install service” button.
All other widgets in the page will be disabled when the service is not installed.

3.6.1.1. Required Permissions

Installing a service requires permissions that the user may not have.

In Windows, installing and configuring the service requires running BRAT with administration permissions,

otherwise the “RADS” configuration page will be disabled. If this happens, and your account is an
administrator account, you should restart BRAT as administrator, by right-clicking the BRAT icon and
selecting “Run as administrator”. If your account is a standard user account, or without administration
privileges, it is recommended to login to Windows as administrator to install and configure the service;
you can also try to run BRAT as administrator, but, depending on your operating system version and how
it is configured, that may not be enough when logged in as a standard user.

In Mac OS X or Linux BRAT should be started without root privileges. The required permissions, if any,
will be asked during the installation procedure. After installing, the daemon can also be configured
without any special privileges.

In all systems, please make sure that any TCP traffic from your machine to port 873 on the RADS server
is not being blocked by a firewall. This is usually not an issue, but it can happen if your system is
accessing RADS behind a more restrictive network configuration.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 21 of 158

3.6.1.2. Installation and configuration procedures

After accessing the “RADS” configuration page, click the “Install service” button. A dialog will pop-up
showing the user name and asking a password. Do not change the user name and enter the respective
password. After that, in Linux, the root password may also be requested to set up the daemon’s auto-
start settings.

When the installation is complete, a notification is displayed, the button text will change to “Uninstall
service”, and the “Service Settings” section will be activated. Use the widgets in “Service Settings” to
specify the local download directory, the interval in days for data synchronization and the missions whose

data you want to receive. The downloaded files will be stored under the “rads” sub-directory of the
directory you specified; care should be taken to enter a directory where all the users that will run BRAT in
the machine have read/write access.

In the RADS configuration page you can also find the “Start service” and the “Synchronize now” buttons.
Using these buttons is optional, the RadsService will operate according to the settings you defined
without the need for additional user intervention. However, the “Start service” button can be convenient

if you want to start the service immediately after installation, without rebooting your machine, or if you
want to start/stop it later for any reason. Also, the “Synchronize now” button will allow you to update the
local data before the next scheduled synchronization, or to stop any current download. Note that this will
not change the periodic synchronization schedule.

3.6.2. Uninstalling the RadsService

If you installed the RadsService, uninstalling it from the BRAT GUI is required before uninstalling the

whole of BRAT. Otherwise you will have to manually uninstall it by using the tools and procedures
provided by the respective operating system, which may not be as simple or convenient for most users.

You will need to run BRAT (as administrator, if in Windows, or as usual in the other systems) and, after

accessing the “RADS” configuration page, click the “Uninstall service” button. If the service is running,
you will have to stop it first. Uninstalling the service will not delete any data previously downloaded. Also,
it will not affect any other component of the BRAT toolbox, which can be fully used independently of the
RadsService.

3.7. Troubleshooting OpenGL issues

Some view types in the BRAT GUI use OpenGL to display 2D and 3D graphics. If your operating system
or graphics card do not support all capabilities required by BRAT, some graphic issues may arise, in
particular with the 3D plots and the globe. In some cases BRAT may even not be able to start at all.

However, BRAT OpenGL requirements are not very demanding, considering that the least OpenGL version
supported is 1.5, dated 2003. Anyway, the OpenGL version and capabilities must be checked when the
BRAT GUI is started, and a warning is displayed if any limitations are found or BRAT cannot start.

In older hardware, or in virtual machines, OpenGL issues are more likely to occur. If you are running your
operating system in VirtualBox, you can try to test the "Enable 3D Acceleration" and the "Enable 2D
Video Acceleration" options (in the "Display" tab of the VM settings). Note that disabling them can in

some cases solve graphics problems.

In some systems, during the OpenGL check, segmentation faults can occur before any warning had the
chance to be displayed (again, this more likely to occur in virtual machines). When that is the case, and
all other options failed, you can disable the OpenGL verification in the configuration file, called BRAT.ini.
The location of this file, in the several systems, is the following:

- Linux: in ~/.config/ESA

- Windows: in C:\Users\<user name>\AppData\Roaming\ESA

- macOS: in ~/.config/ESA

Open the file in any text editor and change the line

check_opengl_capabilities=true

to

check_opengl_capabilities=false

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 22 of 158

In systems where BRAT is run for the first time, it may happen that you cannot find BRAT.ini because the
BRAT GUI could not write it before exiting. In that case, create the file, open it in a text editor, and paste

the following, which will be the only file content:

[Common]

check_opengl_capabilities=false

Note that disabling the OpenGL verification is only a troubleshooting procedure, meant to identify
possible causes of eventual BRAT GUI start-up problems. If you cannot start BRAT without resorting to it,

it is probable that you will experience problems when trying to display the globe or 3D plots, problems
that can only be fixed by upgrading OpenGL in your system.

3.8. Sample Build in Debian 8

Building BRAT and all its dependencies, or at least those that are not available as pre-compiled binaries
for some intended build configuration, is a complex and time consuming task. In spite of BRAT support

for all major desktop operating systems and most common processor architectures, providing installers
for all of them as detailed above, the user may still want to try to build BRAT for some unsupported
operating system or unusual configuration.

The INSTALL document, distributed with the BRAT source package, tries to cover the major guidelines
and issues about this task, for all supported operating systems and major build tools, and to suggest
some hints for the unsupported ones. But, given the big number of different compilation options, both for

BRAT and for the packages that it depends on, it is not possible to cover all possible combinations, which
are still increased by the possibly different operating system configurations, distributions, build tools, and

so on. Because of this, the document is merely indicative in many respects, leaving some options for the
user to decide. It is not an instruction set that, if accurately followed step by step, ensures a successful
build of the whole BRAT package.

However, it is possible to have such an instruction set for a specific environment and build configuration.
This sort of document can be useful either as a reference for similar contexts or to try to infer the

necessary adjustments for different ones, if at all possible. The file “SampleBuild.pdf” consists precisely in
a set of guidelines and detailed steps to build a specific BRAT configuration, in a freshly installed Debian
8, 64 bit. It can be found in the “doc” folder of BRAT sources, which can be downloaded from GitHub at
https://github.com/BRAT-DEV/main. In the “COTS” sub-folder of the sources root there are also some
preconfigured packages required to build BRAT according to the instructions in the build document.

https://github.com/BRAT-DEV/main

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 23 of 158

4. BRAT GRAPHICAL USER INTERFACE (GUI)

4.1. Overview

The BRAT Graphical User Interface (GUI) is a windowed interface to the BRAT Tools. Note that not all tool
functions are accessible from the GUI (some options are only available using the command files directly).

The BRAT GUI includes:

• a “Workspace Elements” dock, with 4 tabs:

o “Datasets”

o “RADS Datasets”

o “Filters”

o “Operations”

• an “Output” dock, with 2 tabs:

o “Logs”

o “Processes”

• the main map

You can configure the position of both docks.

BRAT GUI basically creates parameter files (see Section 8, Using BRAT in ‘command lines’ mode with
parameter files), that are stored in the 'Operations' folder of the respective workspace. It also enables to
save your preferences and work.

4.1.1. The Application Settings (Options)

Some aspects of BRAT appearance and usage can be configured through the Application Settings dialog.
We have already seen how to use it to install and configure the RADS Service.

Besides the RADS section, the dialog includes 3 other sections:

- Paths: to define the default paths for BRAT to search workspaces and data.

- Start-up: to define which actions or settings to use when the application starts.

- Style: to define GUI themes.

In Figure 1: The start-up section of the BRAT settings dialog, the dialog is displayed with the Start-up

section selected. Here you can configure the map layer types to use for the main map and the data views
maps. You can also change the layer options for views in a view window, but in the main map case you
will need to restart the application for the options to change.

Besides vector layers, you can also select raster layers with two display options:

1) A local raster file, such as the one provided in the BRAT installation folder, using the default GDAL
provider.

2) A raster URI using the WMS provider.

The default raster URI used by BRAT can be explained as follows:

a) In the webpage
http://www.gebco.net/data_and_products/gebco_web_services/web_map_service/
it is described that the WMS access is done with the link
https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?

b) One then requests the information of the WMS service via the link
https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?req

https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv
https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?request=getCapabilities&service=wms

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 24 of 158

uest=getCapabilities&service=wms
This returns an XML file with information about the WMS service.

c) The URI to use is then
http://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?&ser
vice=wms&layers=GEBCO_LATEST&styles=&crs=EPSG:4326&format=image/jpeg
that is built by the link of the service
https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?&se
rvice=wms

and the respective parameters for the layer as retrieved from the XML file.

The mandatory parameters for the URI are the layers (layer name to use), styles (which can be empty as
it assumes the default style), srs (the projection), format (the format of the image returned). These

parameters have to match with the available values as described in the XML returned on point b)5.

The log window displays warning messages about raster display failures. You may also need to slightly
adjust the zoom if you see no image in the map and the log window does not show any warnings.

Figure 1: The start-up section of the BRAT settings dialog

The next section of this manual (4.2, Starting with BRAT GUI) explains the basics of the interface. For
more detailed information about all the functionalities, see section 4.3, BRAT GUI tabs description.

4.2. Starting with BRAT GUI

Using BRAT GUI is basically a 3-step process.

5 For more details on the WMS service standard please refer to http://www.opengeospatial.org/standards/wms/introduction

https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?request=getCapabilities&service=wms
http://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?&service=wms&layers=GEBCO_LATEST&styles=&crs=EPSG:4326&format=image/jpeg
http://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?&service=wms&layers=GEBCO_LATEST&styles=&crs=EPSG:4326&format=image/jpeg
https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?&service=wms
https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?&service=wms

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 25 of 158

You have to:

1. create a new Workspace or open an existing one (see section 5);

2. define one or several ‘Dataset(s)’: the product data you want to work on (see section 4.2.2);

3. add one or more Filters: this step is optional and allows the creation of data filters (for your
input datasets) using time or location criteria (see section 4.2.3); filters are independent of the
workspace and can be reused in different workspaces;

4. create an Operation (quick or advanced): configure the data fields you want to visualize and
respective process parameters that are used for generating the plots (see section 4.2.4).

The Datasets, RADS Datasets, Filters and Operations tabs are within the 'Workspace Elements' dock.

Each tab corresponds to a different function, and to a different step in the process, so you'll have to use
fist the ‘Datasets’ or the ‘RADS Datasets’ tab, to define the input data, then the ‘Filter’ tab in case you
want to filter inputs, and finally the ‘Operations’ tab to define a computation over the previously defined
inputs, generating a view with the result.

This section gives the main information for a quick-start with BRAT GUI. For more complete information,

see the relevant sections within the 4.3, BRAT GUI tabs description.

4.2.1. Create a workspace

When you open BRAT GUI, the software asks for the name and location of the ‘Workspace’ you will be
working in. A 'Workspace' is a way of saving your preferences, computations and generally the work done
with BRAT GUI. Some or all elements of a workspace can be imported into another workspace. The
“Workspace” menu (and also the main toolbar) allows the user to create, open, close, save, import,

rename or delete a workspace.

It is highly recommended to save your workspace (ctrl+s, or ‘save’ in the “Workspace” menu)
while working. You will be asked whether or not you wish to save the workspace when you quit BRAT
GUI. Note that if you answer “no” and have not saved anything previously, none of your work can be
recalled later.

If there are already one or more valid workspace(s), BRAT GUI recalls the last used Workspace by
default. This behaviour is configurable in the Settings dialog.

Figure 2: 'Create a new workspace' window. You can choose to save it wherever you want on your
hard drive or local network, and name it as you prefer (preferably in such a way you will remember

what's in it).

4.2.2. Create a dataset

The first tab opened if you have never used BRAT is ‘Datasets’ (otherwise, the default tab is the one that

was opened when you left BRAT GUI the last time you used it). This 'Datasets' tab is dedicated to the
definition and selection of the data you want to use. You must define at least one dataset to be able to
further use BRAT.

To create a dataset, click on the 'new' button in the Datasets tab.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 26 of 158

Figure 3: The Dataset tab as it appears when opening a new Workspace. The “New” button enables to
create a new dataset.

Default name for a new dataset is 'Dataset_1', with the number incrementing each time you create a
dataset. You are strongly encouraged to rename it, so that you'll remember what's in it when using it
later on. To rename it, simply double-click on dataset name, type in another one and press the Enter
key.

When you have created your dataset and named it, you then have to add one or more data file(s),
chosen from your hard drive, CD/DVD driver, local network or other medium. You can do so by using the
'Add Files' button. At least one file is necessary.

If you wish to add a long list of files, the ‘Add Dir’ button allows you to choose all of the files within a
folder by simply choosing the directory in which they are stored. Please note that only the data files
recognized by BRAT are added to the dataset, the remaining files in the folder (with an unknown
format) are ignored after raising a warning message.

Only coherent datasets are possible (i.e. same format, same data product). BRAT’s own netCDF
outputs can be used, even several of them, provided they have exactly the same variables, with the
same names. In the current BRAT release, homogeneity of the Dataset files is performed automatically as
the files are added.

Once you have added at least one data file, if you click on one file name in the list, you can see (at the

bottom) information about the available fields within the data product, and (for netCDF files) about the

file description below. The satellite tracks for the selected data file are also shown on the main map.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 27 of 158

Figure 4: Several datasets. On the top, the list of files; on the centre, the description of the netCDF
data file, bottom (left) enumeration of the available fields inside the netCDF file, bottom (right) field

description. The satellite tracks for the selected data file are plotted on the map at the right (red line).

4.2.2.1. RADS datasets

A RADS dataset is created like a standard dataset, by using the ‘New Dataset’ button and naming the
new dataset, but you won’t be able to select individual files or folders to add data to it. Instead, you
select a single mission from the list of missions made available by the RADS server and assign it to the
dataset. Each dataset can be associated with only one mission. All files locally downloaded by the
RadsService for the respective mission and selected mission’s phases will be included in the dataset.

After naming it, the new RADS dataset is created empty, and you select the respective mission and

phases from the list of missions displayed by clicking in the drop-down button of the dataset entry in the

“Datasets” list.

Unlike with standard datasets, no satellite tracks are displayed when a RADS dataset is selected, because
typically the large amount of data, even for the smallest phases samples, would cover the whole map,
which besides inefficient is useless in terms of visual information.

4.2.3. Create a filter

The filter enables to select only the data relevant for your work, in order not to uselessly process data out
of desired area and period (date or cycle and pass). This new feature “Filters” adds a graphical option to
define the filters which can also be defined by hand in the ‘Define selection criteria’ feature as
explained in Section 4.2.4.2.4. Note that, besides selecting relevant files, ‘Filters’ also allow
extracting/selecting data from files. This new feature intends to visually define the data that the user
wants to process and was designed with the selection of both geographical and time criteria in mind.

Therefore, it is required to set both the area and time criteria to be able to use the filter feature in this

tab.

To use this feature, click on “Create filter” button to create a new filter. The default name for a new
filter is “Filter_1”, with the number incrementing each time you create a filter. Then follow the
instructions below to define the selection criteria (spatial and temporal criteria).

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 28 of 158

Define spatial criteria (“Where” section):

Click on the “Selection Tool” button, located at the top left of the “New Area Selection” group box, to

activate the selection tool, which will allow you to draw a selection rectangle over the map or write the
area coordinates in the text boxes below the button.

Click on the “Create area” button, the top left button of the “Areas and Regions” section, to create a
new area from the current map selection. If the area was defined by writing the coordinate values, the
area selection will be created in the map; conversely, if the area was defined with the mouse, the text
boxes will reflect the area coordinates. The default name for a new area is “UserArea_1”, with the

number incrementing each time you create an area. You are strongly encouraged to rename it, in order
to easy the identification of each area.

Once you have created all the required areas to define the spatial criteria, select the checkbox of each

area to include it into the filter.

Note that:

• The “Create area” button is enabled only when the “Selection Tool” is active.
• If the selection is partially outside the map limits, BRAT creates a truncated area containing

only the part within the map limits.
• To duplicate an existing area, select it on the areas list, enable the selection tool, and click on

the “Create area” button.
• The areas can be grouped into different regions for easy handling of a long list of areas.

 Figure 5: The filters tab. The “New Area Selection” tool enables to draw a selection over the map or
enter its values in the coordinates fields; the “Create area” button creates a new area from current

map selection.

Define temporal criteria (“When” section):

Edit the information on this section to define the desired time period. You can define the start and stop
times using any of the following options:

- Absolute date and time;
- Cycle and Pass of the product mission;

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 29 of 158

- Relative time in days from a reference date and time.

Restrictions on the usage of the “Filters” tab:

The use of this filter feature does not invalidate the use of the manual selection criteria in the Operations
tab, and in some cases, it may not be possible to use the filter defined in this tab. One such case is when
the selected file(s) does not have a time variable. Since the filter defined in this tab requires the time
criteria to be defined, if the data does not have a time variable the GUI will throw a warning saying that
the filter cannot be applied.

In those cases, two options are available if the user wants to cut a geographical area of a dataset which

does not have any time variable. The filter tab should not be used in those cases and the user can use
the two following options:

1. The user defines the limits of the output grid in the Sampling configuration parameters at the

definition of the operation (see Section 4.3.5.4.6). This is the easiest method that is suggested.
2. The user can also define manually the selection criteria where the lat and lon limits can be

defined (see Section 4.2.4.2.4) as a logic expression. For example to define a box between 38º
and 39º in latitude and 22º and 23º in longitude, the expression would be “lat < 39 && lat > 38

&& lon > 22 && lon < 23”.

4.2.3.1. Customizing filter application

Filters are common across workspaces and independent of the operations (see 4.2.4), where they are
used to select the pertinent data. So, the same filter can be applied to different operations, without
requiring in each case the redefinition of data selection criteria. However, in some cases it is necessary to

customize the filter for a specific operation. The customization details are then provided by the user, as
explained next, and transparently attached to the operation (not to the filter, which always preserves its

definition) until the BRAT session closes.

Filters are internally applied using aliases (see 5). The aliases mechanism allows BRAT to identify in data
files of different products the respective variable names for the parameters longitude, latitude and time,
which are required to define the space and time boundaries of the data to filter in those files. However,
some files have more than one variable referring the same parameter, e.g., variables with different

dimensions. For instance, there can be a variable called “lat_01” with dimension time_01=1458 and also
a variable “lat_20_ku” with dimension time_20_ku=29274, and still other, all referring latitude. In this
example, if the user wishes to include lat_20_ku in the operation, but the default latitude variable (as
defined by the respective alias) is lat_01, an error will occur and a message is displayed after the
operation fails to execute, notifying about the dimensions discrepancy problem (time_01 is automatically
inserted by the filter in the operation, but so is time_20_ku, dimension of lat_20_ku).

In this case, the user must specify which variables should be used by the filter for the parameters
longitude, latitude and time. When the “Selection criteria” node is selected in the “Data Expressions” tree

widget (see 4.3.5.3), a button in the frame below it, identified by the filter icon, becomes active and
triggers a dialog box where the default variable names are displayed and can be modified by the user.
These names will be used by the filter, instead of the default ones, in later operation executions. In our
example, lat_20_ku should be specified as the latitude name instead of lat_01; then, the variable names
for longitude and time should also be changed to the names of the respective variables having the same

dimension as lat_20_ku (e.g., lon_20_ku and time_20_ku).

4.2.4. Create an operation

Once you have defined which data you want to work on (and eventually the filters that will be used for
data selection), you have to define which data fields you want to process and visualize. This is done in
the ‘Operations’ tab. You can choose between creating a quick or an advanced operation.

Create a quick operation:

To quickly execute an operation, select a dataset, check a field of interest in the Fields list, and click the
Map or Plot buttons to see the result. A new name, that you can change later, will automatically be
assigned to the new operation.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 30 of 158

Note that you can convert the quick operation into an advanced operation one by duplicating it in
"Advanced" mode. This is necessary if you want to keep the results of a quick operation, because the

next quick operation will replace all results and definitions of the previous one.

Create an advanced operation:

If none exist, you have to create an Operation. Click on the 'create operation' button.

Default name for a new Operation is 'Operations_1', with the number incrementing each time you create
an operation. You are strongly encouraged to re-name it, so that you'll remember what's in it when using
it later on. To rename it, simply click on “Rename operation” button, type in another one and press the

Enter key.

Figure 6: The 'Operations' tab in the advanced mode. The “Create operation” button enables to create
a new operation.

Otherwise, you may work with a previously saved operation. The 'Operation' dropdown list contains all

the already defined operations within the workspace, which can be selected, renamed, modified, deleted,
duplicated, and other options.

4.2.4.1. Select source data

The information about the source data is in the topmost part of the Operations tab.

You first have to choose the dataset you want to work with from the ‘Dataset’ dropdown list. Then, within
this dataset, the whole list of available fields is proposed, organised as a tree. If the data are split in
different records, click on the '+' to expand the tree, '-' to flatten it.

 The description of each field is given in the top (right) text box information available.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 31 of 158

Figure 7: On the top, the dataset dropdown list; below, the tree with records and data fields.

4.2.4.2. Define expressions

4.2.4.2.1. Generalities

An operation consists mainly in the definition of 'Expressions'.

An expression can be simple (one data field), or complex (with the use of arithmetic combinations,

functions applied on several fields, etc.).

In the second row box of the 'Operations' tab ('Data Expressions'), you can see four categories of
Expressions:

• ‘X’or‘Lon’ (case ‘Plot’ or ‘Map’ option is selected, respectively)

• ‘Y’or ‘Lat’ (case ‘Plot’ or ‘Map’ option is selected, respectively)

• Data

• Selection criteria (optional)

At least one expression as 'X', and one as 'Data' must be defined for an Operation to be valid.

These expressions can be filled by several means, the quickest being by drag & drop: drag a field from
the top (left) list and drop it in either of the Data Expressions nodes (you can also use contextual menus

by right-clicking either on the data fields or on the expressions, or use the 'Insert expression' and/or
'Insert field' button, or type in an empty expression the field names and functions you want to apply).

A 'brat_index_data' can be listed within the available data field. This is the index of the data (i.e.
Measurement number in the file and/or record) ordered along the time within a given file. This
means that it is not available for (e.g.) longitude-latitude grids, or for some data where the time is not
provided explicitly.

If using this index with several different files in the same dataset, note that the order of the files as

appears within the dataset will be kept (thus, if the files are not ordered chronologically, the net
result will not be chronological either).

Note that only one expression can be defined as X, and (optionally) one as Y, whereas more than twenty
can be defined as Data.

An Expression can be:

• only one field in a dataset (typically, for a map, longitude as X-axis, latitude as Y-axis, and e.g.
significant wave height as Data, etc.)

• a combination of fields, either +,-,* and /, or by using the available Functions (see 4.3.3.4.2,
Functions).

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 32 of 158

• a pre-set combination of fields among the ones you will find in the ‘Formulas’ (see 4.3.3.4.3,
Formulas), e.g. SSH computation.

To check if your expression is well formulated, you can click on the 'Check syntax' button (green tick on
the right of the Data box). Note, however, that this won't provide you with a validation of the relevance
of your expression from the point of view of physics.

The 'Show Info' button provides information about the original units (the ones defined in the data

products) and the units used during computation or selection.

The 'Show Aliases' button provides information about the aliases available for the chosen dataset.
Aliases are equivalents that you can use instead of the fields' name.

E.g. a %{swh} alias exists, that works for all GDR data for the Ku-band significant wave height. Note,
however, that since not all the fields exists for all the data, you may encounter warnings if you try some

aliases on all the altimetry data.

If you want to go back on your work later on, or to save an expression as formula choose the “Save as

formula” option button and fill in the requested fields.

4.2.4.2.2. X, Y and data expressions

You can change the name of any X, Y or Data Expression, by double-clicking on their name, or by using
the contextual menu available by right-click. This will then be the default name on the plots, on the axis
or near to the scale if you have not given a title to your Expression (in the title/comment).

You can change the unit as it appears in the Data Expressions tree area.

BRAT is able to understand all SI units and their sub-units as defined in the International System, i.e.
case sensitive (e.g. “ms” means milliseconds, whereas “Ms” would mean megaseconds). There are also
“count” for data without dimension, and “dB” (see section 4.3.3.4.1, Units). If you let “count” (which is

the default) as unit, the resulting data will be in the basic SI unit (e.g. in metres, even if the field you
used was defined in mm). Note that you have to validate your change of unit by typing “enter” or
clicking on the box below.

If you choose a pre-saved formula, a default unit will appear as the unit. If you select one field in the

dataset list and insert it, it will automatically be filled with the correct unit (but if you finally write your
own formula, beware that the final unit might be different). If the unit you defined does not fit the unit of
the data as defined, an error message will be generated (again, this does not work for complex
expressions).

On any X, Y or Data Expression, you can apply 'data computation' (see 4.3.3.4.5, Data computation), to:

• compute statistics at each point (same X, optionally same Y): MEAN, STDDEV (standard
deviation), COUNT.

• do some arithmetic operations between files within a dataset: adding, subtracting or
multiplying: SUM, SUBTRACTION, PRODUCT)

• it can also be used for the display (MEAN, FIRST, LAST, MIN, MAX), if you prefer to visualise, for
instance, the last value rather than the mean one.

Note that to compute the statistics for the Data Expressions as a whole (Number of valid data, Mean,

Standard deviation, Minimum, Maximum), you can use the 'Compute Statistics' (capital epsilon on the
top right) button.

There are two main kinds of Operations:

• one – or several – Data expression(s) with respect to another one (X), leading to a “curve” plot

• one – or more – Data expression(s) with respect to two others, leading to a “map” plot or 3D
plot.

In the first case, you'll fill only the “X” expression; in the second, you'll fill both X and Y expressions. Note
that X and Y can be Longitude and Latitude, but can also be any other two fields or combination of fields
within the dataset.

If you fill both X and Y, you have to define a resolution (or sampling). For Longitude, Latitude a default
resolution (1/3 of a degree for both axis), minimum and maximum are proposed. For other X and/or Y, a
step of 1 is proposed, but no minimum and maximum. You can define a step, minimum and maximum

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 33 of 158

values, or use the minimum and maximum value of your expression by clicking on the 'Get min/max
expression values' button in the ‘Sampling’ section (on the bottom). The number of intervals is

automatically computed from those elements, and cannot be directly changed.

Note that

• you cannot choose different resolutions for different data expressions within the same operation
(they all share the same X and Y!).

• by choosing a step, you may sub-sample your source data.

• Changing the Min/Max can be used to extract a smaller X-Y area (as well as the selection
criteria).

• And, of course, the smaller the steps, the higher the computation time! (and the heavier the

output file)

You can also choose to smooth and/or extrapolate the data by means of a Loess filter so as to obtain a
fully coloured plot (and not individual tracks or points on a map). In that case, you will have to fill in the
corresponding information for X and Y, too (see section 4.3.3.4.7, Smoothing).

4.2.4.2.3. Constraints related to field dimensions

The BRAT core functions cannot handle properly the case where X, Y and data expressions have different
dimensions, e.g., if Data Expression has three dimensions while X and Y have only two dimensions. If an

operation is defined like this, it cannot be executed. A check is done just before the operation is executed
and the user is warned if the dimensions of all involved formulas are not homogeneous in what concerns
their dimensions.
If the number of dimensions is the same for all fields used in the operation expressions, the operation

starts executing, but additional checks are done where the dimensions of all required fields are also
compared by name. There is a good reason for this, because it is necessary to distinguish the case of
different dimensions that, in spite of having the same size, are applicable to different variables. This will

be a safeguard to prevent the user from running unsupported types of operations.

4.2.4.2.4. Selection criteria expression

The Selection criteria expression is used to select data e.g. by date and/or boundaries, etc. and/or for
editing it using flag values, thresholds, etc. Logical, relational functions can be used, separated by &&
('and'), || ('or') or with ! ('not'). Only the data fulfilling the whole set of conditions, and not equal to
default values, are selected.

The Selection criteria expression can be filled the same way than X, Y and Data expression. There can be
only one Selection criteria expression. It is optional; when it is filled the 'Selection criteria' title is bold.

All the fields or combination of fields of the source data can be used. To use a combination of fields, it
can be clearer to use a formula (see section 4.3.3.4.3, Formulas).

Note that the selection criteria expression is working only with the basic SI units (i.e. when defining
thresholds, you have to put values in e.g. meters, even if the data source field is in mm).

4.2.4.3. Output

To process the defined operation on the whole selected dataset, you have to click on the ‘Execute’,
button. The Logs tab then opens (see section 4.3.5, Logs tab), and you can see the current task(s) being
executed (both operations and views), comments during execution (verbose mode) and errors.

The “Schedule Execution” button enables to launch the Operation or an export (see next section) at a
scheduled time. The “Launch scheduler” button launches the SCHEDULER, which have to be running in

order to have the task executed (NB. the Brat SCHEDULER interface icon gives access to the same

interface – see chapter 7 for more details).

Executing an operation builds an output netCDF. The name of this netCDF file is predefined using the
name you gave to your operation, and cannot be changed within the GUI. It is stored in the Operation
folder within your workspace.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 34 of 158

BRAT output netCDF files can be used as source data in a new dataset or used with any other tool
reading netCDF.

4.2.4.4. Export

You can choose to export the output data by clicking on the 'Export' button. Several formats are
available:

• NetCDF (the same than the automatic one, but you can choose where you want it, and how it is
named);

• Ascii - The Ascii export can also be seen (once saved) through a built-in text viewer ('Edit Ascii
export' button);

• GeoTiff (if the axis of the operation are longitude and latitude), which also provides a Google
Earth KML export format.

The KML/KMZ file contains the following information:

• The GeoTiff image overlaid,

• Along track points coloured as the GeoTiff. In the description of each point you will find:

o Latitude and Longitude information

o The Data variable chosen to be exported. In case the data exported is a distance
measurement, the different along track points would be also placed with the elevation of
the exported data. (Only one variable can be exported each time. If there are more

variables placed on the Data folder, the export will not work).

o Acquisition time, dataset/filetype information.

o Colour bar relating the values of the variable exported and the corresponding colour.

o Brat logo overlaid.

4.2.5. Create a view

When you have executed your operation, you may want to have a look at the results in a graphical way.

This is usually automatic, after having computed a certain operation. If you want to view a certain
operation you had previously computed, you can do so by accessing “Window>Workspace Views” or
“Tools>Operation Views” menu, which opens all views of current workspace or operation, respectively.
In this way, you will not have to recompute every operation you may want to view. The option at
“Window>List” list all view windows that are opened or active.

Figure 8: Dialog shown when “Window>Workspace views” menu is triggered that allows the selection
and visualization of a certain operations

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 35 of 158

In the current version of Brat you can only visualize data expression(s) from the same Operation
previously computed. Therefore it will only make sense to visualize data from a given Operation. You can

select the operation you want to visualize in the “Operation” combo box.

The type of available display data has three main categories:

• Y=F(X), which are basically curve plots

• Z=F(X,Y), which are the representation of a value (in colours/contours) with respect to two
others

• Z=F(Lon,Lat), i.e. maps

 Different view types, will generate different view windows.

Figure 9: A 'Display’ window with one view created. Note the list of available views

Notice that all the data expressions/fields are already made available for you to use under the “Data
Options” tab. Here you can customize how to view your data or which data expressions to render.

You can select more than one data expression to be displayed. To handle animated plots configuration
change the settings under “Animation” tab. All plot properties are to be changed within the visualisation
window (see visualization interface).

4.2.5.1. Export

A view can be exported into an image file, either by using the appropriate toolbar button of the view
window, or directly from the command line without the need to start a BRAT GUI session. In fact, the
BRAT executable can be called with this purpose as a command line utility, by direct invocation in a
prompt or by using a script.

For this to be achieved, open a terminal and make cd to the directory where BRAT is installed. Then, call
BRAT as in the following example, taken from a Unix console:

./brat /home/brat/s3-altb/project/user-data/workspaces/RCCC WaveHeight_lat_2D_J2_226
/home/brat/images/WaveHeight_lat_2D_J2_226-3D.jpg 3

The first argument is the path to the root directory of the workspace that contains the operation.

The second argument is the name of the display (view) you wish to export as image.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 36 of 158

The third argument is the path of the file to export the image to, including the file extension (which will
be used by BRAT to infer the intended image format).

An optional fourth argument can be specified to require a 3D image, if supported by the operation. When
used, this fourth argument should always be the number 3.

4.3. BRAT GUI tabs description

4.3.1. Workspace menu

A 'workspace' is a way of saving your preferences, computations and generally the work done with BRAT.

A workspace contains definitions of:

• Datasets, that define the collections of files of the same kind you want to use,

• Operations, for reading and/or processing and/or selecting data within a dataset. An operation
produces an intermediate file (netCDF) and a parameter file. Alternatively, data can be exported,
in netCDF, Ascii or GeoTiff and KML.

• Formulas, to enable you to use pre-defined combinations of data fields or to define them
yourself and re-use them later.

• Views, that plot results of one or more operations

All these are stored within a folder named from the workspace, with a sub-folder for each part: Datasets,
Displays, Formulas and Operations. The Operations folder includes parameter files (.par), which define
the Operations done, and the later also include the netCDF intermediate files produced by the tool.

Workspace folders can be copied and exchanged. Results saved within a workspace can be accessed even
if the source data are not available (but warning messages will be emitted when opening the workspace if
some source data are not available).

Workspaces in BRAT GUI are managed by the menu the further to the left. It contains the following
items:

• 'New': creates a new workspace

• 'Open': opens a previously saved workspace

• 'Save': (or ctrl+s) saves the current workspace and all its datasets, operations, formulas and
views

• 'Import': imports a previously saved workspace within the current one (Datasets, Operations,

Formulas and/or Views). Formulas can be imported separately, but otherwise, Views need the
Operations and Operations need Datasets, so that you can't import Views without Operations and
Datasets, nor Operations without Datasets.

• 'Rename': renames the current workspace (note that it is not a copy, but a change of name)

• 'Delete': deletes the current workspace

• 'Recent workspaces': lists the most recently used workspaces

4.3.2. Datasets tab

This tab is dedicated to the choice of the source data product files.

In this tab window:

• The selected files’ names are on the left; as well as the tools to select them.

• The bottom display lists all fields defined for this kind of data and, in the middle there is a more
detailed description of the selected field (extracted from the data dictionary).

You may define as many datasets as you wish.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 37 of 158

Note that if you want the same operation to be applied to several files separately, you will have to define
several datasets, or use the parameter files directly with a script (see section 8.3).

Figure 10: Examples of standard and RADS datasets with netCDF data selected.

4.3.2.1. Creation of a dataset

The ‘Dataset Name’ is available in the “File Datasets” text box. This list contains all the defined dataset
names and allows you to select and rename a dataset. You have to give the dataset a name (with no
spaces or special characters in the name).

• If you change the name within “File Datasets” text box, and press the Enter key it renames your

dataset.

• The 'New Dataset' button creates a new dataset, with a name like 'Datasets_2'

• The 'Delete...' button enables to delete an existing dataset, if your dataset is not used in an
Operation.

4.3.2.2. Management of the data files list

The 'File Datasets textbox list is organized as a tree like structure that will list all the Datasets included
in the current workspace and, when expanded, a certain dataset will list all the files of the dataset. Note

that only coherent datasets are possible (i.e. same format, same data product).

• The ‘Clear’ button will remove the whole list included in selected dataset.

• You can delete the selected file by using the ‘Remove...’ button.

File names don't have to be the original ones. However, files within a dataset have to be of the same data
product (no mixing of e.g. Envisat and Jason-1 GDR data).

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 38 of 158

• The ‘Add files...’ button (at the top right of the window) enables you to select those data files you wish
to work on.

• If there are a lot of files, you should preferably select a whole folder by clicking on ‘Add Dir...’, or
proceed in several steps. Otherwise, some files names could be truncated, thus leading to an error.

4.3.2.3. Data file information

On the middle left part of the Datasets tab, you can see information about the fields within the source
data product.

Among the listed dataset properties, the following are available:

• 'Full name': the fully described name in the file structure hierarchy and related to the record.

• 'Name': the short field name

• 'Unit': the unit of the field

• 'Dim': Dimension of the field (number of values in arrays, if the data is stored in an array)

Under the list there is the 'Fields description' box with a detailed description of the currently selected
field (as extracted from the data dictionary)

Left, under the file list is a 'File description' box, which give the information about the file for netCDF
products.

4.3.3. RADS Datasets tab

Apart from its creation, detailed in 4.2.2.1, the RADS dataset concept in BRAT is similar to the concept of

the standard datasets in the ‘Datasets’ tab. This similarity is reflected also in the two dataset tabs. But,
because no individual files or folders can be associated with a RADS dataset, this tab does not present
the buttons to manage files and folders.

With the exception of these buttons, and of the behaviour of the button to create new datasets, both tabs
present the same widgets, in the same places, with the same functions. The only remarkable differences

are that no satellite tracks will be displayed when a RADS dataset is selected (otherwise the map would
be covered for the most part with superimposed, indistinguishable satellite tracks, which besides
inefficient would not be helpful), and that the product description showed in the ‘RADS Datasets’ tab is
the common description of all files of the respective dataset’s mission, not of a single file.

4.3.4. Filters tab

For filtering data files, you can use the Filters tab. When you apply a certain filter to an operation, you

will filter out all data that do not match the filtering criteria. A filter is a set of spatial (areas) and/or

temporal criteria (absolute or relative time or cycle and pass constraints). The top four buttons allow you
to perform basic Filters operations, namely:

• Create a new filter by pressing the “Create Filter” button.
• Rename an existing filter by pressing the “Rename Filter” button.
• Delete an existing filter by pressing the “Delete Filter” button.
• Saving an existing filter by pressing the “Save Filter” button.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 39 of 158

Figure 11: Filters tab showing applied filter

To define which areas this filter will contain, you must select/unselect the checkbox of each one. Areas
can be organised into regions – regions are mainly area containers and only exist to provide the user with

better areas handling (i.e. the lake region contains only lake areas). To edit the region settings, click
under “Region Settings” button and a new dialog entitled “Region Settings...” should pop-up. There are
three buttons available for use:

• “Create a Region” - creates a new region
• “Rename a Region” – renames the current region
• “Delete a Region” – deletes the current region

The purpose of this Dialog is simply to create a new region – the user can do this simply by selecting the
areas to be included in the current (new) region and simply click “close” when the current region is

defined.

The list of all available regions is listed within the drop-down menu near the “show all” button. The text
fields of the “New Area Selection” display the bounding area for each area within the selected region. The
“Show All” button simply lists all the available areas and the user should select only the ones that are to

be included into the current filter. There are several ways to define a new area:

• One can simply select a new area by first using the “Selection Tool” button in the “New Area
Selection” and then clicking on the “Create Area” button. The newly created area will
represent the selected area created with the “Selection Tool” (see section 4.2.3).

• From a KML file using the “Add Area from KML file” button. All layers defined in the KML
with non-empty bounding boxes will be listed for the user to select one.
Note, however, that only polygon geometry types (Polygon and MultiPolygon) are supported.

Also, BRAT does not support rotations, so any values defined in the <rotation> tag of KML
LatLonBoxes will be ignored.

The user can also rename a selected area by clicking on the “Rename Area” button. In a similar way,
the user can also delete an area by clicking under the “Delete Area” button. Another filtering option is
the Start Date/Stop Date – this will only keep the dataset files whose time range is contained within the

range [Start Date, Stop Date]. Other filtering option is the Start/Stop Cycle and Pass that should only

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 40 of 158

keep the dataset files who’s Cycle and Pass is contained in the range [Start Cycle, Stop Cycle]. The
relative Start/Stop dates works in a similar manner.

4.3.5. Operations tab

This tab is dedicated to the definition of what kind of computation(s) and/or selection(s) you want to
apply on the data.

Building an operation in fact creates a 'parameter' files (.par), which keeps all the information and which
is stored in the Workspace Operations folder. Executing an operation uses either the BRATCreateYFX or
the BRATCreateZFXY program on this parameter file to generate the output of the operation. The whole

process can however be done completely through the GUI.

In this Operations tab window:

• The management of the operations is at the top.

• The data source (datasets and fields available within) are on the left.

• The middle part shows the different Expressions within the current Operation

• The bottom part shows the content of the selected Expression.

You may define as many Operations as you wish.

Note that an Operation must contain at least one X expression, and one Data expression.

Figure 12: Operations tab, with an operation being built.

4.3.5.1. Manage Operations

Several functions are meant to 'manage' the operations.

• The ' operations' dropdown list contains all the defined operation names. To rename a certain
operation you should use the “Rename Operation” button and allows you to select and rename an
operation. When renaming an operation, take care that it does not copy it, but it replaces the old one.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 41 of 158

• The 'Create a new operation' button is used to create a new operation, with a name like
'Operations_2'

• The 'Duplicate selected operation' button enables you to copy an existing operation, and modify it
(e.g. change the dataset for another one with the same kind of data at another date, change the
selection criteria, etc.).

• The 'Delete selected operation' button enables to delete an existing operation, if none of your
operation's expression is used in a View.

• The 'Execute' button executes the active operation.

• The 'Export' button enables to save the BRAT GUI output on either another format (Ascii, GeoTiff and
KML) or in netCDF, and under another name wherever you prefer it.

• The 'Schedule Execution' button allows you to delay operation execution by scheduling it for a later
time.

• The 'Brat Scheduler' button launches the SCHEDULER application, which allows you to manage the
delayed operations.

• The 'Generate Statistics' button gives the global statistics for each Data expression and saves the
result in file. You can thus retrieve:

• Number of valid data,

• Mean,

• Standard deviation,

• Minimum,

• Maximum,

If you want to apply the same operation to different datasets, and be able to compare their outputs, you
will have to re-create it as many times as needed, using the ‘Duplicate selected operation’ button. You
can also use the parameter file directly with a script (see section 8.3, Using the parameter files to
process many datasets). Or, you can export the data in netCDF for future use (otherwise, the output file
will be replaced by the new one).

4.3.5.2. Define source data

• 'Datasets' box lists the names of the datasets available within this workspace: you have to select one
of them

• 'Fields' box shows the list of all fields available within the selected dataset, organised as a tree.

Right-click provides a contextual menu, with 'sort ascending' and 'sort descending' at the bottom, to
sort the data field names in alphabetical order (or reverse).

To know some information about one field, hover the mouse pointer over it, and a tooltip will appear.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 42 of 158

Figure 13: Operations tab, with the Workspace Elements pane detached and the main map extended to
the boundaries of the application window.

4.3.5.3. Define expressions

In the middle of the Operations tab is the tree with the expressions, including the selection applied. You
have four kinds of expressions:

• 'X': as axis (the data will be organised relative to the values within this field); only one X expression is
possible, and one is necessary.

• 'Y (optional)': to be used as second axis (e.g. X=longitude, Y=latitude); only one Y expression is
possible

• 'Data': at least one Data expression is necessary, but you can add up to twenty of them.

• 'Selection criteria' (optional; the title is bold when it is filled): it enables to select data e.g. by date
and/or boundaries, etc. and/or for editing it using flag values, thresholds, etc. Logical, relational functions
can be used, separated by && ('and'), || ('or') or with ! ('not'). All the fields, or combination of fields of
the source data can be used. To use a combination of fields, it can be clearer to use a formula. Note that
the selection criteria expression is working only with the basic SI units (i.e. when defining thresholds, you
have to put values in e.g. meters, even if the data source field is in mm).

X and Y are used as axis: BRAT will read the source data and extract, for each X (optionally Y), the
corresponding value of each Data expression fulfilling the conditions defined as 'selection criteria'.

All expressions can be filled the same ways.

The expressions can be filled by several means:

• The quickest is by drag & drop: drag a field from the leftmost list and drop it in either one of
those, or in the 'Expression' box;

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 43 of 158

Figure 14: Example of menu that appears by right-click on a data expression (’SLA’). Note that here
one data field ('equator_time') is selected (left-click); if no data field is selected, this item is inactive.

'Insert empty expression' will add a new expression (in 'Data'), or replace the active expression by an
empty one (in X and Y). 'Insert (field) into expression' add the selected data field (if any) in the active
expression. 'Insert function' enable to use the list of mathematical and logical functions, and 'Insert

formula' insert one of the predefined expressions saved.

'Sort' enable to sort all the expressions (if there's more than one) by their name in either ascending or
descending (alphabetical) order.

• or use the 'Insert field' button (which will insert the selected data field in the active expression).

• or you can always use the 'Insert expression' (which will insert an empty expression, to be

filled by one or several combined fields) and type in an empty expression the field names and
functions you want to apply, using your keyboard

Since you can do more than insert one field, a set of functions is available, as well as

• The 'Insert Function' button opens the pop-up window with the list of available functions (see
section 4.3.3.4.2, Functions) for the complete list and specifications)

• The 'Insert Formula' button opens the pop-up window with the list of available formulas. A set
of those is pre-defined (see section Formulas); more can be saved using 'Save as Formula'
button and re-used, in the same Workspace or imported in another one

• The 'Insert Algorithm' button opens the pop-up window with the list of available algorithms
(see section Algorithms) for the complete list and specifications)

4.3.5.4. Expression information and parameters

When an expression is selected, several parameters can be filled/used.

• 'Unit' of the expression: this text field is filled whenever you define a data field as expression, or use
a predefined formula. Default is 'count' (meaning, without unit). See section 4.3.3.4.1, Units below for
details about the units you can use. The unit of the Selection criteria expression is always 'count, by
default', since it is a logical expression)

• The 'Data box: this where the Data field of Data Expressions is defined

• 'Data Computation' rolling list

• 'Check Syntax' button

• 'Show info' button.

• 'Show aliases' button

Aliases have been added within BRAT to take into account the fact that the equivalent fields are not
named similarly for all the datasets (names following the User documentation made by the data
provider). The equivalent fields have been defined with the same alias(es) for all the altimetry data. If
a given field is not available within the current dataset, a warning will be issued.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 44 of 158

Note that there may be several aliases for a same field, in order to speed the typing (e.g. %{mss}),
or be more self-explaining (e.g. %{mean_sea_surface}).

An alias can be a field or a combination of fields. They are stored in an “aliases.xml” file that can be
edited (in BRAT program folder, data/ sub-folder). In the same folder, the aliases.xsd.html file gives
the rules to define new aliases and/or modify the existing ones.

See section Aliases for more information.

Figure 15: ''Show Aliases' pop-up window. Here for a Jason2 NetCDF file. Note the 'Syntax' column,
where the alias syntax is given, while the 'Value' column gives the original field name (or

combination).

If you are in an expression (X, Y or Data expression, or Selection criteria) you can insert one or
several alias(es) in your expression by checking the box(es) in the 'Select' rightmost column. If no

expression is selected, this column won't appear.

• 'Title/Comment' button

This feature is not available in current BRAT version.

• 'Resolution and filter information' and 'Set Resolution / Filter' feature from the older Brat is
now available at ‘Sampling’ section and ‘Smoothing’ button, respectively.

4.3.5.4.1. Units

BRAT is able to understand all SI units and their sub-units, as defined in the International System, i.e.
case sensitive: “ms” means milliseconds, whereas “Ms” would mean megaseconds), plus “count” for data
without dimension, and “dB”.

Typically, the units you might use are:

• metres (m, mm, cm, km,...)

• seconds (s, ms, etc., but also hours, h, days)

• m/s (km/s,...)

• degrees East (longitude)

• degrees North (latitude)

• degrees

• count

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 45 of 158

• dB

Note that all data fields are converted in SI units in the data dictionary.

Thus practical units such as “TECU” are converted (1 TECU (Total Electron Content Unit) = 1 × 1016
electrons/m²).

If you let “count” (which is the default) as unit, the resulting data will be in the basic SI unit (e.g. in
metres, even if the field(s) you used was defined in mm)

Every Operation is computed using SI units even if a sub-unit is defined for the data source and for the
Expression (e.g. metres instead of cm, mm or km). Thus you can put ‘km’ as unit even if the data source
field is defined in mm and still end up with correct values.

4.3.5.4.2. Functions

The 'Insert Function' button provides a simple way of including (and knowing) the available functions
and constants which can be used in expressions. The functions are organised by categories, but you can
have a look at all of them. For each function, if selected, you will see a short explanation of what it does.

You can use those functions for, among others:

• compute geostrophic velocities modulus: sqrt(sqr(U) + sqr(V))

• a test on a flag: Surface_type == 0 will return only the ‘open ocean’ flagged Jason-1 GDR
data

• boundaries: is_bounded(-130, alt_cog_ellip-ku_band_ocean_range ,100) (or: (alt_cog_ellip-
ku_band_ocean_range >= -130) && (alt_cog_ellip-ku_band_ocean_range <= 100)) select only
the data for which the uncorrected altimetric distance is between -130 and +100 metres

They are available for processing or selecting a data expression.

Basics functions (not listed below) are +, -, *, /, and (and); you can also use '^' to indicate a number to
the power of another number (or data field or data expression) e.g. '10^-6' means '10-6'. Use the
keyboard to insert them.

Table 3: BRAT functions

Name Description Syntax Type

! logical negation operator NOT
The logical negation operator (!) reverses the meaning of
its operand.
The result is true if the converted operand is false; the
result is false if the converted operand is true.

! expr1 Logical

!= not-equal-to operator
The not-equal-to operator (!=) returns true if the operands
do not have the same value; otherwise, it returns false
A != B is true (when no default in A or B) if abs(A-B) >=
epsilon

expr1 != expr2 Relational

&& logical AND operator
The logical AND operator (&&) returns the boolean value
true if both operands are true and returns false otherwise.
Logical AND has left associativity.

expr1 && expr2 Logical

|| logical OR operator
The logical OR operator (||) returns the boolean value true
if either one operand is true or both operands are true and
returns false otherwise.
Logical OR has left associativity

expr1 || expr2 Logical

< less than
It yields values of the Boolean type. The value returned is
false (0) if the relationship in the expression is false;
otherwise, the value returned is true (1).

arithmetic expr1
<arithmetic expr2

Logical

<= less than or equal to
It yields values of the Boolean type. The value returned is
false (0) if the relationship in the expression is false;

arithmetic expr1 <=
arithmetic expr2

Logical

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 46 of 158

Name Description Syntax Type

otherwise, the value returned is true (1).

== equal-to operator
A == B is true (when there is no default in A or B) if abs(A-
B) < epsilon
The equal-to operator returns true (1) if both operands
have the same value; otherwise, it returns false (0).

== Relational

> greater than
It yields values of the Boolean type. The value returned is
false (0) if the relationship in the expression is false;
otherwise, the value returned is true (1).

arithmetic expr1 >
arithmetic expr2

Relational

>= greater than or equal to
It yields values of the Boolean type. The value returned is
false (0) if the relationship in the expression is false;
otherwise, the value returned is true (1).

arithmetic expr1 >=
arithmetic expr2

Relational

~ bitwise not operator
Takes the value as an integer (a default value if the floating
point one is outside the integer range) and reverses each
bit.

~ expr1 Bitwise
operator

& bitwise and operator
Takes the value of each operand as an integer (a default
value if the floating point one is outside the integer range)
and does an and operation on each corresponding bit
And operation: 0011 & 0101 = 0001

expr1 & expr2 Bitwise
operator

| bitwise or operator
Takes the value of each operand as an integer (a default
value if the floating point one is outside the integer range)
and does an or operation on each corresponding bit
Or operation: 0011 & 0101 = 0111

expr1 | expr2 Bitwise
operator

() parenthesis operator
Isolates an expression (or a sub expression) in order to
take it as a whole.
Example: A * (B + C) multiplies (B + C) by A. without
parentheses, B would by multiplied by A and then C added

(expr1)

DV Default value DV Constant

PI PI value PI Constant

PI2 PI/2 value PI2 Constant

PI4 PI/4 value PI4 Constant

abs absolute value
Calculates the absolute value.

abs(param1) Math&Trigo

ceil ceiling of a value
Calculates the ceiling of a value.

ceil(param1) Math&Trigo

cos cosine (radian)
Calculates the cosine (radian) of a value.

cos(param1) Math&Trigo

cosd cosine (degree)
Calculates the cosine (degree) of a value.

cosd(param1) Math&Trigo

deg2rad Translates Degree to Radian. deg2rad(param1) Math&Trigo

deg_normalize Normalizes longitude (degree)
Z = deg_normalize(X, Y) returns a value which makes the
following expressions true: Z = Y + n*360, X <= Z < X+360

deg_normalize(para
m1, param2)

geographical

dv (DV) Default value DV Constant

exp exponential
Calculates the exponential.

exp(param1) Math&Trigo

floor floor of a value
Calculates the floor of a value

floor(param1) Math&Trigo

frac fractional parts
Calculates the fractional parts of a value.

frac(param1) Math&Trigo

iif Inline if
If the first parameter is true (not 0 and not default value),
the second parameter is returned, otherwise the third one
is returned.
Logically equivalent to:
 if (param1 is true)

iif(param1, param2,
param3)

Logical

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 47 of 158

Name Description Syntax Type

 return param2
 else
 return param3
 end if

iif3 Inline if with default value case
If the first parameter is true (not 0 and not default value),
the second parameter is returned. If it is 0, the third one is
returned, otherwise (it is a default value) the fourth one is
returned.
Logically equivalent to:
 if (param1 is default value)
 return param4
 else
 if (param1 is true)
 return param2
 else
 return param3
 end if
 end if

iif3(param1,
param2, param3,
param4)

Logical

int integer parts
Calculates the integer parts of a value.

int(param1) Math&Trigo

is_bounded Checks whether a value x is included between two
values (min/max).
is_bounded(min, x, max)

is_bounded(param1
,param2,param3)

Relational

is_bounded_stri
ct

Checks whether a value x is strictly included between
two values (min/max).
is_bounded_strict(min, x, max)

is_bounded_strict(p
aram1,param2,para
m3)

Relational

is_default Checks whether a value is a default value (1: yes, 0: no) is_default(param1) Logical

log logarithm
Calculates the logarithm of a value

log(param1) Math&Trigo

log10 base-10 logarithm
Calculates the base-10 logarithm of a value

log10(param1) Math&Trigo

max Maximum
Calculates the larger of two values

max(param1,param
2)

min Minimum
Calculates the smaller of two values

min(param1,param2
)

mod floating-point remainder
Calculates the floating-point remainder

mod(param1,param
2)

Math&Trigo

rad2deg Translates Radian to Degree rad2deg(param1) Math&Trigo

round rounded value
Calculates the rounded value

round(param1) Math&Trigo

rnd rounded value
Calculates the rounded value of a number x with a decimal
precision of n figures after decimal point.
rnd(x,decimal precision)

Rnd(param1,param
2)

Math&Trigo

sign Checks the sign of a value (-1: negative, 1: positive or
zero)

sign(param1) Math&Trigo

sin sine (radian)
Calculates the sine (radian) of a value.

sin(param1) Math&Trigo

sind sine (degree)
Calculates the sine (degree) of a value.

sind(param1) Math&Trigo

sqr square
Calculates the square of a value.

sqr(param1) Math&Trigo

sqrt square root
Calculates the square root of a value.

sqrt(param1) Math&Trigo

tan tangent (radian)
Calculates the tangent (radian) of a value.

tan(param1) Math&Trigo

tand tangent (degree)
Calculates the tangent (degree) of a value.

tand(param1) Math&Trigo

to_date Date formats conversion
Translates a string value into a date value
Allowed formats are:
 YYYY-MM-DD HH:MN:SS.MS string.

to_date(param1) Date&Time

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 48 of 158

Name Description Syntax Type

 For instance:
 '1995-12-05 12:02:10.1230'
 '1995-12-05 12:02:10'
 '1995-12-05'

 a Julian string: format:positive 'Days Seconds
Microseconds'
 Seconds must be strictly less 86400 and Microseconds
must be strictly less than 1000000
 For instance:
 '2530 230 4569'

 a Julian string: format:positive decimal Julian day
 For instance:
 '850.2536985'

For Julian string, it can contain its reference date at the end
by specifying @YYYY where YYYY is the reference year
that's must be one of 1950, 1958, 1985, 1990, 2000
The reference year YYYY stands for YYYY-01-01
00:00:00.0
If no reference date is specified the default reference date
(1950) is used.
 For instance:
 '2530 230 4569@2000'
 '850.2536985@1990'
 '850.2536985@1950' is equal to '850.2536985'

Dates prior to 1950-01-01 00:00:00.0 are invalid

NOTE: except when explicitly stated (as with iif3, is_default) every expression involving a default value
(also called missing value) is a default value. A true expression is an expression which is not 0 and not a
default value. The descriptions below are for expressions which do not contain default values (to simplify

their writing). For example the result of ‘A || B’ (A or B) is a default value if B is one even if A is true. 0
and default values are considered as false values (! X is a default value if X is also one, so X is false and !
X too).

4.3.5.4.3. Formulas

In the “Insert Formula“ button, you will find pre-defined formulas (Sea Surface Height and Sea Level
Anomaly formulas from the different satellites’ GDR fields, and also 'Ocean editing' formulas, to use as
selection criteria to select only valid data over ocean). If you have saved as formula an expression in the

current workspace (or imported one from another workspace), you will also find it here. Any expression,
i.e. valid combination of data fields and functions can be saved as formula. You can insert a developed
formula and modify it, or use a formula as part of an expression.

The formula will appear either by its name only (if you leave the ‘as alias’ checked), or complete (if you
un-check ‘as alias’).

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 49 of 158

Figure 16: The 'Formulas' pop-up window, with the list of available formulas, top (sorted in
alphabetical order).

Here, one of them (Ocean_data_editing_GFO_from_cycle_83) is selected, thus you can see the unit of
the formula ('count', i.e. no unit, this is a selection formula), and the full formula in the box below.

The check-box 'As alias' enables to insert the formula by its name only ('as alias') or, when
unchecked, to insert in its full extent.

Figure 17: use of a pre-defined formula (Ocean_data_editing_GFO_from_cycle_83). Note the use in
this particular expression of the formula as alias %{Ocean_data_editing_GFO_from_cycle_83}

To apply the inserted formula to the selected Data Expression in the tree item, click the button “Assign
to the selected tree item”.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 50 of 158

4.3.5.4.4. Algorithms

Algorithms provide means of computing complex operations. They are pre-defined and compiled within

BRAT. They include an algorithm name and a number of input parameters (depending on the algorithm)
to be filled in by the user. The button “insert algorithm” enable to access the available algorithms with
the relevant information provided.

Eleven algorithms are available at this time:

• computation of U (zonal) and of V (meridional) component of geostrophic velocities from gridded
data

• computation of cross-track geostrophic velocities from along-track data.

• Filters to apply on along-track data (Gaussian, Median, Lanczos or Loess)

• Filters to apply on gridded data (Gaussian, Median, Lanczos or Loess)

Note that, as in the all of BRAT, computations are done in SI units. If the field(s) you are using have a

unit defined, BRAT will take care of the conversion. However, beware if there is no unit really defined
(“count”). BRAT will then consider the data as in S.I.

Table 4: BRAT algorithms

Name Description Input parameters

BratAlgoGeosVelAtp Geostrophic velocity computation for
along-track data; result is the value of
the geostrophic velocity component
perpendicular to the track.
Input data must contain at least
longitude, latitude and a field
corresponding to height information.

Latitude: to be replaced by the name of
the latitude field within the data
Longitude: to be replaced by the name of
the longitude field within the data
Height: to be replaced by the name of a
field corresponding to a height (e.g. SLA,
ADT...), or a formula enabling to compute
it.

BratAlgoGeosVelGridU Geostrophic velocity computation for
gridded data; result is the value of the
geostrophic velocity zonal (North)
component, U.
Input data must contain at least
longitude, latitude and a field
corresponding to height information.

Latitude: to be replaced by the name of
the latitude field within the data
Longitude: to be replaced by the name of
the longitude field within the data
Height: to be replaced by the name of a
field corresponding to a height (e.g. SLA,
ADT...), or a formula enabling to compute
it.
5: latitude North and South below which
the computation won't be done, to take into
account the lack of Coriolis force at the
Equator.

BratAlgoGeosVelGridV Geostrophic velocity computation for
gridded data;
result is the value of the geostrophic
velocity meridional (East) component, V
Input data must contain at least
longitude, latitude and a field
corresponding to height information.

Latitude: to be replaced by the name of
the latitude field within the data
Longitude: to be replaced by the name of
the longitude field within the data
Height: to be replaced by the name of a
field corresponding to a height (e.g. SLA,
ADT...), or a formula enabling to compute
it.
5: latitude North and South below which
the computation won't be done, to take into
account the lack of Coriolis force at the
Equator

BratAlgoFilterGaussianAtp Gaussian Kernel filter for along-track
data.

A Gaussian filter is a linear weighted
mean filter. Weights in the filter are
calculated according to a Gaussian
distribution.

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowLength: Window/region size (N).
The value must be odd.
1: The standard deviation (sigma) of the
distribution. Set by default to 1. The
parameter must be a constant value.
3: The coefficient of spreading to the left
and right of the distribution." Set by default

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 51 of 158

Name Description Input parameters

to 3. The parameter must be a strictly
positive constant value. Usually in practice,
the value used is 3 with sigma equals to 1.
The part of Gaussian distribution utilized is
the range [(-3 x sigma), (3 x sigma)], the
Gaussian distribution is truncated at points
+/- (3 x sigma). When the range is [(-3 x
sigma), (3 x sigma)], the bell-shaped curve
adjusts the corner values to 0.01.
ValidPts: The minimum number of valid
points below which the algorithm is not
applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.

BratAlgoFilterGaussianGrid Gaussian Kernel filter for gridded data.

A Gaussian filter is a linear weighted
mean filter. Weights in the filter are
calculated according to a Gaussian
distribution.

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowLength: Window/region size (N x
N). The value must be odd.
1: The standard deviation (sigma) of the
distribution. Set by default to 1. The
parameter must be a constant value.
3: The coefficient of spreading to the left
and right of the distribution." Set by default
to 3. The parameter must be a strictly
positive constant value. Usually in practice,
the value used is 3 with sigma equals to 1.
The part of Gaussian distribution utilized is
the range [(-3 x sigma), (3 x sigma)], the
Gaussian distribution is truncated at points
+/- (3 x sigma). When the range is [(-3 x
sigma), (3 x sigma)], the bell-shaped curve
adjusts the corner values to 0.01.
ValidPts: The minimum number of valid
points below which the algorithm is not
applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.

BratAlgoFilterLanczosAtp Lanczos kernel filter for along-track
data.

A Lanczos filter is a weighted filter.
Weights in the filter are calculated in
the Frequency space, using Fourier
transform.

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowLength: Window/region size (N).
The value must be odd.
CutOff: The value of the cut-off period
(number of data points). The frequency
(1/CutOff) is the value at which the
response passes from one to zero.
ValidPts: The minimum number of valid
points below which the algorithm is not
applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.

BratAlgoFilterLanczosGrid Lanczos kernel filter for gridded data.

A Lanczos filter is a weighted filter.
Weights in the filter are calculated in
the Frequency space, using Fourier
transform.

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowLength: Window/region size (N x
N). . The value must be odd.
CutOff: The value of the cut-off period
(number of data points). The frequency
(1/CutOff) is the value at which the
response passes from one to zero.
ValidPts: The minimum number of valid
points below which the algorithm is not

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 52 of 158

Name Description Input parameters

applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.

BratAlgoFilterLoessAtp Loess kernel filter for along-track data.

A Loess filter is a low-pass filter mostly
used for smoothing. It is based on a
local regression using weighted linear
least squares and a 2nd degree
polynomial model

Expr: The input data (variable or Brat
expression) on which the filter is applied
X: The input data (X values) used to
compute weights.
WindowLength: Window/region size. The
value must be odd.
ValidPts: The minimum number of valid
points below which the algorithm is not
applied.
Extrapolate: A flag to specify if the
algorithm is applied when the current data
is 'defaut value' (no value). 0: not applied,
1: applied.

BratAlgoFilterLoessGrid Loess kernel filter for gridded data.
When used with X=longitude,
Y=latitude, it is equivalent to the filter
available in the 'set resolution/filter' box
(but it can be applied here on any and
every X and Y)

A Loess filter is a low-pass filter mostly
used for smoothing. It is based on a
local regression using weighted linear
least squares and a 2nd degree
polynomial model

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowWidth: Window/region width (x).
The parameter must be a constant odd
value. WindowHeight: Window/region
height (y). The parameter must be a
constant odd value. ValidPts: The
minimum number of valid points below
which the algorithm is not applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.

BratAlgoFilterMedianAtp Median kernel filter for along-track data.

A Median filter is often used for speckle
noise reduction. A median filter is a
non-linear filter which orders the
elements within a window and pick the
middle one.

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowLength: Window/region size
ValidPts: The minimum number of valid
points below which the algorithm is not
applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.
Expr:
WindowLength:

BratAlgoFilterMedianGrid Median kernel filter for gridded data.

A Median filter is often used for speckle
noise reduction. A median filter is a
non-linear filter which orders the
elements within a window and pick the
middle one.

Expr: The input data (variable or Brat
expression) on which the filter is applied
WindowWidth: Window/region width (x)
WindowHeight: Window/region height (y)
ValidPts: The minimum number of valid
points below which the algorithm is not
applied.
0: A flag to specify if the algorithm is
applied when the current data is 'defaut
value' (no value). 0: not applied, 1: applied.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 53 of 158

Figure 18: Insert Algorithm pop-up, with the BratAlgoGeosVelGridV selected.

A list of available algorithms is shown (top)

Description of the selected algorithm is available (just below) as well as the necessary input
parameters (middle) and standard output unit (here m/s, bottom). Clicking on “OK” will insert the call

to the algorithm within the current expression (it will appear as
exec('”BratAlgoGeosVelGridV”,%{lat],%{lon],Height,5) in the expression box.

You then have to change the four input parameters (or not; most of the time, only “Height” will have
to be changed; Latitude and Longitude aliases are used, so they will work for any dataset) to fit your

dataset and your needs.

Figure 19: Operation resulting from the insertion of algorithms.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 54 of 158

4.3.5.4.5. Data computation

Figure 20: Choice of the data computation

The data computation is used whenever you have several values of a field for a given (X) or (X,Y). This is
typically the case for:

• crossover points between tracks

• several files available for different dates

• sub-sample data

Possible computations are:

• 'MEAN' (default): computes the mean for all values of the field within the dataset at each X (or
(X,Y))

• 'COUNT': returns the number of values of the field within the dataset at each X (or (X,Y))

• 'FIRST': returns the first encountered value of the field within the dataset (in the order of the list

of files as it appears in the ‘dataset’ tab)

• 'LAST': returns the last encountered value of the field within the dataset (in the order of the list
of files as it appears in the ‘dataset’ tab)

• 'MAX': gives the maximum value of the field within the dataset

• 'MIN': gives the minimum value of the field within the dataset

• 'PRODUCT:' multiplies the selected field for each file within the dataset

• 'STDDEV': computes the standard deviation for all values of the field within the dataset at each X
(or (X,Y))

• 'SUBTRACTION': subtracts the selected field for each file from the first of the list (file order
dependent)

• 'SUM': adds the selected field for each file

• ‘TIME’: for each grid cell, computes a weighted linear interpolation for distance (X,Y) and time. A
dialog box is displayed for the user to specify the product’s time field that should be used, an
interpolation date and the weightings for distance and time.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 55 of 158

Take care, however, that for along-track data, on a given ground track, longitudes or latitudes are
scarcely ever exactly the same from one cycle to the next. So if you want to (e.g.) average data over

several cycles for a given track with respect to only longitude or latitude, you will have to round the data
in the X expression (see round or rnd functions).

4.3.5.4.6. Sampling (previous ‘Resolution and filters’)

When you fill both X and Y you 'grid' the data, and you then have to define the grid parameters, i.e.

minimum, maximum and step, for the whole operation. Note that by choosing a step, you may sub-

sample your source data, and that by changing the Min/Max you can extract a smaller X-Y area.

• for longitude/latitude, Minimum and Maximum are set by default to 0 – 360°,-90° – 90° (whatever

the data source). For any other type of X and Y, Minimum and maximum have to be defined. The 'Get
min/max expression' button is here to help you: if you don't have an idea of what the values of your field
could reasonably be, this will provide you with the absolute minimum and maximum of your expression
(note that if your dataset include a long list of files, it can take some time to be computed). The unit in

which the minimum and maximum have to be defined are those defined in the corresponding
expressions, and are recalled, top of each sub-part of the window.

• Pre-defined steps are proposed (1/3° for longitude and latitude, 1 for any other data), but may not fit
your need. The number of intervals is automatically computed from those elements, and cannot be
directly changed.

However, note that the higher the step, the smaller the resolution, and the longer the execution time for
the operation.

Figure 21: Configuration parameters for output grid data

4.3.5.4.7. Smoothing

BRAT provides you with the possibility of “smoothing”, “binning”, or to extrapolate the data, using Loess
filter

There are three different filters:

• 'Smooth': smooth’s the values of the data where there are already data (i.e. it will not fill in gaps
between tracks)

• 'Extrapolate': fills in the gaps between values (with some overlay on continents)

• 'Loess': smooth’s and fills in the gap values (with some overlay on continents)

The choice depend on the result you want. ‘Extrapolate tends’ to keep data ground tracks visible.
‘Smooth’ spreads out the data, but tends to level the maxima and minima and to generate ‘data’ on
continents from ocean-only measurements. ‘Loess’ does both extrapolation and smoothing.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 56 of 158

If you select one of them, you have set the ‘Loess cut-off’ value for each axis (both X and Y), i.e. the
number of grid points before the Loess filter becomes equal to zero (odd number).

Typical Loess filter cut-off values depend on the Step you choose and on the kind of filter you have
selected in your field (Smooth, Extrapolate or Loess). They are odd numbers (if you fill in an even
number, the number used will be your number+1).

The general rule is that the higher the cut-off value, the more spread out the data will be, since the
radius of action of the filter will be greatest.

For good results to render along-track data, values of 31 begins to gives rather correct results, even if

they still show a hint of ground tracks.

4.3.6. Logs tab

The ‘Logs’ tab displays the state of the BRAT GUI or external programs being run by it. Several
operations and views can be executed at the same time. Errors can be detected using the messages from
the Logs tab.

If things go well, you should have messages like:

'===> Task 'DisplayDisplays_17' (pid 284) SUCCESSFULLY ENDED <===

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 57 of 158

5. ALIASES

Aliases are short names or unified names for data fields. Aliases have been added within BRAT to take
into account the fact that the equivalent fields are not named similarly for all the datasets (names always
follow the User documentation made by the data provider, in order that the user can refer to this

documentation for more information).

Some are already defined. The equivalent fields have been defined with the same alias(es) for all the
relevant altimetry data. If a given field is not available within the current dataset, a warning will be
issued. However, you can either modify them, or create your own ones.

A few aliases are “universal” (pre-defined for all known datasets read by BRAT): %{lon}, %{lat},
%{time}

(NB. you may encounter NetCDF data read by BRAT but not pre-defined, for which this won't work,

however, in this version we are currently developing ways to solve this problem)

Note that there may be several aliases for a same field, in order to either speed the typing (e.g.
%{mss}), or be more self-explaining (e.g. %{mean_sea_surface}).

An alias can be a field or a combination of fields. They are stored in an “aliases.xml” file that can be
edited (in BRAT program folder, data/ sub-folder). In the same folder, the aliases.xsd.html file gives the
rules to define new aliases and/or modify the existing ones.

The following must be kept in mind:

• an alias always refer to a given data product.

• BRAT GUI call to aliases.xml for alias definition. If you modify this file, the aliases can change!
(and, thus, if you used aliases previously, your Operations may not work anymore)

5.1. Using aliases

Aliases can be used as any field or combination of field, by using “%” before the name, and

encompassing it between “{“ and “}”

For example, a (nearly) universal SSH formula could be written as follow in the 'data expression' of an
Operation:

 %{alt} - %{range} - %{dry_tropo_corr} -%{dynamic_atmos_corr} - %{tides_all_corr} - %{ssb} -
%{iono_corr} - %{wet_tropo_corr}

(note that the fact that not all corrections are available for all satellites make it not absolutely
universal!)

or, in a “selection criteria” expression, you could write:

 is_bounded(40,%{lat},60)

to select data between 40°N and 60°N.

5.2. Structure

Here is an example of the structure of the xml file. For more information on this structure, please refer to
aliases.xsd.html file.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 58 of 158

<product class="ENVISAT_RA2MWR" description="ENVISAT RA2 and MWR products">

<defaultRecord name="ra2_mds"/>

<aliases>

….

 <alias name="range">ku_band_ocean_range</alias>

….

</aliases>

</product>

Figure 22: Example of the definition of an alias. This example is for Envisat RA2 and MWR products, by
default for data within the “ra2_mds” record. “ku_band_ocean_range” is the name given by default

in the documentation and thus in BRAT. To keep it simpler, we call it here “range”.

See Brat products format definitions in the doc/codadef/index.html file located in the Brat directory.
Products are classified in 'class' (product class) and 'type' (product type)

5.3. Modifying an alias

To modify an alias, edit the xml file in a text editor. And just change its name in <alias name="....">.

For example, you could replace:

alias name="range">ku_band_ocean_range</alias>

by

<alias name="THERANGE">ku_band_ocean_range</alias>

thus, afterwards, you would be using %{THERANGE} as alias. Note that, in this case, previous use of

%{range} won't work anymore.

5.4. Creating an alias

5.4.1. For a field for which no alias exists

Find the product(s) for which you want the alias to work, and just add a line like:

 <alias name="range">ku_band_ocean_range</alias>

defining the name you wish to use, and the given name of the field. You have to do it for any and every
data product where you want to use this alias.

See Brat products format definitions in the doc/codadef/index.html file located in the Brat directory.
Products are classified in 'class' (product class) and 'type' (product type)

You may have to specify a record within the default record.

You will put this in a ProductType tag, like

aliases productType="RA2_MWS_2P" record="avg_waveforms_mds" ref="RA2_GDR_2P">

You can use combination of fields to define an alias. E.g. an alias including all tide-related corrections can
be:

“<alias name="tides_all_corr">(ocean_tide_sol1+ solid_earth_tide + pole_tide)</alias> “

5.4.2. For a field for which an alias has already been defined

If you'd prefer something else than the predefined name, but do not want to erase it by modifying it, you
can create alternate aliases.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 59 of 158

For example, above we decided that when we will be using %{range}, it will be the field
“ku_band_ocean_range“. However, it can be misunderstood (there's a 'C-Band' range in Envisat data).

So you may want to specify at least in some cases that you are using the Ku-band range (e.g. if you're
using C-Band data close-by).

To do this, you would define:

<alias name="range">ku_band_ocean_range</alias>[as previously]

<alias name="range_ku" ref="range"/>[referring to the above alias]

You can then use either %{range} or %{range_ku} in an expression with the same results.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 60 of 158

6. VISUALISATION INTERFACE

Within the “Operations tab” you also define which type of view you want to choose to display you data:
you can choose between a Map type or a Plot type (simply by clicking on the button with the proper
caption). However, to plot your data in a Map you need to have at least the field “Lon”, “Lat” and “Data”

set. Otherwise (if you choose the “Plot” type) you are implicitly choosing 2D or 3D representation for your
data. Once you do this you can view your data simply by clicking the “Execute” button.

The visualisation options are quite different for a ‘Y=F(X)’ (curve) than for a ‘Z=F(lon,lat)’ (map); the
other plots ('Z=F(X,Y)') have functionalities from both types.

6.1. 2D Plots

Figure 23: An example Y=F(X) visualisation with two curves

Usually this type of Plot is used upon displaying a y=f(x) curve type.

BRAT support saving the plots as an image format. The Plot2D dialog is organised in several tabs, each
one with a different functionality.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 61 of 158

Figure 24: Data Options tab of the visualisation
tool

The first tab ‘General’ holds information about
the current Operation View associated with this

Plot. You can change the current Operation View
by changing the contents of the dropdown menu
in “Operation Views”. Title outputs the Plot title for
the current plot. The Plot type text box allows you
to change the visualization type for the current
data, but only certain types of Views are available

depending on the contents of your current data.
The “Reset” button rebuilds the current view.

When a field is selected in the ‘Data Options’
tab, you have some options to choose the colour
and style (full, dots, etc.) of the line and of the

points (none by default, circles, crosses, etc.). If
there are several fields to plot, you can thus

enhance the legibility of your plot.

The tab, ‘Axis Options’, enables changing values
for the axis labels, number of axis ticks and digits,
or axis scales for 2D and 3D plots.

Figure 25: Y-axis properties of a Y=F(X) plot, with only
one field selected for view. Label (including the unit),

number of ticks in the axis, min and max of the axis are
shown. X-axis properties are similar.

The label of each axis includes by default
the name of the plotted field and its unit.

‘“2D scale range” allows you to see the
currently selected range. You can also

zoom in on a portion of curve using the
wheel of your mouse. By pressing the
wheel mouse button you can also move
the Plot inside the view.

If the variable assigned to the X axis has
multiple dimensions, it is possible to select
which of those dimensions should primarily
be used for that axis in the plot. Note that
if the default dimension is changed, the X
axis label is not updated; the label is a
custom, convenience graphical item, to be

updated by the user as is more informative
in each particular context.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 62 of 158

Figure 26: Two curves overlaid, with different point glyphs defined

6.2. Map Plots

This type of plot is one of the three possibilities to display a plot of the type Z=F(Lon, Lat) (the others are
spectrograms and 3D Plots). The general tab view allows you to:

• Duplicate the current view by pressing the “Create a new view” buttons;
• Rename the current view by pressing the “Rename the selected view” button;
• Delete the current view by pressing the “delete selected view” button.

Similarly as before, the operation views drop-down menu allows you to choose a view for the currently

selected operation (the current operation can be changed in the top drop-down menu “Operation”). The
title text box displays the current plot title. The type text box shows you the current plot type. The
“Reset” button rebuilds the entire view. The “Distance/Area” button allows you to measure distances
or areas over the map:

Distance: use the left mouse button to draw points over the map in order to create a multi-line and click

once on the right mouse button to stop drawing, or twice to clear the multi-line.

Area: use the left mouse button to draw points over the map in order to create a polygon and click once
on the right mouse button to stop drawing, or twice to clear the polygon.

In both cases, a window appears showing the metrics of each feature. Click again the “Distance/Area”
button to disable the tool return the mouse to its normal state.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 63 of 158

Figure 27: Map plot type to display a simple z=f(lon,lat) graph type.

Another tab available is the “Data Options” that shows all the current available data layers for the current
view and, in addition, allows further visual details configuration.

 Figure 28: The “Data Options” tab.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 64 of 158

The contours feature allows the creation of map contours. You can choose the number of contour levels
at “Number”; the line width at the “Width” text box and the contours precision at the precision text

boxes. The contours detail improves for higher precision numbers; however the processing time also
increases. For more information see the reference of the contour algorithm6.

The following is a globe view example:

Figure 29: You can also trigger the Globe Plot for this type of data by clicking under the “3D” button.

6.3. 3D Plots

The first tab ‘General’ holds information about the current Operation View associated with this Plot. The
behaviour is similar to the same tab in other view types: you can change the current Operation View by

changing the contents of the dropdown menu in “Operation Views”. Title should output the Plot title for

the current plot. The Plot type text box allows you to change the visualization type for the current data,
but only certain types of Views are available depending on the contents of you current data. For 3D Plot
types, one usually has two plotting possibilities: a spectrogram or a 3D graph. One can hide one or the
other when clicking the “2D” or “3D” buttons.

Right-clicking on the 3D plot, a context menu pops up that allows the adjustment of some visualization
details that can improve data visibility.

6 http://www.codeproject.com/Articles/1727/A-C-implementation-of-an-improved-contour-plotting

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 65 of 158

Figure 30 – Plotting a z=f(x,y) graph.

Figure 31 – Same plot but with a hidden spectrogram plot by clicking under the 2D button.

The “Axis Options” tab works in a similar manner as for the 2D case. The ‘Animation’ tab should only
address graphs that have animation, and implements features to stop and start the animation and define

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 66 of 158

the number of frames to be used. Currently, animations are only available for 2D plots, depending on the
dimensions of the plotted variable.

6.4. Colour tables

Several pre-defined colour tables are available in the ‘Data Options’ tab for both maps and 3D plots.
They can improve the visibility of the displayed data, or adjust the colour spectrum so that it contrasts
better with the background. This option can be useful in particular when maps are using raster layers

with colour patterns that blur the distinction of data and background.

Approximate data values corresponding to the sharper thresholds of the colour tables are also displayed
under the colours spectrum widget. If you move the mouse over each value, a more precise value is

displayed.

It is possible to select different colour tables for the different fields, as well as hide the data of the field
currently selected in the ‘Fields’ table by clearing the ‘Show’ check box near the colour table.

6.5. Vector Plots

Vector plots are displayed when fields from the visualization tab are selected as East and North vector
components. Both components have to be present, otherwise an error message will be issued.

East/North Component can be selected in ‘Map View proprieties’ button at ‘Operations’ tab. One

expression has to be selected as north component and a different one for east component. Only one
vector plot can be displayed at a time. Both expressions must be of the same data type.

Vectors are naturally visualized as arrows. The magnitude values available in the data are displayed when
the user sets the mouse over an arrow. To improve the arrows visibility, you may need to adjust their
scale by using the ‘Vector Scale’ field in the ‘Data Options’ tab, which is visible only when a Vector Plot is
displayed: press the return key after entering a new value to see how it impacts the arrow dimensions in

the map.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 67 of 158

7. BRAT SCHEDULER INTERFACE

The BRAT SCHEDULER interface enables to postpone the execution of operations. Each delayed execution

has to be configured through BRAT GUI (by clicking on the 'Schedule Execution' button).

The SCHEDULER application can be launched either from BRAT GUI or from the desktop icon. It will allow

you the management and monitoring of the delayed operation executions. If it is not running, no

scheduled task will be processed.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 68 of 158

8. USING BRAT IN ‘COMMAND LINES’ MODE WITH
PARAMETERS FILE

The GUI is there to ease the use of BRAT. However, everything made with the GUI can be made directly
by writing parameter files and execute them and more than what can be done with the GUI is possible
with parameter files.

Dictionaries of key functions that can be called within parameter files are available in annex B (Y=F(X),
annex C (Z=F(X,Y) and annex D (Display parameter file keys).

‘-h’ option offers help for launching the executable file

‘-k' offers help on parameter keys

BratCreateYFX.exe create an output netCDF with one or several data field(s) with respect to a
single field

BratCreateZFXY.exe create an output netCDF with one or several data field(s) with respect to two
different fields (e.g. longitude, latitude)

brat.exe can be used as the older “BratDisplay.exe” from the previous versions of Brat in order to
just display a *.par file. In order to activate this mode one only needs to execute “brat.exe <par_path>”
where <par_path> is a simple directory that points to your .par file. (i.e. brat.exe
C:\projects\workspaces\UserJohn\Displays\DisplayDisplays_25.par) .

BratExportAscii.exe export an output to Ascii

BratExportGeoTiff.exe export gridded data from a netCDF product to GeoTiff (with optional GoogleEarth
wrapper)

BratListFieldNames.exe

BratShowInternalFile.exe

BratStats.exe

8.1. Creating an output netCDF file

A ‘Create’ parameter file typically consist of:

• the definition of a dataset (a list of files that will be processed),

• the name of the record within the dataset in which the data you are interested in are stored,

• = the definition of an X axis and of one or several ‘Field(s)’; in the Z=F(X,Y) case, also the
definition of an Y-axis,

• a selection expression, if need be

• the name and location of the netCDF output file.

The definition of the axis or of a field includes the name of an existing data field, or the expression that
you wish to compute from several of them, a name (without any spaces or special characters), a unit, a
title (that may include spaces or special characters), a min and a max and information about a possible
filter.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 69 of 158

#----- GENERAL PROPERTIES -----

DATA_MODE=MEAN

#----- DATASET -----

RECORD=ra2_mds

FILE=File1

FILE=File2

…

#----- FIELDS -----

Y=lat

Y_NAME=lat

Y_TYPE=Latitude

Y_UNIT=degrees_north

Y_TITLE=Latitude

Y_FILTER=DV

Y_MIN=DV

Y_MAX=DV

Y_INTERVALS=DV

Y_LOESS_CUTOFF=DV

X=lon

X_NAME=lon

X_TYPE=Longitude

X_UNIT=degrees_east

X_TITLE=Longitude

X_FILTER=DV

X_MIN=DV

X_MAX=DV

X_INTERVALS=DV

X_LOESS_CUTOFF=DV

FIELD=ra2_wind_sp

FIELD_NAME=my_first_field

FIELD_TYPE=Data

FIELD_UNIT=mm/s

FIELD_TITLE=Altimeter wind speed modulus

FIELD_FILTER=DV

FIELD_MIN=DV

FIELD_MAX=DV

FIELD_INTERVALS=DV

FIELD_LOESS_CUTOFF=DV

FIELD=alt_cog_ellip - ku_band_ocean_range - mod_dry_tropo_corr - inv_barom_corr -

(tot_geocen_ocn_tide_ht_sol1 + tidal_load_ht + long_period_ocn_tide_ht) -

solid_earth_tide_ht - geocen_pole_tide_ht - sea_bias_ku - ra2_ion_corr_ku -

mwr_wet_tropo_corr

FIELD_NAME=SSH

FIELD_TYPE=Data

FIELD_UNIT=m

FIELD_TITLE=my second field

FIELD_FILTER=DV

FIELD_MIN=DV

FIELD_MAX=DV

FIELD_INTERVALS=DV

FIELD_LOESS_CUTOFF=DV

#----- SELECT -----

#----- OUTPUT -----

OUTPUT=output_file.nc

Figure 32: Example parameter file for creating a Z=F(X,Y) output

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 70 of 158

You create the netCDF file by typing

‘BratCreateZFXY.exe command_file.par’

(or ‘BratCreateYFX.exe command_file.par’)

You will then have a netCDF file that you can either visualise through the tool provided within BRAT, or
with some other tool capable of reading netCDF.

8.2. Visualising an output netCDF file through BRAT

To visualise an output file, you have to write a second parameter file. This kind of file is simpler than the

one needed to create a netCDF.

Basically, the commands needed are:

• the type of data to be displayed (Y=F(X) ==> 0 Z=F(Lat,Lon) ==> 2 Z=F(X,Y) ==> 1)

• the name of the file(s) to be displayed

• the title, projection

• the name of the field(s) to be displayed

• some information about the display (min, max, name, whether there is a contour or not, colour
table…)

#!/usr/bin/env BratCreateZFXY

#Type:Z=F(X,Y)

#----- DATASET -----

FILE=Createenvisat_cycle.nc

#----- GENERAL PROPERTIES -----

DISPLAY_TITLE=title of the plot

DISPLAY_PLOT_TYPE=1

DISPLAY_GROUPBY_FILE=Y

DISPLAY_PROJECTION=3D

#----- sigma_0_ku FIELD -----

FIELD=sigma_0_ku

#----- sigma_0_ku FIELDS PROPERTIES -----

DISPLAY_NAME=sigma_0_ku

FIELD_GROUP=1

DISPLAY_MINVALUE=0.00000

DISPLAY_MAXVALUE=50.000

DISPLAY_CONTOUR=N

DISPLAY_SOLID_COLOR =Y

DISPLAY_COLORTABLE=DV

Figure 33: Example ‘display’ parameter file

You open the visualisation tool by typing:

‘BratDisplay.exe command_file.par’

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 71 of 158

8.3. Using the parameter files to process many datasets

A typical case in which using the parameter files will be much easier than using the GUI is when you want
to process the same operation on all the altimetry satellite cycles or for a long series of them. Parameter
files enable you to write a script that will process the same operation on a number of files.

You can either write the parameter file directly, or you can make the parameter file through the GUI, test
it on one cycle and then modify it (right-click) by replacing the cycle number by a character that will be

replaced consecutively by a list of cycle numbers through a script;

#!/usr/bin/env BratCreateZFXY

SRC_DATA_DIR and CYCLE are environment variables that can be set in a shell # script

FILE=${SRC_DATA_DIR}/JA1_GDR_2PAP${CYCLE}_001.CNES

FILE=${SRC_DATA_DIR}/JA1_GDR_2PAP${CYCLE}_002.CNES

FILE=${SRC_DATA_DIR}/JA1_GDR_2PAP${CYCLE}_003.CNES

RECORD = data

VERBOSE = 2

ALIAS_NAME = SLA_JASON

ALIAS_VALUE = altitude - range_ku - model_dry_tropo_corr - inv_bar_corr -

(ocean_tide_sol1 + ocean_tide_equil + load_tide_sol1) - solid_earth_tide - pole_tide -

sea_state_bias_ku - iono_corr_alt_ku - rad_wet_tropo_corr - mss

X = longitude

X_TYPE = longitude

X_NAME = Longitude

X_UNIT = DV

X_TITLE = Longitude

X_MIN = DV

X_MAX = DV

X_INTERVALS = 1800

Y = latitude

Y_TYPE = latitude

Y_NAME = Latitude

Y_UNIT = DV

Y_TITLE = Latitude

Y_MIN = DV

Y_MAX = DV

Y_INTERVALS = 900

SLA_JASON is an alias see ALIAS_NAME and ALIAS_VALUE above

FIELD = %{SLA_JASON}

FIELD_TYPE = data

FIELD_NAME = SLA

FIELD_UNIT = m

FIELD_TITLE = Sea Level Anomalies - Cycle ${CYCLE}

FIELD_FILTER = LOESS_EXTRAPOLATE

X_LOESS_CUTOFF = 5

Y_LOESS_CUTOFF = 5

SELECT = is_bounded(-1.0, %{SLA_JASON},1.0)

OUTPUT = ${BRATHL_DATA_DIR}/JasonSLA${CYCLE}.nc

OUTPUT_TITLE = Jason - Cycle ${CYCLE}

Figure 34: An example parameter file for creating output netCDF for several cycles (SLA from Jason-1
GDRs)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 72 of 158

REM Set the cycle number

SET CYCLE=109

REM Set the data source path

SET SRC_DATA_DIR=D:\data\gdr_jason\cycle_%CYCLE%

REM Launch 'BRAT create Z=F(X,Y)' process

BratCreateZFXY C:\BRAT\MyCmdPath\BratCreateZFXYJasonSLASample.par

REM ------------------------------

REM Set another cycle number

SET CYCLE=110

REM Set the data source path

SET SRC_DATA_DIR=D:\data\gdr_jason\cycle_%CYCLE%

REM Launch 'BRAT create Z=F(X,Y)' process

BratCreateZFXY C:\BRAT\MyCmdPath\BratCreateZFXYJasonSLASample.par

Figure 35: An example script for DOS (to be inserted in a .bat file) to launch a parameter file over
several cycles

#!/bin/bash

BratCreateZFXYJasonSLASample.sh

Set the cycle number

export CYCLE=109

Set the data source path

export SRC_DATA_DIR=/data/gdr_jason/cycle_%CYCLE%

Launch 'BRAT create Z=F(X,Y)' process

BratCreateZFXY BRAT/MyCmdPath/BratCreateZFXYJasonSLASample.par

Set the cycle number

export CYCLE=110

Set the data source path

export SRC_DATA_DIR=/data/gdr_jason/cycle_%CYCLE%

Launch 'BRAT create Z=F(X,Y)' process

BratCreateZFXY BRAT/MyCmdPath/BratCreateZFXYJasonSLASample.par

Figure 36: An example Shell script for Linux for launching a parameter file over several cycles

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 73 of 158

9. BRATHL APPLICATION PROGRAMMING INTERFACES
(APIS)

Some functions of BRAT are not available through the GUI, but through C, Fortran, Python, IDL and
MATLAB APIs. Note that for IDL and MATLAB under Linux and Mac OS you need to compile the API before
being able to use them – they are not included in the binary distributions of BRAT.

9.1. Data reading function

BRATHL_READDATA reads data from a set of files; each measurement for a data is a scalar value (a
single number). It also gives statistics (e.g. a mean over a geographical area)

Possible arguments of this function are:

[in] fileNames: file name string (one file) or file names array

[in] recordName: Name of the fields record (for netCDF files the recordName is 'data')

[in] selection: Expression involving data fields which has to be true to select returned data. (if the
string is empty nothing is selected (in other words all of the data is taken)

[in] dataExpressions: Expression string (one expression) or expressions array applied to data fields to
build the wanted value.

[in] units: Wanted unit for each expression (string (one unit) or units array).

(if empty string, no unit conversion is applied to the data of the corresponding expression.
When a unit conversion has to be applied, the result of the expression is considered to be the
base unit (SI). For example if the wanted unit is grams/litre, the unit of the expression is
supposed to be kilogrammes/m3 (internally all data are converted to the basic unit of the
actual fields unit which is coherent with the above assumption).

[in/out] results: Data read. Must be an array (dim = number of dataExpressions) of values to read.

[in] ignoreOutOfRange: Skip excess data. 0=false, other = true

Must be false if ‘statistics’ is true.

[in] statistics: returns statistics on data instead of data themselves

0=false, other = true

If statistics is true, ignoreOutOfRange must be false.

The returned values (5 values) for each expression are:

• Count of valid data taken into account.

Invalid data are those which are equal to the default/missing value

• Mean of the valid data.

• Standard deviation of the valid data

• Minimum value of the valid data

• Maximum value of the valid data

[in] defaultValue: value to use for default/missing values

This is the value you want to indicate that a value is missing or invalid.

return 0 or error code.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 74 of 158

Syntax: see annexes

• for IDL

• for MATLAB

• for Fortran

• for C

• for Python

9.2. Cycle/date conversion functions

Two functions are available to convert between cycle/pass and date.

Syntax: see annexes

• for IDL

• for MATLAB

• for Fortran

• for C

• for Python

BRATHL_CYCLE2YMDHMSM Converts a cycle/pass into a date.

• Arguments of this function are:

[in] mission:

0 : Topex/Poseidon

1 : Jason-1

2 : ERS2

3 : Envisat

4 : ERS1-A

5 : ERS1-B

6 : GFO

[in] cycle: number of cycles

[in] pass: number of passes in the cycle

• Outputs are:

[out] dateYMDHMSM: date to convert

BRATHL_YMDHMSM2CYCLE Converts a date into a cycle/pass

• Arguments of this function are:

[in] mission: mission type :

0 : Topex/Poseidon

1 : Jason-1

2 : ERS2

3 : Envisat

4 : ERS1-A

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 75 of 158

5 : ERS1-B

6 : GFO

[in] dateYMDHMSM: date to convert

• Outputs are:

[out] cycle: number of cycles

[out] pass: number of passes in the cycle

9.3. Date conversion/computation function

A set of functions is available to convert between the different kinds of date formats:

• days-seconds-microseconds dates:

• Julian decimal dates:

• year, month, day, hour, minute, second, microsecond dates:

Syntax: see annexes

• for IDL

• for MATLAB

• for Fortran

• for C

• for Python

BRATHL_DAYOFYEAR Retrieves the day of year of a date

BRATHL_NOWYMDHMSM Gets the current date/time

BRATHL_SETREFUSER1 Set user-defined reference dates

BRATHL_SETREFUSER2 Set user-defined reference dates

BRATHL_DIFFDSM Computes the difference between two days-seconds-microseconds
dates (date1 - date2)

the result is expressed in a decimal number of seconds

BRATHL_DIFFJULIAN Computes the difference between two decimal Julian dates (date1

- date2)

the result is expressed in a decimal number of seconds

BRATHL_DIFFYMDHMSM Computes the difference between two year, month, day, hour,
minute, second, microsecond dates (date1 - date2)

the result is expressed in a decimal number of seconds

BRATHL_DSM2JULIAN Converts a days-seconds-microseconds date into a decimal Julian
date, according to refDate parameter

BRATHL_DSM2SECONDS Converts a days-seconds-microseconds date into seconds,
according to refDate parameter

BRATHL_DSM2YMDHMSM Converts a days-seconds-microseconds date into a year, month,
day, hour, minute, second, microsecond date

BRATHL_JULIAN2DSM

Converts a decimal Julian date into a days-seconds-microseconds
date, according to refDate parameter

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 76 of 158

BRATHL_JULIAN2SECONDS
Converts a decimal Julian date into seconds, according to refDate
parameter

BRATHL_JULIAN2YMDHMSM Converts a decimal Julian date into a year, month, day, hour,
minute, second, microsecond date

BRATHL_SECONDS2DSM Converts seconds into a days-seconds-microseconds date,
according to refDate parameter

BRATHL_SECONDS2JULIAN Converts seconds into a decimal Julian date, according to refDate
parameter

BRATHL_SECONDS2YMDHMSM Converts seconds into a a decimal Julian date, according to
refDate parameter

BRATHL_YMDHMSM2DSM Converts a year, month, day, hour, minute, second, microsecond
date into a days-seconds-microseconds date, according to refDate
parameter

BRATHL_YMDHMSM2JULIAN Converts a year, month, day, hour, minute, second, microsecond
date into a decimal Julian date, according to refDate parameter

BRATHL_YMDHMSM2SECONDS

Converts a year, month, day, hour, minute, second, microsecond
date into seconds, according to refDate parameter

9.4. Named structures

Several structures are also available, to represent the different kinds of date formats.

Syntax: see annexes

• for IDL

• for MATLAB

• for Fortran

• for C

• for Python

BRATHL_DATEYMDHMSM YYYY-MM-DD HH:MN:SS:MS date structure

 YEAR

 MONTH

 DAY

 HOUR

 MINUTE

 SECOND

 MUSECOND

BRATHL_DATEDSM day/seconds/microseconds date structure

 REFDATE reference date

 DAYS numbers of days

 SECONDS numbers of seconds

 MUSECONDS numbers of microseconds

REFDATE is the reference date i.e. :

 0: 1950-01-01 00:00:00.0

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 77 of 158

 1: 1958-01-01 00:00:00.0

 2: 1985-01-01 00:00:00.0

 3: 1990-01-01 00:00:00.0

 4: 2000-01-01 00:00:00.0

 5: user reference 1

 6: user reference 2

values of 5 and 6 allow users to set two specific reference dates of
their choice (see BRATHL_SETREFUSER1 and

BRATHL_SETREFUSER2 functions)

BRATHL_DATESECOND decimal seconds date structure

 REFDATE reference date - see :BRATHL_DATEDSM

 NBSECONDS decimal numbers of seconds
(seconds.microseconds)

BRATHL_DATEJULIAN decimal Julian date structure

 REFDATE reference date - see :BRATHL_DATEDSM

 JULIAN decimal Julian day

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 78 of 158

10. ANNEX A: LIST OF DATASETS READ BY BRAT

10.1. Cryosat product overview

Table 5: 10.1. Cryosat product overview

product type description

SIR_LRM_1B SIRAL L1B LRM product

SIR_SAR_1B SIRAL L1B SAR mode product

SIR_SIN_1B SIRAL L1B SARin mode product

SIR1LRM_0M SIRAL MON-LRM/TRK product (Rx1 channel)

SIR2LRM_0M SIRAL MON-LRM/TRK product (Rx2 channel)

SIR1SAR_0M SIRAL MON-SAR product (Rx1 channel)

SIR2SAR_0M SIRAL MON-SAR product (Rx2 channel)

SIR_SIN_0M SIRAL MON-SARin product

SIR_SIC40M SIRAL MON-CAL4 product

SIR1LRC11B SIRAL CAL1-LRM product (Rx1 channel)

SIR2LRC11B SIRAL CAL1-LRM product (Rx2 channel)

SIR1SAC11B SIRAL CAL1-SAR product (Rx1 channel)

SIR2SAC11B SIRAL CAL1-SAR product (Rx2 channel)

SIR_SIC11B SIRAL CAL1-SARin product

SIR_SICC1B SIRAL complex CAL1-SARin product

SIR1SAC21B SIRAL CAL2-SAR product (Rx1 channel)

SIR2SAC21B SIRAL CAL2-SAR product (Rx2 channel)

SIR1SIC21B SIRAL CAL2-SARin product (Rx1 channel)

SIR2SIC21B SIRAL CAL2-SARin product (Rx2 channel)

SIR_LRM_2_ SIRAL L2 product from LRM processing

SIR_FDM_2_ SIRAL L2 product from fast delivery ocean processing

SIR_SIN_2_ SIRAL L2 product from SARin processing

SIR_SID_2_ SIRAL L2 product from SARin degraded processing

SIR_SAR_2A SIRAL L2 product from SAR step 1 processing

SIR_SAR_2B SIRAL L2 product from SAR step 2 processing

SIR_GDR_2A SIRAL L2 consolidated product including SAR step 1 data (SIR_SAR_2A)

SIR_GDR_2B SIRAL L2 consolidated product including SAR step 2 data (SIR_SAR_2B)

SIR_LRMI2_ SIRAL intermediate L2 product from LRM processing

SIR_FDMI2_ SIRAL intermediate L2 product from fast delivery ocean processing

SIR_SINI2_ SIRAL intermediate L2 product from SARin processing

SIR_SIDI2_ SIRAL intermediate L2 product from SARin degraded processing

SIR_SARI2A SIRAL intermediate L2 product from SAR step 1 processing

SIR_SARI2B SIRAL intermediate L2 product from SAR step 2 processing

10.2. Cryosat Ocean products overview

Table 6: Cryosat Ocean products overview

product type description

SIR_IOP_1B Interim L1B Ocean Product

SIR_GOP_1B Geophysical L1B Ocean Product

SIR_IOP_2_ Interim L2 Ocean Product

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 79 of 158

product type description

SIR_GOP_2_ Geophysical L2 Ocean Product

10.3. Jason-2 product overview

Table 7: Jason-2 product overview

product type description

JA2_OPN_2P The Operational Geophysical Data Record (OGDR), produced on a NRT basis

JA2_OPR_2P The reduced Operational Geophysical Data Record(SSHA-OGDR), produced on a NRT basis

JA2_IPN_2P The Interim Geophysical Data Record (IGDR)

JA2_IPR_2P The reduced Interim Geophysical Data Record (SSHA-IGDR), produced on a NRT basis

JA2_IPS_2P The Sensor Interim Geophysical Data Record (SIGDR)

JA2_GPN_2P The Geophysical Data Record (GDR)

JA2_GPR_2P The reduced Geophysical Data Record (SSHA-GDR), produced on a NRT basis

JA2_GPS_2P The Sensor Geophysical Data Record (SGDR)

10.4. Envisat product overview

Table 8: Envisat product overview

product type description

RA2_FGD_2P RA-2 Fast Delivery Geophysical Data Record

RA2_GDR_2P RA-2 Geophysical Data Record

RA2_IGD_2P RA-2 Intermediate Geophysical Data Record

RA2_MWS_2P RA-2 Sensor Data Record

RA2_WWV_2P RA-2 wind/wave product for Meteo Users

10.5. Jason-1 product overview

Table 9: Jason-1 product overview

product type description

JA1_OSD_2P The Operational Sensor Data Record (OSDR), produced on a NRT basis

JA1_IGD_2P The Interim Geophysical Data Record (IGDR)

JA1_GDR_2P The Geophysical Data Record (GDR)

JA1_SDR_2P The Sensor Geophysical Data Record (SGDR)

10.6. Topex/Poseidon product overview

Table 10: Topex/Poseidon radar altimetry products

product type description

MGDR_cycle_header_File Merged GDR Topex/Poseidon cycle header file

MGDR_pass_file Merged GDR Topex/Poseidon pass file

MGDR_crossover_point_file Merged GDR Topex/Poseidon crossover point file (XNG)

SDR_pass_file SDR Topex/Poseidon pass file

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 80 of 158

10.7. ERS-1 and 2 product overview

Table 11: ERS-1 and ERS-2 radar altimetry products

product type description

OPR_pass_file
Same as the off-line intermediate product but enhanced with all geophysical corrections
and precise orbit altitude.

URA Radar Altimeter Fast delivery

WAP Radar Altimeter Waveform product

10.8. GFO product overview

Table 12: GFO product overview

product type description

GDR
The GDR is generated from GFO Sensor Data Records (SDRs), precise laser orbit
ephemerides provided by NASA Goddard Space Flight Center and Raytheon ITSS,
environmental corrections, and ancillary geophysical variables.

10.9. PODAAC product overview

Table 13: Physical Oceanography Distributed Active Archive Center radar altimetry products for Jason-
1 and Topex/Poseidon

product type description

J1SSHA_CYCLE_HEADER_FILE The PODAAC JASON-1 SSHA cycle header file

TPSSHA_CYCLE_HEADER_FILE The PODAAC TOPEX/POSEIDON SSHA cycle header file

J1SSHA_PASS_FILE The PODAAC JASON-1 SSHA pass file

TPSSHA_PASS_FILE The PODAAC TOPEX/POSEIDON SSHA pass file

J1SSHA_ATG_FILE The PODAAC JASON-1 Along Track Gridded SSHA file

TPSSHA_ATG_FILE The PODAAC TOPEX/POSEIDON Along Track Gridded SSHA file

10.10. River and Lake product overview

Table 14: ENVISAT-ERS Exploitation River and Lake Products

product type description

RLH River/Lake Hydrology Product

RLA River/Lake Altimetry Product

10.11. NetCDF products

NetCDF products are self-describing products.

This means that when a netCDF file is opened one can retrieve the product structure from the file itself.

For this reason, BRAT will not store fixed product format descriptions for HDF files in the Data Dictionary
(you will therefore also not find netCDF product format descriptions in this documentation). What BRAT
will do is use the underlying netCDF library to retrieve the product format dynamically once a netCDF file
is opened. Based on this format BRAT will create, on the fly, a mapping of the HDF product structure to
one that is based on the Data Dictionary data types

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 81 of 158

However, to be properly interpreted in the toolbox, a HDF product needs a description module to be
added.

For example, in order to (really) read a netCDF files we need to:

 Access to netCDF attributes

 Identify default/missing values (see _FillValue standard attribute)

 Convert data to its actual value (not the value stored in file): see scale_factor and add_offset standard
attributes.

 Interpret the structure of file to compute actual values of data (and not solely returning the netCDF

variables values 'as is').

 Avoid making available variables belonging to data structure (which are not the data themselves)

10.11.1. Aviso Altimetry data in netCDF

Table 15: Aviso Altimetry data in netCDF

product type description

NRT- or DT-MSLA (h)
Ssalto/Duacs multimission Near real-time or Delayed time Maps of sea
level anomalies (gridded)

NRT- or DT-MSLA (uv)
Ssalto/Duacs multimission Near real-time or Delayed time Geostrophic
velocities associated to the Maps of sea level anomalies (gridded)

NRT- or DT-MSLA (err)
Ssalto/Duacs multimission Near real-time or Delayed time Maps of sea
level anomalies Formal mapping error (gridded)

NRT- or DT-SLA
Ssalto/Duacs multimission Near real-time or Delayed time Sea level
anomalies (along-track)

NRT- or DT-NRT- or DT-MADT (h)
Ssalto/Duacs multimission Near real-time or Delayed time Maps of
absolute dynamic topography (gridded)

NRT- or DT-MADT (uv)
Ssalto/Duacs multimission Near real-time or Delayed time Geostrophic
velocities associated to the Maps of absolute dynamic topography
(gridded)

NRT- or DT-ADT
Ssalto/Duacs multimission Near real-time or Delayed time Absolute
dynamic topography (along-track)

Monomission DT-SLA Delayed time Sea level anomalies (along-track)

Monomission DT-CorSSH Delayed time Corrected sea surface height (along-track)

NRT-MSWH Near real-time Maps of Significant wave height (gridded)

NRT-MWind Near real-time Maps of Wind speed modulus (gridded)

10.11.2. ERS REAPER data in netCDF

Table 16: ERS REAPER data in netCDF

product type description

ERS_ALT_2_ REAPER L2 GDR Product

ERS_ALT_2S REAPER L2 SGDR Product (GDR with echo waveforms)

ERS_ALT_2M REAPER L2 Meteo Product (reduced 1Hz meteo product)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 82 of 158

10.11.3. Sentinel 3 data in netCDF

Table 17: Sentinel 3 data in netCDF

product type description

SR_1_SRA___
Echoes parameters for LRM, PLRM and SAR mode (resolution
20Hz)

SR_1_CAL___ Calibration parameters for LRM and SAR mode

SR_2_LAN___
1-Hz and 20-Hz Ku and C bands parameters (LRM/SAR/PLRM),
waveforms. Over Land

SR_2_WAT___
1-Hz and 20-Hz Ku and C bands parameters (LRM/SAR/PLRM),
waveforms. Over Water

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 83 of 158

11. ANNEX B: Y=F(X) PARAMETER FILE KEYS

NOTE: The following table of parameter file keyword help can be always be obtained by calling:
“BratCreateYFX -k”.

FILE Type : Str Count : [1-n]

Input file name.

RECORD Type : Str Count : 1

 Record set name to take into account for a file.

OUTPUT Type : Str Count : 1

 Name of created/modified file.

OUTPUT_TITLE Type : Str Count : [0-1]

Title of created/modified file (string describing the content and
which should appear as a graphic title, for example).

(Default="")

SELECT Type : Expr Count : [0-n]

 True for record values selected.

 (Default=1)

FIELD Type : Expr Count : [1-20]=X

 Expression of fields of *RECORD* to take into account.

FIELD_NAME Type : Name Count : X

 Name of the *FIELD* data

FIELD_TYPE Type : KW1 Count : X

 Type of *FIELD* data.

FIELD_UNIT Type : Unit Count : X

 Unit of *FIELD* expression.

FIELD_TITLE Type : Str Count : X

Long name describing *FIELD*. The one which should appear in
graphics on axis or legends, for example.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 84 of 158

DATA_MODE
Type : KW2 Count : [0-1]

 Keyword to indicate how data are stored/computed.

 (Default=MEAN)

X Type : Expr Count : 1

 Expression of fields of *RECORD* to take into account.

X_NAME Type : Name Count : 1

 Name of the *X* data

X_TYPE Type : KW1 Count : 1

 Type of *X* data (normally X, T or longitude).

X_UNIT Type : Unit Count : 1

 Unit of *X* expression

X_TITLE Type : Str Count : 1

Long name describing *X*. The one which should appear in
graphics on axis or legends, for example.

ALIAS_NAME Type : Name Count : [0-n]=N

Name of an alias. An alias is a value which can be used anywhere in

another value of field by mean of %{NAME} construct. Names are
case sensitive. If a name reference (%{XXX}) does not correspond
to an actually defined alias, the expansion is an empty string.

(Default=None)

ALIAS_VALUE Type : Str Count : N

The value of the alias. ALIAS_VALUE keyword must have at least as
many occurrences as the ALIAS_NAME one.

VERBOSE Type : Int Count : [0-1]

 Amount of output: 0=None...5=Debug.

 (Default=0)

=====================

Description of types:

Name String beginning with a letter and containing only letters, digits and
'_'

Int Integer

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 85 of 158

Expr Combination of fields of the current record.

An expression which can contain function calls like trigonometric,
conversion, test...

Str String. Leading and trailing blanks are ignored.

Unit Unit string conforming to Udunits package and the special keyword

'DATE' which means that the data is a date.

KW1 Keywords: X/Y/Z/T/Latitude/Longitude/Data

KW2 Keywords: FIRST/LAST/MIN/MAX/MEAN/STDDEV/COUNT

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 86 of 158

12. ANNEX C: Z=F(X,Y) PARAMETER FILE KEYS

NOTE: The following table of parameter file keyword help can be always be obtained by calling:
“BratCreateZFXY -k”

FILE Type : Str Count : [1-n]

 Input file name.

OUTPUT Type : Str Count : 1

 Name of created/modified file.

OUTPUT_TITLE Type : Str Count : [0-1]

Title of created/modified file (string describing the content and
which should appear as a graphic title, for example).

(Default="")

SELECT Type : Expr Count : [0-n]

 True for record values selected.

 (Default=1)

RECORD Type : Str Count : 1

 Record set name to take into account for a file.

DATA_MODE Type : KW2 Count : [0-1]

 Keyword to indicate how data are stored/computed.

 (Default=MEAN)

POSITION_MODE Type : KW3 Count : [0-1]

 How position is computed.

 (Default=NEAREST)

OUTSIDE_MODE Type : KW4 Count : [0-1]

 How data outside limits are managed.

 (Default=STRICT)

X Type : Expr Count : 1

 Expression of fields of *RECORD* to take into account.

X_NAME Type : Name Count : 1

 Name of the *X* data

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 87 of 158

X_TYPE
Type : KW1 Count : 1

 Type of *X* data (normally X, T or longitude).

X_UNIT Type : Unit Count : 1

 Unit of *X* expression

X_TITLE Type : Str Count : 1

Long name describing *X*. The one which should appear in

graphics on axis or legends, for example.

X_INTERVALS Type : Int Count : 1

 Number of intervals between Min and Max for *X*.

 (Default=180 for lat 360 for lon)

X_MIN Type : Flt Count : 1

 Min value for *X* expression storage.

 (Default=-90 for lat, -180 for lon)

X_MAX Type : Flt Count : 1

 Max value for *X* expression storage.

 (Default=90 for lat, 180 for lon)

X_LOESS_CUTOFF Type : Int Count : 1

Distance (in dots) where LOESS filter reaches 0 along X axis. Must
be an odd integer. If 1 or 0, Distance computation is disabled.
Needed only if at least one filter is asked.

(Default=0)

Y Type : Expr Count : 1

 Expression of fields of *RECORD* to take into account.

Y_INTERVALS Type : Int Count : 1

 Number of intervals between Min and Max for *Y*.

 (Default=180 for lat 360 for lon)

Y_NAME Type : Name Count : 1

 Name of the *Y* data.

Y_TYPE Type : KW1 Count : 1

 Type of *Y* data (normally X, T or longitude).

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 88 of 158

Y_UNIT
Type : Unit Count : 1

 Unit of *Y* expression.

Y_TITLE Type : Str Count : 1

Long name describing *Y*. The one which should appear in graphics
on axis or legends, for example.

Y_MIN Type : Flt Count : 1

 Min value for *Y* expression storage.

 (Default=-90 for lat, -180 for lon)

Y_MAX Type : Flt Count : 1

 Max value for *Y* expression storage.

 (Default=90 for lat, 180 for lon)

Y_LOESS_CUTOFF Type : Int Count : 1

Distance (in dots) where LOESS filter reaches 0 along Y axis. Must
be an odd integer. If 1 or 0, Distance computation is disabled.

Needed only if at least one filter is asked.

(Default=0)

FIELD Type : Expr Count : [1-20]=X

 Expression of fields of *RECORD* to take into account.

FIELD_NAME Type : Name Count : X

 Name of the *FIELD* data

FIELD_TYPE Type : KW1 Count : X

 Type of *FIELD* data.

FIELD_UNIT Type : Unit Count : X

 Unit of *FIELD* expression.

FIELD_TITLE Type : Str Count : X

Long name describing *FIELD*. The one which should appear in

graphics on axis or legends, for example.

FIELD_FILTER Type : KS1 Count : X

 How to filter the data.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 89 of 158

ALIAS_NAME
Type : Name Count : [0-n]=N

Name of an alias. An alias is a value which can be used anywhere in

another value of field by mean of %{NAME} construct. Names are
case sensitive. If a name reference (%{XXX}) does not correspond
to an actually defined alias, the expansion is an empty string.

(Default=None)

ALIAS_VALUE Type : Str Count : N

The value of the alias. ALIAS_VALUE keyword must have at least as
many occurrences as the ALIAS_NAME one.

VERBOSE Type : Int Count : [0-1]

 Amount of output: 0=None...5=Debug.

 (Default=0)

=====================

Description of types:

Name String beginning with a letter and containing only letters, digits and

'_'

Flt Floating point number

Int Integer

Expr Combination of fields of the current record.

An expression which can contain function calls like trigonometric,
conversion, test...

Str String. Leading and trailing blanks are ignored.

Unit Unit string conforming to Udunits package and the special keyword
'DATE' which means that the data is a date.

KW1 Keywords: X/Y/Z/T/Latitude/Longitude/Data

KW2 Keywords: FIRST/LAST/MIN/MAX/MEAN/STDDEV/COUNT

KW3 Keywords: EXACT/NEAREST

EXACT: Measures which are exactly on boundaries (grid lines) are
kept others are ignored

NEAREST: Get the nearest boundary.

KW4 Keywords: STRICT/RELAXED/BLACK_HOLE

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 90 of 158

STRICT: Measure outside limits are ignored

RELAXED: Measure outside limits are ignored if they are farther

than a half step from the limit.

BLACK_HOLE: Everything outside the limit is considered to be on
the limit.

KS1 Set of keywords from: NONE, LOESS_SMOOTH,
LOESS_EXTRAPOLATE, LOESS (LOESS means LOESS_SMOOTH and

LOESS_EXTRAPOLATE)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 91 of 158

13. ANNEX D: DISPLAY PARAMETER FILE KEYS

NOTE: The following table of parameter file keyword help can be always be obtained by calling:
“BratDisplay –k”.

FILE Type : Str Count : [1-n]

 Input file name.

FIELD Type : Expr Count : [1-23]=X

 Expression of fields of *RECORD* to take into account.

FIELD_GROUP Type : Int Count : X

 Group id from where belongs *FIELD*. generally used to group
many fields in one plot.

DISPLAY_PROPERTIES Type : Bool Count : [0-1]

 Indicates if property panel is shown.

 (Default=No)

DISPLAY_TITLE Type : Str Count : [0-1]

 Title of the plot to be displayed.

 (Default="")

DISPLAY_ANIMATIONBAR Type : Bool Count : [0-1]

 Keyword to indicate if property panel is shown.

 (Default=No)

DISPLAY_COLORBAR Type : Bool Count : [0-1]

 Keyword to indicate if colour bar (legend) is shown.

 (Default=Yes)

DISPLAY_CENTERLAT Type : Flt Count : [0-1]

 Latitude of the projection's centre point.

 (Default=0)

DISPLAY_CENTERLON Type : Flt Count : [0-1]

 Longitude of the projection's centre point.

 (Default=0)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 92 of 158

DISPLAY_PROJECTION
Type : KW9 Count : [0-1]

 Projection to use for mapping the world globe.

 (Default=3D)

DISPLAY_COASTRESOLUTION Type : KW6 Count : [0-1]

 Resolution of the coast line drawn on the map.

 Recommended value: low.

 (Default=low)

DISPLAY_ZOOM_LON1 Type : Flt Count : [0-1]

 Zoom area west side.

 (Default=-180)

DISPLAY_ZOOM_LON2 Type : Flt Count : [0-1]

 Zoom area east side.

 (Default=180)

DISPLAY_ZOOM_LAT1 Type : Flt Count : [0-1]

 Zoom area south side.

 (Default=-90)

DISPLAY_ZOOM_LAT2 Type : Flt Count : [0-1]

 Zoom area north side.

 (Default=90)

DISPLAY_GROUPBY_FILE Type : Bool Count : [0-1]

For world plot. When several files are in input, this parameter

indicates if fields are displayed in the same plot (group field by

file) or in different plots (one plot by file).

(Default=Yes)

DISPLAY_XMINVALUE Type : Flt Count : [0-1]

 Minimum X coordinate value to use in XY plot.

 (Default=min of data values for X axis)

DISPLAY_XMAXVALUE Type : Flt Count : [0-1]

 Maximum X coordinate value to use in XY plot.

 (Default=max of data values for X axis)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 93 of 158

DISPLAY_YMINVALUE
Type : Flt Count : [0-1]

 Minimum Y coordinate value to use in XY plot.

 (Default=min of data values for Y axis)

DISPLAY_YMAXVALUE Type : Flt Count : [0-1]

 Maximum Y coordinate value to use in XY plot.

 (Default=max of data values for Y axis)

DISPLAY_XLABEL Type : Str Count : [0-1]

 X axis label to be displayed.

 (Default=field title or field name)

DISPLAY_YLABEL Type : Str Count : [0-1]

 Y axis label to be displayed.

 (Default=field title or field name)

DISPLAY_XTICKS Type : Int Count : [0-1]

 Number of ticks for the X axis.

 (Default=6)

DISPLAY_YTICKS Type : Int Count : [0-1]

 Number of ticks for the Y axis.

 (Default=6)

DISPLAY_NAME Type : Str Count : [0-n]=W

 Field name to be displayed.

DISPLAY_OPACITY Type : Flt Count : 0 or W

 Opacity of the colour value map image:

 1.0 colour is totally opaque

 0.0 is completely transparent.

 (Default=0.7)

DISPLAY_MINVALUE Type : Flt Count : 0 or W

 Minimum colour table value to use in plot.

 (Default=min of data values)

DISPLAY_MAXVALUE Type : Flt Count : 0 or W

 Maximum colour table value to use in plot.

 (Default=max of data values)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 94 of 158

DISPLAY_NUMCOLORLABELS
Type : Int Count : 0 or W

 Number of labels shown on the plot's colour bar.

 (Default=2)

DISPLAY_COLORTABLE Type : Str Count : 0 or W

 Name of a predefined colour table:

 Aerosol

 Blackbody

 BlackToWhite

 Cloud

 Ozone

 GreenToRed

 Rainbow

 RedToGreen

 WhiteToBlack

 or name of a file containing the colour table definition

 (absolute or relative path).

 (Default=Aerosol)

DISPLAY_COLORCURVE Type : KW5 Count : 0 or W

 Set the colour table on a specific curve.

 (Default=Linear)

DISPLAY_CONTOUR Type : Bool Count : 0 or W

 Indicates if the contour layer of the field is shown or not.

 (Default=No)

DISPLAY_CONTOUR_NUMBER Type : Int Count : 0 or W

Number of contour lines to generate

(equally spaced contour values between specified range

See DISPLAY_CONTOUR_MINVALUE and
DISPLAY_CONTOUR_MAXVALUE).

(Default=5)

DISPLAY_CONTOUR_LABEL Type : Bool Count : 0 or W

 Indicate if the contour labels (value) are shown or not.

 (Default=No)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 95 of 158

DISPLAY_CONTOUR_LABEL_NUMBER
Type : Int Count : 0 or W

 Number of labels on each contour.

 (Default=1)

DISPLAY_CONTOUR_MINVALUE Type : Flt Count : 0 or W

 Minimum value to use to contour calculation.

 Default values are the same as the colour scale one.

 (Default=min of data values)

DISPLAY_CONTOUR_MAXVALUE Type : Flt Count : 0 or W

 Maximum value to use to contour calculation.

 Default values are the same as the colour scale one.

 (Default=max of data values)

DISPLAY_SOLID_COLOR Type : Bool Count : 0 or W

 Indicates if colour layer of the field is shown or not.

 (Default=Yes)

DISPLAY_EAST_COMPONENT Type : Bool Count : 0 or W

Indicates if this field is the East component of a vector
plot.

(Default=No)

DISPLAY_NORTH_COMPONENT Type : Bool Count : 0 or W

Indicates if this field is the North component of a vector
plot.

(Default=No)

DISPLAY_COLOR Type : KW7 Count : 0 or W

 Colour name of the XY plot field.

 (Default=rainbow colour)

DISPLAY_POINTS Type : Bool Count : 0 or W

Indicates if points are displayed in a XY plot(for the
field).

(Default=No)

DISPLAY_LINES Type : Bool Count : 0 or W

 Indicates if line is displayed in a XY plot (for the field).

 (Default=Yes)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 96 of 158

DISPLAY_POINTSIZE
Type : Flt Count : 0 or W

 Size of the points (XY plot, for the field).

 (Default=1.0)

DISPLAY_LINEWIDTH Type : Flt Count : 0 or W

 Width of the line (XY plot, for the field).

 (Default=0.8)

DISPLAY_STIPPLEPATTERN Type : KW10 Count : 0 or W

 Stipple pattern for the line (field) (XY plot).

 (Default=Full)

DISPLAY_POINTGLYPH Type : KW8 Count : 0 or W

 Glyph of the points (field) (XY plot).

 (Default=Circle)

DISPLAY_POINTFILLED Type : Bool Count : 0 or W

 Indicates if points are filled or not.

 (Default=Yes)

ALIAS_NAME Type : Name Count : [0-n]=N

Name of an alias. An alias is a value which can be used

anywhere in another value of field by mean
of%{NAME} construct. Names are case sensitive. If a
name reference (%{XXX}) does not correspond to an
actually defined alias, the expansion is an empty string.

(Default=None)

ALIAS_VALUE Type : Str Count : N

The value of the alias. ALIAS_VALUE keyword must
have at least as many occurrences as the ALIAS_NAME
one.

VERBOSE Type : Int Count : [0-1]

 Amount of output: 0=None...5=Debug.

 (Default=0)

=====================

Description of types:

Name String beginning with a letter and containing only letters, digits and
'_'

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 97 of 158

Bool
Boolean

 true if : YES/Y/TRUE/T/OUI/O/VRAI/V/1

 false if : NO/N/FALSE/F/NON/N/FAUX/0

Flt Floating point number

Int Integer

Expr Combination of fields of the current record.

An expression which can contain function calls like trigonometric,
conversion, test...

Str String. Leading and trailing blanks are ignored.

KW5 Keywords: cosine, linear, sqrt (square root)

KW6 Keywords: In increasing resolution: crude, low, intermediate, full

KW7 Keywords: AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN,

 CADET BLUE, CORAL, CORNFLOWER BLUE, CYAN, DARK GREY,

 DARK GREEN, DARK OLIVE GREEN, DARK ORCHID,

 DARK SLATE BLUE, DARK SLATE GREY, DARK TURQUOISE,

 DIM GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD,

 GREY, GREEN, GREEN YELLOW, INDIAN RED, KHAKI,

 LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE, LIME GREEN,

 MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,

 MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID,

 MEDIUM SEA GREEN, MEDIUM SLATE BLUE,

 MEDIUM SPRING GREEN, MEDIUM TURQUOISE,

 MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE,

 ORANGE RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE,

 RED, SALMON, SEA GREEN, SIENNA, SKY BLUE, SLATE BLUE,

 SPRING GREEN, STEEL BLUE, TAN, THISTLE, TURQUOISE,

 VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW,

 YELLOW GREEN.

KW8 Keywords: ARROW, CIRCLE, CROSS, DASH, DIAMOND,
HOOKEDARROW, SQUARE, THICKARROW, THICKCROSS, TRIANGLE

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 98 of 158

KW9
Keywords: 3D, Azimuthal Equidistant, Lambert Cylindrical, Lambert
Azimuthal, Mercator, Mollweide, Plate-Caree, Robinson

KW10 Keywords: DASHTINY, DASH, DASHDOT, DOT, FULL

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 99 of 158

14. ANNEX E: BRATHL-MATLAB API

The BRATHL-MATLAB API consists of just a handful of MATLAB structures and functions.

 ==================

 structures

 ==================

BRATHL_DATEYMDHMSM = 0

BRATHL_DATEDSM = 1

BRATHL_DATESECOND = 2

BRATHL_DATEJULIAN = 3

To create a structure, use BRATHL_CREATESTRUCT (see description below)

BRATHL_DATEYMDHMSM structure

This structure represents an YYYY-MM-DD HH:MN:SS:MS date structure :

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

MUSECOND

Example :

MyDate=BRATHL_CREATESTRUCT(0)

MyDate.YEAR=2003

MyDate.MONTH=12

MyDate.DAY=5

MyDate.HOUR=18

MyDate.MINUTE=0

MyDate.SECOND=21

MyDate.MUSECOND=1069

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 100 of 158

BRATHL_DATEDSM structure

This structure represents a day/seconds/microseconds date structure:

REFDATE reference date

DAYS numbers of days

SECONDS numbers of seconds

MUSECONDS numbers of microseconds

REFDATE is the reference date i.e. :

 0: 1950-01-01 00:00:00.0

 1: 1958-01-01 00:00:00.0

 2: 1985-01-01 00:00:00.0

 3: 1990-01-01 00:00:00.0

 4: 2000-01-01 00:00:00.0

 5: user reference 1

 6: user reference 2

values of 5 and 6 allow the user to set two specifics reference date of his choice

(see BRATHL_SETREFUSER1 and BRATHL_SETREFUSER2 functions)

Example:

MyDate=BRATHL_CREATESTRUCT(1)

MyDate.REFDATE=3

MyDate.DAYS=423

MyDate.SECONDS=5

MyDate.MUSECONDS=0

BRATHL_DATESECONDS structure

This structure represents a decimal seconds date structure:

REFDATE reference date - see :BRATHL_DATEDSM

NBSECONDS decimal numbers of seconds (seconds.microseconds)

Example:

MyDate=BRATHL_CREATESTRUCT(2)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 101 of 158

MyDate.REFDATE=0

MyDate.NBSECONDS=56236.0253

BRATHL_DATEJULIAN structure

This structure represents a decimal Julian date structure:

REFDATE reference date - see :BRATHL_DATEDSM

JULIAN decimal Julian day

Example:

MyDate=BRATHL_CREATESTRUCT(3)

MyDate.REFDATE=0

MyDate.JULIAN=123.569

 ==================

 Functions

 ==================

==================

structure creation functions

==================

BRATHL_CREATESTRUCT

==================

Date conversion/computation functions

==================

BRATHL_DAYOFYEAR

BRATHL_DIFFDSM

BRATHL_DIFFJULIAN

BRATHL_DIFFYMDHMSM

BRATHL_DSM2JULIAN

BRATHL_DSM2SECONDS

BRATHL_DSM2YMDHMSM

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 102 of 158

BRATHL_JULIAN2DSM

BRATHL_JULIAN2SECONDS

BRATHL_JULIAN2YMDHMSM

BRATHL_SECONDS2DSM

BRATHL_SECONDS2JULIAN

BRATHL_SECONDS2YMDHMSM

BRATHL_NOWYMDHMSM

BRATHL_YMDHMSM2DSM

BRATHL_YMDHMSM2JULIAN

BRATHL_YMDHMSM2SECONDS

BRATHL_SETREFUSER1

BRATHL_SETREFUSER2

==================

Cycle/date conversion functions

==================

To convert cycle <-> date, these functions use an asci parameter file (ascii file) with records :

 field 1 : Name of the mission

 field 2 : Cycle reference

 field 3 : Pass reference

 field 4 : Reference date in decimal Julian day

Each field has to be separated by, at least, a non-numeric character

The file can contained several records for a same mission.

Only the field with the greatest date is taken into account

You can add records.

You can add comments, commented lines start by '#' character.

If the file doesn't exist, default values are:

Name Cycle Pass Reference date

Jason-1 99 230 19987.9081795

Topex/Poseidon 442 230 19987.9127535

ERS2 66 598 18831.768334

ERS1-A 15 1 15636.938955

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 103 of 158

ERS1-B 42 108 16538.6732895

ENVISAT 30 579 19986.106016

BRATHL_CYCLE2YMDHMSM

BRATHL_YMDHMSM2CYCLE

BRATHL_DAYOFYEAR

Retrieves the day of year of a date

dayOfYear = BRATHL_DAYOFYEAR(BRATHL_DATEYMDHMSM dateYMDHMSM)

[in] dateYMDHMSM : date

[out] dayOfYear : day of year of the date parameter

Example:

MyDate={BRATHL_DATEYMDHMSM}

MyDate.YEAR=2003

MyDate.MONTH=12

MyDate.DAY=5

MyDate.HOUR=18

MyDate.MINUTE=0

MyDate.SECOND=21

MyDate.MUSECOND=1069

dayOfYear=0L

r = BRATHL_DAYOFYEAR(MyDate, dayOfYear)

print, r, dayOfYear

BRATHL_DIFFDSM

Computes the difference between two dates (date1 - date2)

the result is expressed in a decimal number of seconds

BRATHL_DIFFDSM(BRATHL_DATEDSM date1, BRATHL_DATEDSM date2, DOUBLE diff)

[in] date1

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 104 of 158

[in] date2

[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example:

d1={BRATHL_DATEDSM}

d1.REFDATE=3

d1.DAYS=423

d1.SECONDS=5

d1.MUSECONDS=0

d2={BRATHL_DATEDSM}

d2.REFDATE=2

d2.DAYS=36

d2.SECONDS=54

d2.MUSECONDS=2536

diff = 0.0D

r = BRATHL_DIFFYMDHMSM(d1, d2, diff)

print, r, diff

BRATHL_DIFFJULIAN

Computes the difference between two dates (date1 - date2)

the result is expressed in a decimal number of seconds

BRATHL_DIFFJULIAN(BRATHL_DIFFJULIAN date1, BRATHL_DIFFJULIAN date2, DOUBLE diff)

[in] date1

[in] date2

[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DIFFDSM

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 105 of 158

BRATHL_DIFFYMDHMSM

Computes the difference between two dates (date1 - date2)

the result is expressed in a decimal number of seconds

BRATHL_DIFFYMDHMSM(BRATHL_DIFFYMDHMSM date1, BRATHL_DIFFYMDHMSM date2, DOUBLE diff)

[in] date1

[in] date2

[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DIFFDSM

BRATHL_DSM2JULIAN

Converts a days-seconds-microseconds date into a decimal Julian date, according to refDate parameter

BRATHL_DSM2JULIAN(BRATHL_DATEDSM dateDSM, INT refDate, BRATHL_DATEJULIAN dateJulian);

[in] dateDSM : date to convert

[in] refDate : date reference conversion

[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example :

dIn={BRATHL_DATEDSM}

dIn.REFDATE=3

dIn.DAYS=423

dIn.SECONDS=5

dIn.MUSECONDS=0

dOut={BRATHL_DATEJULIAN}

refDateDestination = 0

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 106 of 158

r = BRATHL_DSM2JULIAN(dIn, refDateDestination, dOut)

print, r, dOut.REFDATE, dOut.JULIAN

BRATHL_DSM2SECONDS

Converts a days-seconds-microseconds date into seconds, according to refDate parameter

BRATHL_DSM2SECONDS(BRATHL_DATEDSM dateDSM, INT refDate, BRATHL_DATESECOND

dateSeconds);

[in] dateDSM : date to convert

[in] refDate : date reference conversion

[out] dateSeconds : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_DSM2YMDHMSM

Converts a days-seconds-microseconds date into a year, month, day, hour, minute, second, microsecond
date

BRATHL_DSM2YMDHMSM(BRATHL_DATEDSM dateDSM, BRATHL_DATEYMDHMSM dateYMDHMSM);

[in] dateDSM : date to convert

[in] refDate : date reference conversion

[out] dateYMDHMSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example:

dIn={BRATHL_DATEDSM}

dIn.REFDATE=3

dIn.DAYS=423

dIn.SECONDS=5

dIn.MUSECONDS=0

dOut={BRATHL_DATEYMDHMSM}

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 107 of 158

refDateDestination = 0

r = BRATHL_DSM2YMDHMSM(dIn, dOut)

print, r, dOut.YEAR, dOut.JULIAN, dOut.MONTH, dOut.DAY, dOut.HOUR, dOut.MINUTE, dOut.SECOND,
dOut.MUSECOND

BRATHL_JULIAN2DSM

Converts a decimal Julian date into a days-seconds-microseconds date, according to refDate parameter

BRATHL_JULIAN2DSM(BRATHL_DATEJULIAN dateJulian, INT refDate, BRATHL_DATEDSM dateDSM);

[in] dateJulian : date to convert

[in] refDate : date reference conversion

[out] dateDSM : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

BRATHL_DSM2YMDHMSM(BRATHL_DATEDSM dateDSM, BRATHL_DATEYMDHMSM dateYMDHMSM);

[in] dateDSM : date to convert

[in] refDate : date reference conversion

[out] dateYMDHMSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_JULIAN2SECONDS

Converts a decimal Julian date into seconds, according to refDate parameter

BRATHL_JULIAN2SECONDS(BRATHL_DATEJULIAN dateJulian, INT refDate, BRATHL_DATESECOND
dateSeconds)

[in] dateJulian : date to convert

[in] refDate : date reference conversion

[out] dateSeconds : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 108 of 158

BRATHL_JULIAN2YMDHMSM

Converts a decimal Julian date into a year, month, day, hour, minute, second, microsecond date

BRATHL_JULIAN2YMDHMSM(BRATHL_DATEJULIAN dateJulian, BRATHL_DATEYMDHMSM dateYMDHMSM);

[in] dateJulian : date to convert

[in] refDate : date reference conversion

[out] dateYMDHMSM : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2YMDHMSM

BRATHL_SECONDS2DSM

Converts seconds into a days-seconds-microseconds date, according to refDate parameter

BRATHL_SECONDS2DSM(BRATHL_DATESECOND dateSeconds, INT refDate, BRATHL_DATEDSM
dateDSM);

[in] dateSeconds : date to convert

[in] refDate : date reference conversion

[out] dateDSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_SECONDS2JULIAN

Converts seconds into a decimal Julian date, according to refDate parameter

BRATHL_SECONDS2JULIAN(BRATHL_DATESECOND dateSeconds, INT refDate, BRATHL_DATEJULIAN
dateJulian)

[in] dateSeconds : date to convert

[in] refDate : date reference conversion

[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 109 of 158

Example: see BRATHL_DSM2JULIAN

BRATHL_SECONDS2YMDHMSM

Converts seconds into a decimal Julian date, according to refDate parameter

BRATHL_SECONDS2YMDHMSM(BRATHL_DATESECOND dateSeconds, INT refDate, BRATHL_DATEJULIAN
dateJulian)

[in] dateSeconds : date to convert

[in] refDate : date reference conversion

[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_NOWYMDHMSM

Gets the current date/time,

LIBRATHL_API int32_t brathl_NowYMDHMSM(brathl_DateYMDHMSM *dateYMDHMSM);

[out] dateYMDHMSM : current date/time

BRATHL_NOWYMDHMSM(BRATHL_DATEYMDHMSM dateYMDHMSM)

Example: see BRATHL_DSM2JULIAN

dOut={BRATHL_DATEYMDHMSM}

r = BRATHL_NOWYMDHMSM(dOut)

print, r, dOut.YEAR, dOut.JULIAN, dOut.MONTH, dOut.DAY, dOut.HOUR, dOut.MINUTE, dOut.SECOND,
dOut.MUSECOND

BRATHL_YMDHMSM2DSM

Converts a year, month, day, hour, minute, second, microsecond date into a days-seconds-microseconds

date, according to refDate parameter

BRATHL_YMDHMSM2DSM(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate, BRATHL_DATEDSM
dateDSM)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 110 of 158

[in] dateYMDHMSM : date to convert

[in] refDate : date reference conversion

[out] dateDSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_YMDHMSM2JULIAN

Converts a year, month, day, hour, minute, second, microsecond date into a decimal Julian date,
according to refDate parameter

BRATHL_YMDHMSM2JULIAN(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate, BRATHL_DATEJULIAN
dateJulian)

[in] dateYMDHMSM : date to convert

[in] refDate : date reference conversion

[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_YMDHMSM2SECONDS

Converts a year, month, day, hour, minute, second, microsecond date into a seconds, according to
refDate parameter

BRATHL_YMDHMSM2SECONDS(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATESECOND dateSeconds)

[in] dateYMDHMSM : date to convert

[in] refDate : date reference conversion

[out] dateSeconds : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 111 of 158

BRATHL_SETREFUSER1

BRATHL_SETREFUSER2

Set user-defined reference dates

BRATHL_SETREFUSER1(STRING dateRef)

[in] dateRef : date to set - format: YYYY-MM-DD HH:MN:SS.MS

return 0 or error code (see Date error codes in brathl general documentation)

Example:

dateRefUser1 = '2001 01 12 14:57:23:1456'

dateRefUser2 = '2005 11 14'

brathl_setrefuser1(dateRefUser1)

brathl_setrefuser2(dateRefUser2)

MyDate={BRATHL_DATEDSM}

. Set user-defined ref. date 2001 01 12 14:57:23:1456

MyDate.REFDATE=5

MyDate.DAYS=423

MyDate.SECONDS=5

MyDate.MUSECONDS=0

AnotherDate={BRATHL_DATEDSM}

. Set user-defined ref. date 2005 11 14

AnotherDate.REFDATE=6

AnotherDate.DAYS=423

AnotherDate.SECONDS=5

AnotherDate.MUSECONDS=0

; ref. date for MyDate is now 2005 11 14

MyDate.REFDATE=6

brathl_setrefuser2('2005 05 18 13:08:00')

; ref. date for MyDate and AnotherDate is now 2005 05 18 13:08:00

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 112 of 158

BRATHL_CYCLE2YMDHMSM

Converts a cyle/pass into a date

BRATHL_CYCLE2YMDHMSM(INT mission, ULONG cycle, ULONG pass, BRATHL_DATEYMDHMSM
dateYMDHMSM)

[in] mission : mission type :

 0 : Topex/Poseidon

 1 : Jason-1

 2 : ERS2

 3 : Envisat

 4 : ERS1-A

 5 : ERS1-B

 6 : GFO

[in] cycle : number of cycle to convert

[in] pass : number of pass in the cycle to convert

[out] dateYMDHMSM : date corresponding to the cycle/pass

return 0 or error code (see Cycle/date conversion error codes in brathl general documentation)

Example:

cycle=120L

pass=153L

mission=3

dOut={BRATHL_DATEYMDHMSM}

r = BRATHL_CYCLE2YMDHMSM(mission, cycle, pass, dOut)

print, "result ", r

print, "mission ", mission , " cycle ", cycle, " pass ", pass

print, "Y", dOut.year, " M ", dOut.month, " D ", dOut.day, " H ", dOut.hour, " MN ", dOut.minute, " S ",
dOut.second, " MS ", dOut.muSecond

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 113 of 158

BRATHL_YMDHMSM2CYCLE

Converts a date into a cycle/pass

BRATHL_YMDHMSM2CYCLE(INT mission, BRATHL_DATEYMDHMSM dateYMDHMSM, ULONG cycle, ULONG
pass)

[in] mission : mission type :

 0 : Topex/Poseidon

 1 : Jason-1

 2 : ERS2

 3 : Envisat

 4 : ERS1-A

 5 : ERS1-B

 6 : GFO

[in] dateYMDHMSM : date to convert

[out] cycle : number of cycle

[out] pass : number of pass in the cycle

return 0 or error code (see Cycle/date conversion error codes in brathl general documentation)

Example:

cycle=0L

pass=0L

mission=1

dIn={BRATHL_DATEYMDHMSM}

dIn.YEAR=2003

dIn.MONTH=12

dIn.DAY=5

dIn.HOUR=18

dIn.MINUTE=0

dIn.SECOND=21

dIn.MUSECOND=1069

r = BRATHL_YMDHMSM2CYCLE(mission, dIn, cycle, pass)

print, "result ", r

print, "Y", dOut.year, " M ", dOut.month, " D ", dOut.day, " H ", dOut.hour, " MN ", dOut.minute, " S ",
dOut.second, " MS ", dOut.muSecond

print, "mission ", mission , " cycle ", cycle, " pass ", pass

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 114 of 158

15. ANNEX F: BRATHL-FORTRAN API

The BRATHL-C API consists of just a handful of Fortran functions.

Below is the list of Fortran APIs functions.

A description of each function is detailed in the BRATHL documentation in html or latex format (search for

refman-html or refman-latext sub-directories in your BRATHL directories installation). Note: When
installing BRAT Toolbox, you have to selected 'Documentations' component.

==================

Date conversion/computation functions

==================

brathl_DayOfYear

brathl_DiffDSM

brathl_DiffJULIAN

brathl_DiffYMDHMSM

brathl_DSM2Julian

brathl_DSM2Seconds

brathl_DSM2YMDHMSM

brathl_JULIAN2DSM

brathl_JULIAN2Seconds

brathl_JULIAN2YMDHMSM

brathl_SECONDS2DSM

brathl_SECONDS2Julian

brathl_SECONDS2YMDHMSM

brathl_NowYMDHMSM

brathl_YMDHMSM2DSM

brathl_YMDHMSM2Julian

brathl_YMDHMSM2Seconds

Date conversion/computation example:

 PROGRAM TESTDATE_F

 IMPLICIT NONE

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 115 of 158

INCLUDE "brathlf.inc"

 INTEGER IREFDATESRC

 DOUBLE PRECISION ISECONDS

 INTEGER IREFDATEDEST

 INTEGER ODAYS

 INTEGER OSECONDS

 INTEGER OMUSECONDS

INTEGER Y

 INTEGER M

 INTEGER D

 INTEGER H

 INTEGER MN

 INTEGER SEC

 INTEGER MS

 INTEGER RESULT

 CHARACTER*128 ERRSTR

 CHARACTER*28 REFUSER

 INTEGER TMP

 REFUSER = '1952 02 18'

 CALL BRATHLF_SETREFUSER1(REFUSER)

IREFDATESRC = REF20000101

C IREFDATEDEST = REF19500101

 IREFDATEDEST = REFUSER1

 ISECONDS = 86460.16936D0

 ODAYS = 0

 OSECONDS = 0

 OMUSECONDS = 0

 RESULT = BRATHLF_SECONDS2DSM(IREFDATESRC, ISECONDS, IREFDATEDEST,

&ODAYS, OSECONDS, OMUSECONDS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN

 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)

 WRITE(*,*) 'ERROR: ' // ERRSTR

 STOP

 END IF

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 116 of 158

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' ISECONDS:', ISECONDS,

& ' IREFDATEDEST:', IREFDATEDEST, ' ODAYS:', ODAYS, ' OSECONDS:',

& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --

 RESULT = BRATHLF_DSM2SECONDS(IREFDATESRC, ODAYS, OSECONDS,

&OMUSECONDS, IREFDATEDEST, ISECONDS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN

 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)

 WRITE(*,*) 'ERROR: ' // ERRSTR

 STOP

 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' ISECONDS:', ISECONDS,

& ' IREFDATEDEST:', IREFDATEDEST, ' ODAYS:', ODAYS, ' OSECONDS:',

& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --

 RESULT = brathlf_DSM2YMDHMSM(IREFDATESRC, ODAYS, OSECONDS,

& OMUSECONDS, Y, M, D, H, MN, SEC, MS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN

 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)

 WRITE(*,*) 'ERROR: ' // ERRSTR

 STOP

 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' Y:', Y,

& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS,

& ' ODAYS:', ODAYS, ' OSECONDS:',

& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --

 RESULT = brathlf_YMDHMSM2DSM(Y, M, D, H, MN, SEC, MS,

& IREFDATEDEST, ODAYS, OSECONDS, OMUSECONDS,)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN

 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)

 WRITE(*,*) 'ERROR: ' // ERRSTR

 STOP

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 117 of 158

 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' Y:', Y,

& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS,

& ' ODAYS:', ODAYS, ' OSECONDS:',

& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --

 END

==================

Cycle/date conversion functions

==================

To convert cycle <-> date, these functions use an asci parameter file (ascii file) with records:

 field 1 : Name of the mission

 field 2 : Cycle reference

 field 3 : Pass reference

 field 4 : Reference date in decimal Julian day

Each field has to be separated by, at least, a non-numeric character

The file can contained several records for a same mission.

Only the field with the greatest date is taken into account

You can add records.

You can add comments, commented lines start by '#' character.

If the file doesn't exist, default values are :

Name Cycle Pass Reference date

Jason-1 99 230 19987.9081795

Topex/Poseidon 442 230 19987.9127535

ERS2 66 598 18831.768334

ERS1-A 15 1 15636.938955

ERS1-B 42 108 16538.6732895

ENVISAT 30 579 19986.106016

brathl_Cycle2YMDHMSM

brathl_YMDHMSM2Cycle

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 118 of 158

Cycle/date conversion example:

 PROGRAM TESTCYCLE_F

 IMPLICIT NONE

 INCLUDE "brathlf.inc"

 INTEGER C

 INTEGER P

 INTEGER MISSION

 INTEGER Y

 INTEGER M

 INTEGER D

 INTEGER H

 INTEGER MN

 INTEGER SEC

 INTEGER MS

 INTEGER RESULT

 CHARACTER*128 ERRSTR

 MISSION = ENVISAT

 C = 120

 P = 153

 RESULT = BRATHLF_CYCLE2YMDHMSM(MISSION, C, P,

& Y, M, D, H, MN, SEC, MS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN

 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)

 WRITE(*,*) 'ERROR: ' // ERRSTR

 STOP

 END IF

 WRITE(*,*) ' MISSION:', MISSION,' CYCLE:', C,

& ' PASS:', P,

& ' Y:', Y,

& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS

C --

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 119 of 158

 RESULT = BRATHLF_YMDHMSM2CYCLE(MISSION,

& Y, M, D, H, MN, SEC, MS, C, P)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN

 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)

 WRITE(*,*) 'ERROR: ' // ERRSTR

 STOP

 END IF

 WRITE(*,*) ' MISSION:', MISSION,' CYCLE:', C,

& ' PASS:', P,

& ' Y:', Y,

& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS

END

==================

Data reading function

==================

brathl_ReadData

Example:

 PROGRAM P

 IMPLICIT NONE

 CHARACTER*(100) NAMES(10)

 CHARACTER*(10) Record

 CHARACTER*(120) Selection

 CHARACTER*(200) Expressions(20)

 CHARACTER*(20) Units(20)

 REAL*8 Result(1000,20)

 LOGICAL*4 Ignore

 LOGICAL*4 Statistics

 REAL*8 Default

 INTEGER*4 NbValues

 INTEGER*4 NbResults

 INTEGER*4 ReturnCode

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 120 of 158

 INCLUDE "brathlf.inc"

 NAMES(1) = 'JA1_GDR_2PaP124_001.CNES'

 NAMES(2) = 'JA1_GDR_2PaP124_002.CNES'

 NAMES(3) = 'JA1_GDR_2PaP124_003.CNES'

 Record = 'data'

 Selection = 'latitude > 20'

 Expressions(1) = 'latitude + longitude'

 Units(1) = 'radians'

 Expressions(2) = 'swh_ku'

 Units(2) = 'm'

 NbValues = 1000

 NbResults = -1

 Ignore = .false.

 Statistics = .false.

 Default = 1.0E100

 ReturnCode = brathlf_ReadData(3,

 $ NAMES,

 $ Record,

 $ Selection,

 $ 2,

 $ Expressions,

 $ Units,

 $ Result,

 $ NbValues,

 $ NbResults,

 $ Ignore,

 $ Statistics,

 $ Default)

 print *, NbResults

 print *, ReturnCode

 END

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 121 of 158

16. ANNEX G: BRATHL-C API

The BRATHL-C API consists of just a handful of C structures and functions.

Below is the list of C APIs functions.

A description of each function is detailed in the BRATHL documentation in html or latex format (search for

refman-html or refman-latext sub-directories in your BRATHL directories installation). Note: When
installing BRAT Toolbox, you have to selected 'Documentations' component.

==================

Date conversion/computation functions

==================

brathl_DayOfYear

brathl_DiffDSM

brathl_DiffJULIAN

brathl_DiffYMDHMSM

brathl_DSM2Julian

brathl_DSM2Seconds

brathl_DSM2YMDHMSM

brathl_JULIAN2DSM

brathl_JULIAN2Seconds

brathl_JULIAN2YMDHMSM

brathl_SECONDS2DSM

brathl_SECONDS2Julian

brathl_SECONDS2YMDHMSM

brathl_NowYMDHMSM

brathl_YMDHMSM2DSM

brathl_YMDHMSM2Julian

brathl_YMDHMSM2Seconds

Date conversion/computation example:

#include <brathl.h>

#include <brathl_error.h>

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 122 of 158

void PrintfDateDSM(brathl_DateDSM *d);

void PrintfDateSecond(brathl_DateSecond *d);

void PrintfDateJulian(brathl_DateJulian *d);

void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d);

int main (int argc, char *argv[])

{

 double diff = 0;

 brathl_DateSecond dateSeconds;

 brathl_DateDSM dateDSM;

 brathl_DateDSM dateDSM2;

 brathl_DateJulian dateJulian;

 brathl_DateJulian dateJulian2;

 brathl_DateYMDHMSM dateYMDHMSM;

 brathl_DateYMDHMSM dateYMDHMSM2;

 brathl_refDate refDate = REF19500101;

 brathl_refDate refDateDest = REF19500101;

 char Buff[1024];

 memset(brathl_refDateUser1, '\0', BRATHL_REF_DATE_USER_LEN - 1);

memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateDSM, '\0', sizeof(dateDSM));

 memset(&dateDSM2, '\0', sizeof(dateDSM2));

 memset(&dateJulian, '\0', sizeof(dateJulian));

 memset(&dateJulian2, '\0', sizeof(dateJulian2));

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 memset(&dateYMDHMSM2, '\0', sizeof(dateYMDHMSM2));

puts ("Choose Source Reference : \n"

 "1 --> 1950\n"

 "2 --> 1958\n"

 "3 --> 1990\n"

 "4 --> 2000\n"

 "5 --> user 1\n"

 "x Exit\n");

c = getchar();

 getchar();

 switch (c)

 {

 case 'X' :

 case 'x' :

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 123 of 158

 return 0;

 case '1' : refDate = REF19500101; break;

 case '2' : refDate = REF19580101; break;

 case '3' : refDate = REF19900101; break;

 case '4' : refDate = REF20000101; break;

 case '5' :

 refDate = REFUSER1;

 puts ("Choose date of reference with the format YYYY MM DD hh:mn:s:ms ");

 gets (Buff);

 strncpy (brathl_refDateUser1, Buff, BRATHL_REF_DATE_USER_LEN - 1);

 break;

 default : refDate = REF19500101;

 }

 puts ("Choose Destination Reference : \n"

 "1 --> 1950\n"

 "2 --> 1958\n"

 "3 --> 1990\n"

 "4 --> 2000\n"

 "5 --> user 1\n"

 "x Exit\n");

c = getchar();

 getchar();

 switch (c)

 {

 case 'X' :

 case 'x' :

 return 0;

 case '1' : refDateDest = REF19500101; break;

 case '2' : refDateDest = REF19580101; break;

 case '3' : refDateDest = REF19900101; break;

 case '4' : refDateDest = REF20000101; break;

 case '5' :

 refDateDest = REFUSER1;

 puts ("Choose the reference date with the format YYYY MM DD hh:mn:s:ms ");

 //fgets (brathl_refDateUser1, strlen(refDateUser), stdin);

 gets (Buff);

 strncpy (brathl_refDateUser1, Buff, BRATHL_REF_DATE_USER_LEN - 1);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 124 of 158

 break;

 default : refDateDest = REF19500101;

 }

 printf("ref. dest %d %s\n", refDateDest, brathl_refDateUser1);

 do

 {

 puts ("\nConversion : \n"

 "1 - Seconds --> DSM\n"

 "2 - DSM -->Seconds\n"

 "3 - Julian --> DSM\n"

 "4 - DSM -->Julian\n"

 "5 - YMDHMSM --> DSM\n"

 "6 - DSM -->YMDHMSM\n"

 "7 - Seconds --> Julian\n"

 "8 - Julian --> Seconds\n"

 "9 - Seconds --> YMDHMSM\n"

 "A - YMDHMSM --> Seconds\n"

 "B - Julian --> YMDHMSM\n"

 "C - YMDHMSM -->Julian\n"

 "D - diff Date1 - Date2 (YMDHMSM)\n"

 "E - diff Date1 (ref. src) - Date2 (ref. dest) (DSM)\n"

 "F - diff Date1 (ref. src) - Date2 (ref. dest) (Julian)\n"

"N - Now --> YMDHMSM\n"

 "Q - YMDHMSM --> Quantieme\n"

 "x Exit\n");

 c = getchar();

getchar();

 switch (c)

 {

 case '1' : // Seconds --> DSM

 memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateDSM, '\0', sizeof(dateDSM));

 dateSeconds.refDate = refDate;

 puts ("nbSeconds :");

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 125 of 158

 gets (Buff);

 sscanf(Buff, "%lf", &dateSeconds.nbSeconds);

 result = brathl_Seconds2DSM(&dateSeconds, refDateDest, &dateDSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);

 PrintfDateDSM(&dateDSM);

 break;

 case '2' : // DSM -->Seconds

 memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateDSM, '\0', sizeof(dateDSM));

 dateDSM.refDate = refDate;

 puts ("D S M :");

 gets (Buff);

 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,

 &dateDSM.seconds,

 &dateDSM.muSeconds);

 result = brathl_DSM2Seconds(&dateDSM, refDateDest, &dateSeconds);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);

 PrintfDateDSM(&dateDSM);

 break;

 case '3' : // Julian --> DSM

 memset(&dateDSM, '\0', sizeof(dateDSM));

 memset(&dateJulian, '\0', sizeof(dateJulian));

 dateJulian.refDate = refDate;

 puts ("julian :");

 gets (Buff);

 sscanf(Buff, "%lf", &dateJulian.julian);

 result = brathl_Julian2DSM(&dateJulian, refDateDest, &dateDSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 126 of 158

 PrintfDateDSM(&dateDSM);

 break;

 case '4' : // DSM -->Julian

 memset(&dateJulian, '\0', sizeof(dateJulian));

 memset(&dateDSM, '\0', sizeof(dateDSM));

 dateDSM.refDate = refDate;

 puts ("D S M :");

 gets (Buff);

 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,

 &dateDSM.seconds,

 &dateDSM.muSeconds);

 result = brathl_DSM2Julian(&dateDSM, refDateDest, &dateJulian);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);

 PrintfDateDSM(&dateDSM);

 break;

 case '5' : // YMDHMSM --> DSM

 memset(&dateDSM, '\0', sizeof(dateDSM));

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 puts ("YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

 result = brathl_YMDHMSM2DSM(&dateYMDHMSM, refDateDest, &dateDSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);

 PrintfDateDSM(&dateDSM);

 break;

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 127 of 158

 case '6' : // DSM -->YMDHMSM

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 memset(&dateDSM, '\0', sizeof(dateDSM));

 puts ("D S M :");

 gets (Buff);

 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,

 &dateDSM.seconds,

 &dateDSM.muSeconds);

 result = brathl_DSM2YMDHMSM(&dateDSM, &dateYMDHMSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);

 PrintfDateDSM(&dateDSM);

 break;

 case '7' : // Seconds --> Julian

 memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateJulian, '\0', sizeof(dateJulian));

 dateSeconds.refDate = refDate;

 puts ("nbSeconds :");

 gets (Buff);

 sscanf(Buff, "%lf", &dateSeconds.nbSeconds);

 result = brathl_Seconds2Julian(&dateSeconds, refDateDest, &dateJulian);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);

 PrintfDateJulian(&dateJulian);

 break;

 case '8' : // Julian --> Seconds

 memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateJulian, '\0', sizeof(dateJulian));

 dateJulian.refDate = refDate;

 puts ("julian :");

 gets (Buff);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 128 of 158

 sscanf(Buff, "%lf", &dateJulian.julian);

 result = brathl_Julian2Seconds(&dateJulian, refDateDest, &dateSeconds);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);

 PrintfDateJulian(&dateJulian);

 break;

 case '9' : // Seconds --> YMDHMSM

 memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 dateSeconds.refDate = refDate;

 puts ("nbSeconds :");

 gets (Buff);

 sscanf(Buff, "%lf", &dateSeconds.nbSeconds);

 result = brathl_Seconds2YMDHMSM(&dateSeconds, &dateYMDHMSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);

 PrintfDateYMDHMSM(&dateYMDHMSM);

 break;

 case 'A' : // YMDHMSM --> Seconds

 case 'a' : // YMDHMSM --> Seconds

 memset(&dateSeconds, '\0', sizeof(dateSeconds));

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 puts ("YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,

&dateYMDHMSM.muSecond);

 result = brathl_YMDHMSM2Seconds(&dateYMDHMSM, refDateDest, &dateSeconds);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);

 PrintfDateYMDHMSM(&dateYMDHMSM);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 129 of 158

 break;

 case 'B' : // Julian --> YMDHMSM

 case 'b' : // Julian --> YMDHMSM

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 memset(&dateJulian, '\0', sizeof(dateJulian));

 dateJulian.refDate = refDate;

 puts ("julian :");

 gets (Buff);

 sscanf(Buff, "%lf", &dateJulian.julian);

 result = brathl_Julian2YMDHMSM(&dateJulian, &dateYMDHMSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);

 PrintfDateYMDHMSM(&dateYMDHMSM);

 break;

 case 'C' : // YMDHMSM --> Julian

 case 'c' : // YMDHMSM --> Julian

 memset(&dateJulian, '\0', sizeof(dateJulian));

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 puts ("YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

 result = brathl_YMDHMSM2Julian(&dateYMDHMSM, refDateDest, &dateJulian);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);

 PrintfDateYMDHMSM(&dateYMDHMSM);

 break;

 case 'D' : // diff Date1 (ref. src) - Date2 (ref. dest) (YMDHMSM)

 case 'd' : // diff Date1 (ref. src) - Date2 (ref. dest) (YMDHMSM)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 130 of 158

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 memset(&dateYMDHMSM2, '\0', sizeof(dateYMDHMSM2));

 puts ("Date 1 YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,

&dateYMDHMSM.muSecond);

 puts ("Date 2 YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM2.year, &dateYMDHMSM2.month, &dateYMDHMSM2.day,

 &dateYMDHMSM2.hour, &dateYMDHMSM2.minute, &dateYMDHMSM2.second,
&dateYMDHMSM2.muSecond);

 diff = 0;

 result = brathl_DiffYMDHMSM(&dateYMDHMSM, &dateYMDHMSM2, &diff);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);

 PrintfDateYMDHMSM(&dateYMDHMSM2);

 printf("\t----> Difference : %lf \n", diff);

 break;

 case 'E' : // diff Date1 (ref. src) - Date2 (ref. dest) (DSM)

 case 'e' : // diff Date1 (ref. src) - Date2 (ref. dest) (DSM)

 memset(&dateDSM, '\0', sizeof(dateDSM));

 memset(&dateDSM2, '\0', sizeof(dateDSM2));

 dateDSM.refDate = refDate;

 dateDSM2.refDate = refDateDest;

 puts (" Date 1 D S M :");

 gets (Buff);

 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,

 &dateDSM.seconds,

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 131 of 158

 &dateDSM.muSeconds);

 puts (" Date 2 D S M :");

 gets (Buff);

 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM2.days,

 &dateDSM2.seconds,

 &dateDSM2.muSeconds);

 diff = 0;

 result = brathl_DiffDSM(&dateDSM, &dateDSM2, &diff);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateDSM(&dateDSM);

 PrintfDateDSM(&dateDSM2);

 printf("\t----> Difference : %lf \n", diff);

 break;

 case 'F' : // diff Date1 (ref. src) - Date2 (ref. dest) (Julian)

 case 'f' : // diff Date1 (ref. src) - Date2 (ref. dest) (Julian)

 memset(&dateDSM, '\0', sizeof(dateDSM));

 memset(&dateDSM2, '\0', sizeof(dateDSM2));

 dateJulian.refDate = refDate;

 dateJulian2.refDate = refDateDest;

 puts ("Date 1 julian :");

 gets (Buff);

 sscanf(Buff, "%lf", &dateJulian.julian);

 puts ("Date 2 julian :");

 gets (Buff);

 sscanf(Buff, "%lf", &dateJulian2.julian);

 diff = 0;

 result = brathl_DiffJulian(&dateJulian, &dateJulian2, &diff);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);

 PrintfDateJulian(&dateJulian2);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 132 of 158

 printf("\t----> Difference : %lf \n", diff);

 break;

 case 'N' : // Now --> YMDHMSM

 case 'n' : // Now --> YMDHMSM

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 result = brathl_NowYMDHMSM(&dateYMDHMSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);

 break;

 case 'Q' : // YMDHMSM --> Quantième

 case 'q' : // YMDHMSM --> Quantième

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 puts ("YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

 uint32_t quantieme;

 result = brathl_Quantieme(&dateYMDHMSM, &quantieme);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);

 printf("\t----> Quantieme : %ld \n", quantieme);

 break;

 default : break;

 }

 if ((c != 'X') && (c != 'x'))

 {

 puts("Press enter key to continue");

 getchar();

 }

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 133 of 158

 } while ((c != 'X') && (c != 'x'));

 return 0;

}

//--------------------------------------

void PrintfDateDSM(brathl_DateDSM *d)

{

 printf("\tbrathl_DateDSM days %ld seconds %ld museconds %ld ref. %d %s\n",

 d->days, d->seconds, d->muSeconds, d->refDate, brathl_refDateUser1);

}

//--------------------------------------

void PrintfDateSecond(brathl_DateSecond *d)

{

 printf("\tbrathl_DateSecond nbSeconds %lf ref. %d %s\n",

 d->nbSeconds, d->refDate, brathl_refDateUser1);

}

//--------------------------------------

void PrintfDateJulian(brathl_DateJulian *d)

{

 printf("\tbrathl_DateJulian julian %lf ref. %d %s\n",

 d->julian, d->refDate, brathl_refDateUser1);

}

//--------------------------------------

void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d)

{

 printf("\tbrathl_DateYMDHMSM year %ld month %ld day %ld hour %ld minute %ld second %ld
musecond %ld ref. %s\n",

 d->year, d->month, d->day, d->hour, d->minute, d->second, d->muSecond,
brathl_refDateUser1);

}

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 134 of 158

==================

Cycle/date conversion functions

==================

To convert cycle <-> date, these functions use an asci parameter file (ascii file) with records :

 field 1 : Name of the mission

 field 2 : Cycle reference

 field 3 : Pass reference

 field 4 : Reference date in decimal julian day

Each field has to be separated by, at least, a non-numeric character

The file can contained several records for a same mission.

Only the field with the greatest date is taken into account

You can add records.

You can add comments, commented lines start by '#' character.

If the file doesn't exist, default values are :

Name Cycle Pass Reference date

Jason-1 99 230 19987.9081795

Topex/Poseidon 442 230 19987.9127535

ERS2 66 598 18831.768334

ERS1-A 15 1 15636.938955

ERS1-B 42 108 16538.6732895

ENVISAT 30 579 19986.106016

brathl_Cycle2YMDHMSM

brathl_YMDHMSM2Cycle

Cycle/date conversion example

#include <brathl.h>

#include <brathl_error.h>

void PrintfDateDSM(brathl_DateDSM *d);

void PrintfDateSecond(brathl_DateSecond *d);

void PrintfDateJulian(brathl_DateJulian *d);

void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d);

int main (int argc, char *argv[])

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 135 of 158

{

 uint32_t cycle = 0;

 uint32_t pass = 0;

 int32_t result = BRATHL_SUCCESS;

 char c;

 double diff = 0;

 brathl_mission mission;

 brathl_DateYMDHMSM dateYMDHMSM;

 char Buff[1024];

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 puts ("Choose the mission : \n"

 "1 --> TOPEX\n"

 "2 --> JASON1\n"

 "3 --> ERS2\n"

 "4 --> ENVISAT\n"

 "5 --> ERS1_A\n"

 "6 --> ERS1_B\n"

 "7 --> GFO\n"

 "x Exit\n");

c = getchar();

 getchar();

 switch (c)

 {

 case 'X' :

 case 'x' :

 return 0;

 case '1' : mission = TOPEX; break;

 case '2' : mission = JASON1; break;

 case '3' : mission = ERS2; break;

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 136 of 158

 case '4' : mission = ENVISAT; break;

 case '5' : mission = ERS1_A; break;

 case '6' : mission = ERS1_B; break;

 case '7' : mission = GFO; break;

 break;

 default : mission = TOPEX;

 }

 do

 {

 puts ("\nConversion Cycle <--> Date: \n"

 "1 - Cycle --> Date YMDHMSM\n"

 "2 - Date YMDHMSM -->Cycle\n"

"x Exit\n");

 c = getchar();

getchar();

 switch (c)

 {

 case '1' : // Cycle --> Date YMDHMSM

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 cycle = pass = 0;

 puts ("Cycle Pass:");

 gets (Buff);

 sscanf(Buff, "%ld%*c%ld ", &cycle, &pass);

 result = brathl_Cycle2YMDHMSM(mission, cycle, pass, &dateYMDHMSM);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 printf("\tcycle %d pass %d\n", cycle, pass);

 PrintfDateYMDHMSM(&dateYMDHMSM);

 break;

 case '2' : // Date YMDHMSM -->Cycle

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 cycle = pass = 0;

 puts ("YYYY MM DD hh:mn:s:ms :");

 gets (Buff);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 137 of 158

 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",

 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

 result = brathl_YMDHMSM2Cycle(mission, &dateYMDHMSM, &cycle, &pass);

 printf("result %d %s\n", result, brathl_Errno2String(result));

 printf("\tcycle %d pass %d\n", cycle, pass);

 PrintfDateYMDHMSM(&dateYMDHMSM);

 break;

 default : break;

 }

 if ((c != 'X') && (c != 'x'))

 {

 puts("Press enter key to continue");

 getchar();

 }

 } while ((c != 'X') && (c != 'x'));

 return 0;

}

//--------------------------------------

void PrintfDateDSM(brathl_DateDSM *d)

{

 printf("\tbrathl_DateDSM days %ld seconds %ld museconds %ld ref. %d %s\n",

 d->days, d->seconds, d->muSeconds, d->refDate, brathl_refDateUser1);

}

//--------------------------------------

void PrintfDateSecond(brathl_DateSecond *d)

{

 printf("\tbrathl_DateSecond nbSeconds %lf ref. %d %s\n",

 d->nbSeconds, d->refDate, brathl_refDateUser1);

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 138 of 158

 }

//--------------------------------------

void PrintfDateJulian(brathl_DateJulian *d)

{

 printf("\tbrathl_DateJulian julian %lf ref. %d %s\n",

 d->julian, d->refDate, brathl_refDateUser1);

}

//--------------------------------------

void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d)

{

 printf("\tbrathl_DateYMDHMSM year %ld month %ld day %ld hour %ld minute %ld second %ld
musecond %ld ref. %s\n",

 d->year, d->month, d->day, d->hour, d->minute, d->second, d->muSecond,

brathl_refDateUser1);

}

==================

Data reading function

==================

brathl_ReadData

Example:

#include <stdio.h>

#include <stdlib.h>

#include "brathl.h"

#include "brathl_error.h"

int main(int argc, char **argv)

{

 char *Names[10];

 int32_t ReturnCode;

 double *Data[2] = {NULL,NULL};

 int32_t Sizes[2] = {-1, -1};

 char *Expressions[2];

 char *Units[2];

 int32_t ActualSize;

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 139 of 158

 Names[0] = "JA1_GDR_2PaP124_001.CNES";

 Names[1] = "JA1_GDR_2PaP124_002.CNES";

 Names[2] = "JA1_GDR_2PaP124_003.CNES";

 Expressions[0] = "latitude + longitude";

 Units[0] = "radians";

 Expressions[1] = "swh_ku";

 Units[1] = "m";

 ReturnCode = brathl_ReadData(3, Names,

 "data",

 "latitude > 20",

 2,

 Expressions,

 Units,

 Data,

 Sizes,

 &ActualSize,

 0,

 0,

 0);

 printf("Return code : %d\n", ReturnCode);

 printf("Actual number of data: %d\n", ActualSize);

 return 0;

}

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 140 of 158

17. ANNEX H: BRATHL-PYTHON API

The BRATHL-Python API consists of a handful of Python structures and functions.

=======================================

 BRATHL-Python API: Structures

=======================================

- brathl_DateYMDHMSM

- brathl_DateDSM

- brathl_DateSecond

- brathl_DateJulian

 brathl_DateYMDHMSM data structure:

This structure represents an YYYY-MM-DD HH:MN:SS:MS date structure.

 => Example - Defining date 2000-01-01 12:25:20.1:

 MyDate = brathl_DateYMDHMSM (2000, 1, 1, 12, 25, 20, 100000)

 => Example - Retrieving information:

 MyDate.YEAR : numbers of years

 MyDate.MONTH : numbers of months

 MyDate.DAY : numbers of days

 MyDate.HOUR : numbers of hours

 MyDate.MINUTE : numbers of minutes

 MyDate.SECOND : numbers of seconds

 MyDate.MUSECOND : numbers of microseconds

 brathl_DateDSM data structure:

 This structure represents day/seconds/microseconds date structure.

 => Example - Defining date 1 day, 62 seconds and 100000 microseconds:

 MyDate = brathl_DateDSM(brathl_refDate.REF19500101, 1, 62, 100000)

 => Example - Retrieving information:

 MyDate.REFDATE : date reference number

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 141 of 158

 MyDate.DAY : numbers of days

 MyDate.SECOND : numbers of seconds

 MyDate.MUSECOND : numbers of microseconds

 REFDATE is the reference date i.e.:

 0: brathl_refDate.REF19500101 : reference to 1950-01-01 00:00:00.0

 1: brathl_refDate.REF19580101 : reference to 1958-01-01 00:00:00.0

 2: brathl_refDate.REF19850101 : reference to 1985-01-01 00:00:00.0

 3: brathl_refDate.REF19900101 : reference to 1990-01-01 00:00:00.0

 4: brathl_refDate.REF20000101 : reference to 2000-01-01 00:00:00.0

 5: brathl_refDate.REFUSER1 : user reference 1

 6: brathl_refDate.REFUSER2 : user reference 2

 -> NOTE: REFUSER1 and REFUSER2 allow the user to set two specifics reference dates of his choice

(see brathl_SetRefDateUser1 and brathl_SetRefDateUser1 functions)

 brathl_DateSecond data structure:

 This structure represents a decimal seconds date structure.

 => Example - Defining 86401.01 seconds (starting reference date: 1950-01-01 00:00:00.0):

 MyDate = brathl_DateSecond (brathl_refDate.REF19500101, 86401.01)

 => Example - Retrieving information:

 MyDate.REFDATE : date reference number

 MyDate.SECOND : numbers of seconds

 brathl_DateJulian data structure:

 This structure represents a decimal Julian date structure.

 => Example - Defining 1.5 days (starting reference date: 2000-01-01 00:00:00.0):

 MyDate = brathl_DateJulian (brathl_refDate.REF20000101, 1.5)

 => Example - Retrieving information:

 MyDate.REFDATE : date reference number

 MyDate.JULIAN : decimal julian day

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 142 of 158

=======================================

 BRATHL-Python API: Functions

=======================================

Date conversion/computation functions

- brathl_DayOfYear

- brathl_DiffDSM

- brathl_DiffJulian

- brathl_DiffYMDHMSM

- brathl_DSM2Julian

- brathl_DSM2Seconds

- brathl_DSM2YMDHMSM

- brathl_Julian2DSM

- brathl_Julian2Seconds

- brathl_Julian2YMDHMSM

- brathl_Seconds2DSM

- brathl_Seconds2Julian

- brathl_Seconds2YMDHMSM

- brathl_NowYMDHMSM

- brathl_YMDHMSM2DSM

- brathl_YMDHMSM2Julian

- brathl_YMDHMSM2Seconds

- brathl_SetRefDateUser1

- brathl_SetRefDateUser2

Cycle/Date Conversion functions

- brathl_Cycle2YMDHMSM

- brathl_YMDHMSM2Cycle

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 143 of 158

Data Reading functions

- brathl_ReadData

 brathl_DayOfYear function:

 Retrieves the day of the year of a date.

 brathl_DayOfYear(date)

 [in] date : date object (Type: brathl_DateYMDHMSM)

 return dayOfYear : day of year (Type: Python integer)

 brathl_DiffDSM function:

 Computes the difference between two dates (date1 - date2).

 brathl_DiffDSM(dateDSM1, dateDSM2)

 [in] dateDSM1 : date object (Type: brathl_DateDSM)

 [in] dateDSM2 : date object (Type: brathl_DateDSM)

 return diff : difference in seconds (Type: Python float)

 brathl_DiffJulian function:

 Computes the difference between two dates (date1 - date2).

 brathl_DiffJulian(dateJulian1, dateJulian2)

 [in] dateJulian1 : date object (Type: brathl_DateJulian)

 [in] dateJulian2 : date object (Type: brathl_DateJulian)

 return diff : difference in seconds (Type: Python float)

 brathl_DiffYMDHMSM function:

 Computes the difference, in seconds, between two dates (date1 - date2).

 brathl_DiffYMDHMSM(date1, date2)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 144 of 158

 [in] dateYMDHMSM1 : date object (Type: brathl_DateYMDHMSM)

 [in] dateYMDHMSM2 : date object (Type: brathl_DateYMDHMSM)

 return diff : difference in seconds (Type: Python float)

 brathl_DSM2Julian function:

 Converts a days-seconds-microseconds date into a decimal julian date, according to refDate parameter.

 brathl_DSM2Julian(dateDSM, refDate)

 [in] dateDSM : date to convert (Type: brathl_DateDSM)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateJulian : result of the conversion (Type: brathl_DateJulian)

 brathl_DSM2Seconds function:

 Converts a days-seconds-microseconds date into seconds, according to refDate parameter.

 brathl_DSM2Seconds(dateDSM, refDate)

 [in] dateDSM : date to convert (Type: brathl_DateDSM)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateSeconds : result of the conversion (Type: brathl_DateSecond)

 brathl_DSM2YMDHMSM function:

 Converts a days-seconds-microseconds date into a year, month, day, hour, minute, second,
microsecond date.

 brathl_DSM2YMDHMSM(dateDSM)

 [in] dateDSM : date to convert (Type: brathl_DateDSM)

 return dateYMDHMSM : result of the conversion (Type: brathl_DateYMDHMSM)

 brathl_Julian2DSM function:

 Converts a decimal julian date into a days-seconds-microseconds date, according to refDate parameter.

 brathl_Julian2DSM(dateJulian, refDate)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 145 of 158

 [in] dateJulian : date to convert (Type: brathl_DateJulian)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure

example)

 return dateDSM : result of the conversion (Type: brathl_DateDSM)

 brathl_Julian2Seconds function:

 Converts a decimal julian date into seconds, according to refDate parameter.

 brathl_Julian2Seconds(dateJulian, refDate)

 [in] dateJulian : date to convert (Type: brathl_DateJulian)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateSeconds : result of the conversion (Type: brathl_DateSecond)

 brathl_Julian2YMDHMSM function:

 Converts a decimal julian date into a year, month, day, hour, minute, second, microsecond date.

 brathl_Julian2YMDHMSM(dateJulian)

 [in] dateJulian : date to convert (Type: brathl_DateJulian)

 return dateYMDHMSM : result of the conversion (Type: brathl_DateYMDHMSM)

 brathl_Seconds2DSM function:

 Converts seconds into a days-seconds-microseconds date, according to refDate parameter.

 brathl_Seconds2DSM(dateSeconds, refDate)

 [in] dateSeconds : date to convert (Type: brathl_DateSecond)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateDSM : result of the conversion (Type: brathl_DateDSM)

 brathl_Seconds2Julian function:

 Converts seconds into a decimal julian date, according to refDate parameter.

 brathl_Seconds2Julian(dateSeconds, refDate)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 146 of 158

 [in] dateSeconds : date to convert (Type: brathl_DateSecond)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure

example)

 return dateJulian : result of the conversion (Type: brathl_DateJulian)

 brathl_Seconds2YMDHMSM function:

 Converts seconds into a year, month, day, hour, minute, second, microsecond date.

 brathl_Seconds2YMDHMSM(dateSeconds)

 [in] dateSeconds : date to convert (Type: brathl_DateSecond)

 return dateYMDHMSM : result of the conversion (Type: brathl_DateYMDHMSM)

 brathl_NowYMDHMSM function:

 Gets the current year, month, day, hour, minute, second, microsecond date.

 brathl_NowYMDHMSM()

 return dateYMDHMSM : current date/time (Type: brathl_DateYMDHMSM)

 brathl_YMDHMSM2DSM function:

 Converts a year, month, day, hour, minute, second, microsecond date into a days-seconds-
microseconds date.

 brathl_YMDHMSM2DSM(dateYMDHMSM, refDate)

 [in] dateYMDHMSM : date to convert (Type: brathl_DateYMDHMSM)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateDSM : result of the conversion (Type: brathl_DateDSM)

 brathl_YMDHMSM2Julian function:

 Converts a year, month, day, hour, minute, second, microsecond date into a decimal julian date,

according to refDate parameter.

 brathl_YMDHMSM2Julian(dateYMDHMSM, refDate)

 [in] dateYMDHMSM : date to convert (Type: brathl_DateYMDHMSM)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 147 of 158

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateJulian : result of the conversion (Type: brathl_DateJulian)

 brathl_YMDHMSM2Seconds function:

 Converts a year, month, day, hour, minute, second, microsecond date into seconds, according to refDate
parameter.

 brathl_YMDHMSM2Seconds(dateYMDHMSM, refDate)

 [in] dateYMDHMSM : date to convert (Type: brathl_DateYMDHMSM)

 [in] refDate : date reference conversion (see REFDATE on brathl_DateDSM data structure
example)

 return dateSeconds : result of the conversion (Type: brathl_DateSecond)

 brathl_SetRefDateUser1 function:

 Set first user defined reference date: REFUSER1.

 brathl_SetRefDateUser1(dateRef)

 [in] dateRef : date to set in format: YYYY MM DD HH:MN:SS.MS (Type: Python string).

 brathl_SetRefDateUser2 function:

 Set first user defined reference date: REFUSER2.

 brathl_SetRefDateUser2(dateRef)

 [in] dateRef : date to set in format: YYYY MM DD HH:MN:SS.MS (Type: Python string).

 brathl_Cycle2YMDHMSM function:

 Converts a cyle/pass into a date.

 brathl_Cycle2YMDHMSM(mission, cycle, nbPass)

 [in] mission : mission type (Type: brathl_mission)

 [in] cycle : number of cycle to convert (Type: Python int/long)

 [in] nbPass : number of pass in the cycle to convert (Type: Python int/long)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 148 of 158

 return dateYMDHMSM : date/time corresponding to the cycle/pass (Type: brathl_DateYMDHMSM)

 'mission' is the Satellite/mission reference i.e.:

 0: brathl_mission.TOPEX : Topex/Poseidon mission

 1: brathl_mission.JASON2 : Jason-2 mission

 2: brathl_mission.JASON1 : Jason-1 mission

 3: brathl_mission.ERS2 : ERS2 mission

 4: brathl_mission.ENVISAT : Envisat mission

 5: brathl_mission.ERS1_A : ERS1-A mission

 6: brathl_mission.ERS1_B : ERS1-B mission

 7: brathl_mission.GFO : GFO mission

 => Example:

 cycle = 1

 nbPass = 2

 dateYMDHMSM = brathl_Cycle2YMDHMSM(brathl_mission.JASON1, cycle, nbPass)

 brathl_YMDHMSM2Cycle function:

 Converts a date into a cyle/pass.

 brathl_YMDHMSM2Cycle(mission, dateYMDHMSM)

 [in] mission : mission type (Type: brathl_mission)

 [in] dateYMDHMSM : date/time to convert (Type: brathl_DateYMDHMSM)

 return cycle : number of cycle (Type: Python int/long)

 return nbPass : number of pass in the cycle (Type: Python int/long)

 => Example:

 dateYMDHMSM = brathl_DateYMDHMSM (2002, 1, 15, 6, 35, 43, 261871)

 cycle, nbPass = brathl_YMDHMSM2Cycle(brathl_mission.JASON1, dateYMDHMSM)

 brathl_ReadData function:

 Reads data from a set of files.

 brathl_ReadData(fileNames, recordName, selection, expressions, units, ignore-OutOfRange, statistics,
defaultValue):

 [in] fileNames : File name list. Empty strings are ignored (Type: Python list of strings).

 [in] recordName : Name of the fields record. For netCDF files is 'data' (Type: Python string).

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 149 of 158

 [in] selection : Expression for selecting data fields. If empty string, all data are selected

 (Type: Python string).

 [in] expressions : Expressions applied to data fields to build wanted value.

If empty string, the returned data are always default values

(Type: Python list of strings).

 [in] units : Wanted unit for each expression. Must be None or of 'expressions' size.

If None, no unit conversion is done. If an entry is None or an empty string,

no unit conversion is applied to the data of the corresponding expression

(Type: Python list of strings).

 [in] ignoreOutOfRange : Skip excess data. If there are too many values to store they are ignored

(case is set True).

 Must be False if statistics is True (Type: Python bool).

 [in] statistics : Returns statistics on data instead of data themselves (Type: Python bool).

 The returned values for each expression are:

 - Count of valid data taken into account;

 - Mean of the valid data;

 - Standard deviation of the valid data;

 - Minimum value of the valid data;

 - Maximum value of the valid data.

 [in] defaultValue : Value to use for default/missing values (Type: Python float or int).

 return dataResults : Data read. Must contain a number of entries to values to read

equal to expressions size

(Type: Python list).

 => Example:

 fileNames = ['example.nc']

 recordName = 'data'

 selection = ''

 expressions = ['lat_mwr_l1b', 'lon_mwr_l1b']

 units = ['radians', 'radians']

 ignoreOutOfRange = False

 statistics = False

 defaultValue = 0

 dataResults = brathl_ReadData(fileNames,

 recordName,

 selection,

 expressions,

 units,

 ignoreOutOfRange,

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 150 of 158

 statistics,

 defaultValue)

 print ("--------------- Printing data values ---------------")

 for i in range(len(dataResults)):

 print (expressions[i], "(", len(dataResults[i]), " values) =", dataResults[i])

 print ("--")

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 151 of 158

18. ANNEX I: BRAT-PYTHON ALGORITHMS

The user can also define new Brat algorithms using python scripts. As the other algorithms that are
compiled within Brat, the python algorithms should follow a pre-defined structure. The algorithm name,
number of input parameters, calculation steps and other properties must be set by the user.

The following instructions explain all the required steps to build a new Brat algorithm using a python
script.

1- The name of the python script should be “BratAlgorithm-AlgorithmName.py”, in which the

“AlgorithmName” must be replaced by the name of your algorithm.

2- The python module “BratAlgorithmBase.py” contains the algorithm base that is loaded by Brat.

Therefore, every Python algorithm must import this module. As you will see, the new algorithm will be an
extension of the base algorithm (or derived from the base algorithm class). The first line in the script
should contain:

from BratAlgorithmBase import PyBratAlgoBase

3- Import all other modules that are required for your algorithm (this step is optional). If you pretend to

use modules that are available in your Python installation, extend the list of search paths with the
directories of your system installation:

import sys

sys.path.extend(['/USER/PYTHON_DIR', '/USER/PYTHON_PACKAGES_DIR’'])

To get the full list of directories, write “import sys” and then “sys.path” in your python terminal.

4- Complete all class methods with the required information. The following example contains the full code

needed to define an algorithm that calculates the SSH (Sea Surface Height) according with the SSH
Jason2 formula. Each class method is explained (see the commented lines).

==

#!/usr/bin/python -tt

from BratAlgorithmBase import PyBratAlgoBase

NOTE: In this case the name of the script should be “BratAlgorithm-Example_SSHjason2.py”

class Example_SSHjason2(PyBratAlgoBase):

 # Initialize here the input parameters of the algorithm

 def __init__(self):

 self.m1_alt = float()

 self.m2_range_ku = float()

 self.m3_model_dry_tropo_corr = float()

 self.m4_hf_fluctuations_corr = float()

 self.m5_inv_bar_corr = float()

 self.m6_ocean_tide_sol1 = float()

 self.m7_solid_earth_tide = float()

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 152 of 158

 self.m8_pole_tide = float()

 self.m9_sea_state_bias_ku = float()

 self.m10_iono_corr_alt_ku = float()

 self.m11_rad_wet_tropo_corr = float()

 # Define here all the calculation steps of the algorithm

 def Run(self, PyAlgoParams):

 self.SetParamValues(PyAlgoParams) # Sets the algorithm parameters values

 self.Dump() # Prints all the algorithm text during execution

 # Returns the result of the calculation

 return (self.m1_alt - self.m2_range_ku - self.m3_model_dry_tropo_corr

 - (self.m4_hf_fluctuations_corr + self.m5_inv_bar_corr)

 - self.m6_ocean_tide_sol1 - self.m7_solid_earth_tide

 - self.m8_pole_tide - self.m9_sea_state_bias_ku

 - self.m10_iono_corr_alt_ku - self.m11_rad_wet_tropo_corr)

 # Insert here the name of the algorithm

 def GetName(self):

 return "Example_SSHjason2"

 # The algorithm description

 def GetDescription(self):

 return "Example of an algorithm that calculates the SSH from Jason2 data."

 # Insert the number of input parameters

 def GetNumInputParam(self):

 return 11

 # Define the name of each parameter

 def GetInputParamName(self, indexParam):

 Param_dict = {0 : "%{alt}",

 1 : "%{range_ku}",

 2 : "model_dry_tropo_corr",

 3 : "hf_fluctuations_corr",

 4 : "inv_bar_corr",

 5 : "ocean_tide_sol1",

 6 : "solid_earth_tide",

 7 : "pole_tide",

 8 : "sea_state_bias_ku",

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 153 of 158

 9 : "iono_corr_alt_ku",

 10 : "rad_wet_tropo_corr" }

 value = Param_dict.get(indexParam)

 return value

 # Insert the description of each parameter

 def GetInputParamDesc(self, indexParam):

 Param_dict = {0 : "alt",

 1 : "range_ku",

 2 : "model_dry_tropo_corr",

 3 : "hf_fluctuations_corr",

 4 : "inv_bar_corr",

 5 : "ocean_tide_sol1",

 6 : "solid_earth_tide",

 7 : "pole_tide",

 8 : "sea_state_bias_ku",

 9 : "iono_corr_alt_ku",

 10 : "rad_wet_tropo_corr", }

 value = Param_dict.get(indexParam)

 return value

 # Define each parameter data type

 def GetInputParamFormat(self, indexParam):

 Param_dict = {0 : PyBratAlgoBase.Py_FLOAT,

 1 : PyBratAlgoBase.Py_FLOAT,

 2 : PyBratAlgoBase.Py_FLOAT,

 3 : PyBratAlgoBase.Py_FLOAT,

 4 : PyBratAlgoBase.Py_FLOAT,

 5 : PyBratAlgoBase.Py_FLOAT,

 6 : PyBratAlgoBase.Py_FLOAT,

 7 : PyBratAlgoBase.Py_FLOAT,

 8 : PyBratAlgoBase.Py_FLOAT,

 9 : PyBratAlgoBase.Py_FLOAT,

 10 : PyBratAlgoBase.Py_FLOAT,}

 value = Param_dict.get(indexParam)

 return value

 # Define parameter units

 def GetInputParamUnit(self, indexParam):

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 154 of 158

 Param_dict = {0 : "m",

 1 : "m",

 2 : "m",

 3 : "m",

 4 : "m",

 5 : "m",

 6 : "m",

 7 : "m",

 8 : "m",

 9 : "m",

 10 : "m",}

 value = Param_dict.get(indexParam)

 return value

 # Define the output unit of the algorithm

 def GetOutputUnit(self):

 return "m"

 # Sets the parameter values

 def SetParamValues(self, PyAlgoParams):

 self.CheckInputParams(PyAlgoParams)

 self.m1_alt = float(PyAlgoParams[0])

 self.m2_range_ku = float(PyAlgoParams[1])

 self.m3_model_dry_tropo_corr = float(PyAlgoParams[2])

 self.m4_hf_fluctuations_corr = float(PyAlgoParams[3])

 self.m5_inv_bar_corr = float(PyAlgoParams[4])

 self.m6_ocean_tide_sol1 = float(PyAlgoParams[5])

 self.m7_solid_earth_tide = float(PyAlgoParams[6])

 self.m8_pole_tide = float(PyAlgoParams[7])

 self.m9_sea_state_bias_ku = float(PyAlgoParams[8])

 self.m10_iono_corr_alt_ku = float(PyAlgoParams[9])

 self.m11_rad_wet_tropo_corr = float(PyAlgoParams[10])

 # Define here the text that is printed during the algorithm execution

 def Dump(self):

 fOut = ""

 fOut += ("\n==> Dump a Example_SSHjason2 Object at " + str(hex(id(self))) + "\n")

 fOut += ("==> END Dump a Example_SSHjason2 Object at " + str(hex(id(self)) + "\n")

 print (fOut)

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 155 of 158

 # This function is optional and can be used to test the algorithm outside Brat (e.g. test

 # the script consistence during the algorithm development).

 def main():

 algo = Example_SSHjason2()

 print (" ")

 print ("Name: " + str(algo.GetName()))

 print ("Description: " + str(algo.GetDescription()))

 print ("Nb of Input: " + str(algo.GetNumInputParam()))

 print ("Par 1 name: " + str(algo.GetInputParamDesc(1)))

 print ("RESULT: " + str(algo.Run([60, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))

 + " " + algo.GetOutputUnit())

This is the standard boilerplate that calls the main() function.

if __name__ == '__main__':

 main()

5 – After testing the algorithm outside the Brat application and checking that there are no errors, copy

the algorithm script to the sub-directory “/bin/Python” of the installation directory, near the example
algorithms already provided, or to any sub-directory you wish to create under “/bin/Python”. At start-up,
Brat will always search this directory and all its sub-directories for python algorithms to load.

The button “insert algorithm” In the “Operations” tab enable to access the available algorithms with the

relevant information provided.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 156 of 158

19. ANNEX J: COMPILATION IN GPOD ENVIRONMENT

In this annex it is explained how to compile the main BRAT command line tools, version 4, in a CentOS 6,
64 bit operating system.

19.1. Dependencies

BRAT version 4.2.1 requires CMake to be installed. The least suitable version is 3.1.0, but any version not
greater than 3.2.3 will also work. These versions are not provided by default in CentOs 6: the link
https://cmake.org/files/ can be used to download the required installer for any Linux x86_64 system. The
installation procedure consists simply in running the downloaded script. To run CMake form any directory,

the full path to the bin/ sub-directory of the CMake install location must be present in the PATH
environment variable.

BRAT version 4.2.1 also requires Python 3. The standard version being 3.2.3, versions 3.3.x are equally
suitable. Also, these versions are not found by default in CentOs 6 and must be obtained from 3rd party
providers, following the respective instructions.

Besides CMake, Python3, and the compilation tools and packages installed in a typical CentoOS 6 system
with minimal development capabilities (e.g., with g++ and make toolchains), the following system

packages must also be installed: libssh2-devel, expat-devel and qt-devel (optional, if other valid Qt 4.6.2
or above is installed, as explained below).

If the software previously installed in the machine does not include other necessary dependencies, the
build system will complain about the missing packages. In any case, all these dependencies for the
command line tools compilation can be found in the default operating system software package list, and
can be easily installed with the default package manager.

19.2. Source and Build directories

An out-of-source compilation is intended, meaning that the build outputs go to a dedicated directory,
outside the source directory.

With that purpose, unpack the BRAT source package in its own directory (the <source directory>). A
directory brat-<brat version> will be created and contain the software source code.

Create an empty directory (the <build directory>), outside the source directory created in the previous
step, and, in the command line prompt, change (cd) to the <build directory>.

19.3. Configure and make

Then, invoke cmake with the following options:

$ cmake -DBRAT_TARGET_PROCESSOR=x86_64 -DBRAT_BUILD_GUI:BOOL=OFF -
DCMAKE_BUILD_TYPE:STRING=Release -DBUILD_TESTING:BOOL=OFF -DCMAKE_CXX_FLAGS:STRING=-m64 -
DCMAKE_C_FLAGS:STRING=-m64 -DHDF5_BUILD_FORTRAN:BOOL=OFF -DBUILD_TESTING:BOOL=OFF -
DHDF5_BUILD_EXAMPLES:BOOL=OFF -DENABLE_TESTS:BOOL=OFF -DENABLE_DAP:BOOL=ON -DPYTHON_LIBRARY=<full
path to the shared python library, including filename and extension> -DPYTHON_INCLUDE_DIR=<full
path to the python include directory> -DIS_CENTOS_SYSTEM:BOOL=ON <source directory>

To use an existing Qt 4 installation other than qt-devel (the minimum required version being 4.6.2), the
following must also be added to the invocation above:

-DQT_QMAKE_EXECUTABLE=<qmake executable full path>

CMake warnings about modules such as QtWebKit not being found can be safely disregarded.

If the CMake configuration process runs without errors, it will display the message

"Build files have been written to: <build directory>"

https://cmake.org/files/

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 157 of 158

Finally, call make with the target “command-line-tools”:

$ make command-line-tools

The message “Built target command-line-tools” will be displayed when the compilation is complete. The
executables can be found in the bin sub-directory of <build directory>.

The executables require the environment variable BRAT_DATA_DIR to be defined, pointing to the data
sub-directory of <source directory>, or of any other location where you wish to copy it.

Some executables, like BratCreateYFX and BratCreateZFXY, require also the embedded subset of Python
in a specific location, namely in <build directory>/bin/Python/lib64. Simply create the Python sub-

directory in <build directory>/bin and copy there the lib64 sub-directory of your Python installation.

BROADVIEW RADAR ALTIMETRY TOOLBOX

BRAT software user manual version 2.0 158 of 158

End of Document

	1. INTRODUCTION
	1.1. Project history and background
	1.2. Global overview
	1.3. Toolbox contents

	2. DATA READ AND PROCESSED
	2.1. Background
	2.2. Level 1B/2 data products
	2.3. Higher level products

	3. HOW TO INSTALL AND UNINSTALL BRAT
	3.1. Supported platforms
	3.2. The BRAT distribution DVD
	3.3. MS Windows
	3.3.1. Installing the binary distribution
	3.3.2. Installing from source
	3.3.3. Uninstalling

	3.4. Linux
	3.4.1. Installing the binary distribution
	3.4.2. Installing from source
	3.4.3. Uninstalling

	3.5. Mac OS X
	3.5.1. Installing the binary distribution
	3.5.2. Installing from source
	3.5.3. Uninstalling

	3.6. The RADS Service
	3.6.1. Installing the RadsService
	3.6.1.1. Required Permissions
	3.6.1.2. Installation and configuration procedures

	3.6.2. Uninstalling the RadsService

	3.7. Troubleshooting OpenGL issues
	3.8. Sample Build in Debian 8

	4. BRAT GRAPHICAL USER INTERFACE (GUI)
	4.1. Overview
	4.1.1. The Application Settings (Options)

	4.2. Starting with BRAT GUI
	4.2.1. Create a workspace
	4.2.2. Create a dataset
	4.2.2.1. RADS datasets

	4.2.3. Create a filter
	4.2.3.1. Customizing filter application

	4.2.4. Create an operation
	4.2.4.1. Select source data
	4.2.4.2. Define expressions
	4.2.4.2.1. Generalities
	4.2.4.2.2. X, Y and data expressions
	4.2.4.2.3. Constraints related to field dimensions
	4.2.4.2.4. Selection criteria expression

	4.2.4.3. Output
	4.2.4.4. Export

	4.2.5. Create a view
	4.2.5.1. Export

	4.3. BRAT GUI tabs description
	4.3.1. Workspace menu
	4.3.2. Datasets tab
	4.3.2.1. Creation of a dataset
	4.3.2.2. Management of the data files list
	4.3.2.3. Data file information

	4.3.3. RADS Datasets tab
	4.3.4. Filters tab
	4.3.5. Operations tab
	4.3.5.1. Manage Operations
	4.3.5.2. Define source data
	4.3.5.3. Define expressions
	4.3.5.4. Expression information and parameters
	4.3.5.4.1. Units
	4.3.5.4.2. Functions
	4.3.5.4.3. Formulas
	4.3.5.4.4. Algorithms
	4.3.5.4.5. Data computation
	4.3.5.4.6. Sampling (previous ‘Resolution and filters’)
	4.3.5.4.7. Smoothing

	4.3.6. Logs tab

	5. ALIASES
	5.1. Using aliases
	5.2. Structure
	5.3. Modifying an alias
	5.4. Creating an alias
	5.4.1. For a field for which no alias exists
	5.4.2. For a field for which an alias has already been defined

	6. VISUALISATION INTERFACE
	6.1. 2D Plots
	6.2. Map Plots
	6.3. 3D Plots
	6.4. Colour tables
	6.5. Vector Plots

	7. BRAT SCHEDULER INTERFACE
	8. USING BRAT IN ‘COMMAND LINES’ MODE WITH PARAMETERS FILE
	8.1. Creating an output netCDF file
	8.2. Visualising an output netCDF file through BRAT
	8.3. Using the parameter files to process many datasets

	9. BRATHL APPLICATION PROGRAMMING INTERFACES (APIS)
	9.1. Data reading function
	9.2. Cycle/date conversion functions
	9.3. Date conversion/computation function
	9.4. Named structures

	10. ANNEX A: list of datasets read by BRAT
	10.1. Cryosat product overview
	10.2. Cryosat Ocean products overview
	10.3. Jason-2 product overview
	10.4. Envisat product overview
	10.5. Jason-1 product overview
	10.6. Topex/Poseidon product overview
	10.7. ERS-1 and 2 product overview
	10.8. GFO product overview
	10.9. PODAAC product overview
	10.10. River and Lake product overview
	10.11. NetCDF products
	10.11.1. Aviso Altimetry data in netCDF
	10.11.2. ERS REAPER data in netCDF
	10.11.3. Sentinel 3 data in netCDF

	11. ANNEX B: Y=F(X) parameter file keys
	12. ANNEX C: Z=F(X,Y) parameter file keys
	13. ANNEX D: Display parameter file keys
	14. ANNEX E: BRATHL-MATLAB API
	15. ANNEX F: BRATHL-Fortran API
	16. ANNEX G: BRATHL-C API
	17. ANNEX H: BRATHL-PYTHON API
	18. ANNEX I: BRAT-PYTHON ALGORITHMS
	19. Annex J: Compilation in GPOD Environment
	19.1. Dependencies
	19.2. Source and Build directories
	19.3. Configure and make

	Word Bookmarks
	Date

