

Ocean Carbon from Space

Joint Science Research & Satellite-based marine carbon monitoring and analysis system 中文 English

Marine carbon observation

by satellite remote sensing

Yan Bai, Xianqiang He, Xiaoyan Chen, Teng Li, Shujie Yu, Chen-Tung Arthur Chen, Wei-Jun Cai,etc.

State Key Laboratory of Satellite Ocean Environment Dynamics (SOED) Second Institute of oceanography(SIO), China

Framework of satellite-based marine carbon research

□Inorganic Carbon : *p*CO₂

Carbon flux estimation

SatCO2-- Satellite-based marine carbon monitoring and analysis system CO₂ emissions from fossil fuel combustion and industrial processes contributed about 78 % of the total green house gas (GHG) emission increase from 1970 to 2010 (IPCC, 2014)

The globally averaged combined land and ocean surface temperature data as calculated by a linear trend show a warming of 0.85° C over the period 1880 to 2012 (IPCC 2014). The goal of the Global Carbon Project (GCP) is

to develop comprehensive, policy relevant understanding of the global carbon cycle, encompassing its natural and human dimension and their interactions.

GLOBAL CARBON

PROJECT

Three Science Themes

1. Patterns and variability

What are the current temporal and geographical distributions of the major pools and fluxes in the global carbon cycle?

2. Processes and Interactions

What are the control and feedback mechanisms - both anthropogenic and non-anthropogenic - that determine the dynamics of the carbon cycle?

3. Carbon Management

What are the likely dynamics of the carbonclimate-human system into the future, and what points of intervention and windows of opportunity exist for human societies to manage this system?

GCP Report No. 1

Carbon cycle and Anthropogenic CO2

Source: <u>Le Quéré et al 2013</u>; <u>CDIAC Data</u>; <u>Global Carbon Project 2013</u>, Regnier et al. *Nature Geo science*, 2013

Gt=10亿吨

Marine Satellite Remote sensing

Diagram of inverse radiative transfer elements. Many further parameters are derived from these constituents, such as DOC, POC and productivity. (IOCCG 5, p9)

@Framework of satellite-based marine carbon research

Framework of satellite-based marine carbon research

□Inorganic Carbon : *p*CO₂

Carbon flux estimation

SatCO2-- Satellite-based marine carbon monitoring and analysis system

Estimation of CO₂ flux

Parameters of the flux calculation

CO₂ gas transfer velocity (K)

Satellite observation of atmosphere CO₂

- Lidar-can measure CO₂ at bottom layer, low spatial resolution.
- Thermal emission- measure CO₂ at middle layer, insensitive to the bottom layer
- Reflected Sunlight (NIR CO₂ absorption) measure CO₂ at whole column, high accuracy.

Measurement Method	Instrument	CO2 Measurement	Measurement Precision	Down- track Sampling
Reflected	OCO	Total Column	1 ppm	2.3 km
Sunlight	SCIAMACHY	Total Column	3-10 ppm	60 km
	GOSAT	Total Column	4 ppm	10.5 km
Thermal	AIRS	Mid-Trop	1 – 2 ppm	45 km
Emission	IASI	Mid-Trop	38 ppm	100 km
	TES	Mid-Trop	~5 ppm	~50 km
Active	ASCOPE	Lower-trop	2 – 4 ppm	$\sim \! 100 \ \mathrm{km}$
(LIDAR)	ASCENDS	Lower-trop	2 – 4 ppm	~100 km

OCO-NASA

- NASA approved the OCO satellite (Orbiting Carbon Observatory) mission in 2002 to monitoring global atmosphere CO₂. Accuracy goal of 0.3~0.5%(1-2ppm). Reflected Sunlight method
- OCO was launched on 24 Feb. 2009, but failed.
- NASA launched in Jul. 2014 successfully.

GOSAT-JAXA (Japan)

- GOSAT-Greenhouse Gases Observing Satellite, launched on 23 Jan.
 2009. Reflected Sunlight method.
- GOSAT-2 was launched in Oct. 29, 2018.

ESA new CO₂ mission after SCIAMACHY

CarbonSat Global CO₂ & CH₄ from space Earth Explorer 8 (EE8) Candidate Mission

Chinese CO₂ satellite mission

- Scientific experimental satellite. Main payloads include high spectral CO₂ sensor, multiple channel cloud and aerosol.
- Launched in 2017. CO₂ measuring accuracy to be 4ppm.

The first global map of atmospheric carbon dioxide in China's carbon satellite, (above) April 2017, (below) July 2017. The color indicates the average dry air mixing ratio (XCO2) of the atmospheric Carbon dioxide column.

Air CO₂ from the model simulation data

$pCO_{2atm} = xCO_{2atm} \times (P_{atm}/1013.25 - pH_2O)$

> NOAA/CMDL/Carbon

Tracker ≻ xCO_{2atm} = CO₂ Dry Air Mole Fraction

Climatologic atmospheric pCO₂

(2003-2009) monthly-averaged

Parameters of the flux calculation

CO₂ Speciation

 $CO_2(g)$ has many possible transformations upon dissolution in H_2O

Major dissolved forms:

 $CO_{2(aq)}$ (aqueous carbon dioxide – a dissolved gas) H₂CO₃ (carbonic acid – trace amount) HCO₃⁻ (bicarbonate ion) CO₃⁻² (carbonate ion)

The equilibrium of gaseous and aqueous CO_2 :

 $\mathrm{CO}_{2(\mathrm{g})} \leftrightarrow \mathrm{CO}_{2(\mathrm{aq})}$

Subsequent hydration and dissociation reactions:

 $CO_{2(aq)} + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$

 $K_1^* = \frac{\{H^+\}[HCO_3^-]}{[CO_2]}$

 $K_2^* = \frac{\{H^+\}[CO_3^{2^-}]}{[HCO_3^{-}]}$

$$HCO_3^- \leftrightarrow CO_3^{-2} + H^+$$

Asterisk (*) indicates a "stoichiometric" constant

Partial pressure of carbon dioxide (pCO₂)

- pH = log {H+}
- Total Alkalinity (TA) represents ability of seawater to resist pH change upon addition of acid
- Any two of the four CO₂ properties (ΣCO₂, P_{CO2}, pH, and carbonate alkalinity) can be used to determine the CO₂ system

Remote sensing algorithm of Aquatic pCO₂

25

Sea-air flux of CO₂ in the North Pacific using shipboard and satellite data

pCO₂ vs. SST

Mark P. Stephens, Geoffrey Samuels, Donald B. Olson, and Rana A. Fine Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Taro Takahashi

Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. C7, PAGES 13,571-13,583, JULY 15, 1995

Figure 4. Seasonal relationship between $\ln p CO_{2(t=10^{\circ}C)}$ and SST. The curves represent the least squares fits of $\ln p CO_{2(t=10^{\circ}C)}$ to SST. The curves for (a and b) winter and spring represent the equations used to calculate $\ln p CO_{2(t=10^{\circ}C)}$ from satellite SST, but the equations for (c and d) summer and fall include a longitude term, not included in these curves.

Remote sensing of *p***CO**₂**-regression**

Empirical algorithms

Aquatic pCO₂

Proxies: SST, Chla, Lon, Lat, Salinity, Mixing Layer Depth, etc.

Estimation the Aquatic	pCO2 from Empirical alg	orithms (e.g. Linear Regression)	
Proxy	Equation	Research area (References)	
	f(T)	e.g.North Pacific(Stephens et al. 1995; Olsen et al. 2003, 2004;), Green land(Hood, et al., 1999;)	
SST		Sea(Cosca et al., 2003;), Chile coastal(Levefre et al.	
		2002), sub-Antarctic Ocean(Metzl et al., 1999;), North Atlantic(Lefèvre et al., 2004;)	
	f(T and/or Chla)	e.g. North Pacific (Ono et al., 2004)	
Chloraphyll a		Southern Ocean (Rangama, et al., 2005)	
		Northern SCS (Zhu, et al., 2009)	
Location (Lon, Lat) f(T, Lon, Lat)		e.g. Caribbean Sea (e.g. Wanninkhof, et al., 2007	
Mixing layer depth	f(T. MLD. Lon. Lat)	MID Lop Lat) e g North Atlantic (Lueger et al. 2009)	
CDOM	f(T, aCDOM)	e.g. Hudson Bay (Else, et al., 2008),	
Salinity	f(S, etc.)	e.g. North Pacific(Sarma et al., 2006)	
Neutral Network (T, S, Chlorophyll, ect.)		e.g.Northern SCS (Yan et al., 2011)	
Principal Component analysis		e.g.Northern Gulf of Mexico (Lohrenz and Cai, 2006)	
Satellite data with Model		e.g.Mediterranean (D'Ortenzio)	

ECS: 2009 summer

Sea surface pCO_{2sea} (Marginal Sea)

The controlling factors in the marginal sea system are very complicated, including biological, thermodynamic (SST), and mixing (transport) effects, etc.

TELLITE-BAC

Remote sensing algorithm of Aquatic pCO₂

Sea-air flux of CO₂ in the North Pacific using shipboard and satellite data

Mark P. Stephens, Geoffrey Samuels, Donald B. Olson, and Rana A. Fine Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Taro Takahashi

Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. C7, PAGES 13,571-13,583, JULY 15, 1995

Spring

(°C)

Eall

20 25

(°C)

Figure 4. Seasonal relationship between $\ln p CO_{2(t=10^{\circ}C)}$ and SST. The curves represent the least squares fits of $\ln p CO_{2(t=10^{\circ}C)}$ to SST. The curves for (a and b) winter and spring represent the equations used to calculate $\ln p CO_{2(t=10^{\circ}C)}$ from satellite SST, but the equations for (c and d) summer and fall include a longitude term, not included in these curves.

Mechanistic-based semi-analytical algorithms (MeSAA-*p*CO₂)

The variation of pCO_2 is analytically expressed as the sum of the first-order partial-difference of individual pCO_2 components contributed by each process or controlling factor. Hence, the critical issue is how to derive the analytical expressions of each process?

Mechanistic-based semi-analytical algorithms (MeSAA-*p*CO₂)

ECS (RioMar)

(Bai et al, 2013,2014, 2015, JGR)

Bering Sea (OceMar)

(Song, Bai* et al, 2016, RS)

I) Prediction of thermodynamic control

Here we only consider the temperature-dependent component of the thermodynamic effects on sea surface pCO₂. This fractional thermodynamic effect is known to have an effect of 4.23%/1° C [Takahashi *et al.*, 1993, 2002, 2009] as:

$$pCO_2 @ T_{est} = pCO_2 @ T_{obs} \times \exp[0.0423 \times (T_{est} - T_{obs})]$$

In our method, we combine the variation of pCO₂ contributed by temperature change with that caused by the water mass mixing process using the calculation of the carbonate system; we do put the thermodynamic effect as a separately item.

Mechanistic-based semi-analytical algorithms (MeSAA-*p*CO₂)

The variation of pCO_2 is analytically expressed as the sum of the first-order partial-difference of individual pCO_2 components contributed by each process or controlling factor. Hence, the critical issue is how to derive the analytical expressions of each process?

Conservative mixing behavior Zhai et al., Marine Chemistry, 2007

Mixing index

Satellite-derived salinity by ocean color remote sensing in Changjiang River plume can be used as the mixing index in the ECS

BAI ET AL.: SATELLITE SALINITY OF CHANGJIANG PLUME

Figure 10. Underestimated salinities (ΔSSS) vary with the increase of *chla* concentration based on the bio-optical model of equation 10. $\Delta SSS < 1$ when *chla* $\leq 2 \mu g/L$, $\Delta SSS < 1.5$ when *chla* $\leq 4 \mu g/L$, and $\Delta SSS = 2.6$, when *chla* $= 10 \mu g/L$.

Bai et al., JGR-Oceans, 2013

Bio-Effect

@3) Parameterization of the biological effect

we assume that there is a general relationship between pCO_2 and chla,

 \mathcal{E} represents the *p*CO₂ contribution from other factors, which does not overlap the contribution from the biological effects.

 $pCO_2 = A-B \times \log(chla) + \varepsilon$

partial-difference of *p*CO₂ due to *chla*

$$\frac{\partial(pCO_{2@bio})}{\partial(chla)} = \frac{\partial[A - B \times \log(chla) + \varepsilon]}{\partial(chla)} = -\frac{B}{\ln(10)}\frac{1}{chla}$$

an integration of the increment of *chla* with time because the biological drawdown of pCO_2 is a cumulative process.

$$\Delta pCO_{2@bio} = \frac{\partial pCO_{2@bio}}{\partial V_{bio}} \Delta V_{bio} = \int_{chla_0}^{chla_n} -\frac{B}{\ln(10)} \frac{1}{chla} d(chla)$$
$$= -\frac{B}{\ln(10)} \times \left[\ln(chla_n) - \ln(chla_0)\right]$$

3) Parameterization of the biological effect

satellite-derived chla

MeSAA algorithm in ECS in summertime

 $pCO_{2} = pCO_{2@Hmix} + \Delta pCO_{2@bio}$ $pCO_{2@Hmix} = LUT(TA_{0}, DIC_{0}, NTA_{35}, NDIC_{35}, SST, Salinity)$ $\Delta pCO_{2@bio} = -117.5 \times [\log (chla) - \log (0.2)]$

Satellite Result and validation

The inputs of MSAA include satellite products of *chla*, SST, salinity, and DIC and TA values for two pairs of end-members.

Satellite salinity in August 2009

Satellite pCO₂ in August 2009

Satellite Result and validation

Lateral mixing Vertical mixing

Semi-Analytical *p*CO_{2sw} Algorithms All seasons

Particle optics can denote the mixing state of water column both at vertical and horizontal directions.

G

Validation- Aquatic *p*CO₂

大气CO₂分压

陆架航次

Underway measurement number

海水CO₂分压

Selection of reference water-mass

Bering

Mechanistic-based semi-analytical algorithms (MeSAA-*p*CO₂)

 $385.9 \mu atm \qquad 381.8 \mu atm$ Calculated $pCO_{2(summer)} = Selected pCO_{2(o)}$

 $pCO_2 = A - B \times \log(chla) + \varepsilon$

(a) 65°N

60°A

low chla regime small size $\partial p CO_{2@bio} / \partial chla$

June

Chlorophyll(mg/m3)

160

chla-specific absorption coefficients also showed an exponential decay relationship with log(chla) due to the package effect

Satellite-derived pCO₂ in summer

 $pCO_2 = A-B \times \log(chla) + \varepsilon$

BS: B=217.62 ECS: B=117.5

low *chla* regime small size large ðpCO_{2@bio}/ðchla

chla-specific absorption coefficients also showed an exponential decay relationship with log(*chla*) due to the package effect

Validation (1)-monthly

Validation (2)-daily

Influence by pervious spring algae bloom on summer *p*CO₂

Contribution of different controlling factors on the variation of pCO₂

$@Ongoing work..... (MeSAA-pCO_2)$

- Parameterization of the Physical Mixing Effect or Meso-scale processing (mixing index, SSS, SST, MLD, other proxy?)
- 2. Parameterization of the Biological Effect (C/chla, NCP, phytoplankton types, etc.)
- 3. Parameterization of Processes at Different Time Scales (re-equilibrium time?)

Framework of satellite-based marine carbon research

□Inorganic Carbon : *p*CO₂

Carbon flux estimation

SatCO2-- Satellite-based marine carbon monitoring and analysis system

Water mass and models of DOC profile

Figure 6. Two simplified models of the vertical DOC profile: (a) a uniform model and (b) a stratification model.

Liu et al., JGR-Oceans, 2014

Spiciness index (Li et al., 2006)

$$\beta = \frac{(T - T')}{\Delta T} + \frac{(S - S')}{\Delta S} \alpha,$$

Estimation of lateral DOC transport in marginal sea based on remote sensing and numerical simulation

POC export flux (sequestration)

POC export flux estimated based on Food-web model

Model-input data

Li, Bai*, etc. 2018, JGR

Model results

Li, Bai*, etc. 2018, JGR

Framework of satellite-based marine carbon research

 Example: pCO₂ and POC export flux
 SatCO2-- Satellite-based marine carbon monitoring and analysis system

Satellite-based marine carbon monitoring and analysis system (SatCO2)

Marine Satellite Data Online Analysis Platform (SatCO2-Pro)

SURPORT for multiple sources & time series data sharing and analysis

- Online access of unique satellite remote sensing data
- 3D Earth visualization and scientific computation
- Analysis and evaluation of multi-source (satellite, in situ and model) data
- User-defined algorithms and product generations
- Calculation and evaluation of ocean carbon fluxes
- Easy integration of professional modules

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Instituton of Oceanograph, SOA, China Key Laboratory of Resources and Environmental Information System of Zhejiang Province, Zhejiang University

Concluding remarks

- 1. We want to develop an integrated marine carbon monitoring and assessing system, to better quantify, understand and predict the changing marine carbon system, especially in the highly dynamic marginal sea.
- 2. It need the joint research on multi-disciplines and the collaboration.

Thank you for your attention!

