

ESA-MOST China Dragon 4 Cooperation

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

Applications of SAR Data for Coastal Marine Activity Monitoring

Zhang Xi (张晰) xi.zhang@fio.org.cn

The First Institute of Oceanography, Ministry of Natural Resources, China

12 to 17 November 2018 | Shenzhen University | P.R. China

Introduction

Importance of Coastal Zone

- A coastal zone is the interface between the land and water.
- Coastal plays an important role in the economy of coastal nations.
 - · Rich resources: fishery, petroleum, natural gas.
 - Lots of beautiful natural attractions: tourism and real estate.
- A majority zones of the population inhabit and human activities.
 - More than 70% of the world's megacities.
 - More than one billion people rely on the source in the zones.

בב to בי November בטבס ן Snenznen University ן א.א. Chin

Importance of Marine Activity Safety Monitoring

- Shipping accounts for more than half of the total marine activity.
- With the belt and road initiative, role of coastal shipping in China is accentuated.
- Need for means of monitoring vessel activity and provide navigation security.

Advantage of SAR

- Weather independent
- Day-and-night ability
- High resolution imaging
- Wide swath

Outline of lecture

Part I. Ship detection

Marine human activity monitoring

Part II. Sea ice detection

Marine activity security monitoring

Part I. Ship detection by SAR

- Most of ship installed Automatic Identification System (AIS) which provides the real time static and dynamic information of ship.
- Problem of ships without AIS signals: illegal ship, poaching boat, smuggler.

Hosted by

Need for vessel monitoring systems from space with SAR.

1. Ship Detection Algorithms

(1) Threshold method

- Ship target returns significant backscattering, because it contains cornershaped structures.
- The value of target pixel is compared with the statistical values (mean, standard deviation) of background.
- Threshold is unreliable, and doesn't work in most situations.

(2) Constant false alarm rate (CFAR)

- ➤ Get a property of threshold that maintain an approximately constant rate of false target detections when the clutter are variable.
- > Requirements: accurate fitting the clutter scenario.
- Performance: suitable for most situations, accuracy≥80%.

Model	PDF
WBL	$f_A(\mathbf{x}) = \frac{\gamma}{\sigma^{\gamma}} (\mathbf{x})^{\gamma - 1} \exp[-(\frac{\mathbf{x}}{\sigma})^{\gamma}], \mathbf{x}, \gamma, \sigma > 0$
LGN	$f_A(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[-\frac{(\ln x - \mathbf{m})^2}{2\sigma^2}\right], \sigma > 0, \mathbf{m} \in \mathbb{R}$
G^0	$f_A(\mathbf{x}) = \frac{2L^L(\mathbf{L} - \alpha)}{\Gamma^{\alpha}\Gamma(\mathbf{L})\Gamma(-\alpha)} \frac{x^{2L-1}}{(\gamma + \mathbf{L}\mathbf{x}^2)^{L-\alpha}}, x, L, \gamma > 0, \alpha < 0$
K-root	$f_{A}(\mathbf{x}) = \frac{4}{\Gamma(L)\Gamma(\gamma)} \left(\frac{L\gamma}{\mu}\right)^{\frac{L+\gamma}{2}} x^{L+\gamma-1} K_{\lambda-L} \left(2x \sqrt{\frac{L\gamma}{\mu}}\right), \mathbf{x} > 0$
GГD	$f_{A}(x) = \frac{ \gamma \kappa^{\kappa}}{\sigma \Gamma(\kappa)} (\frac{x}{\sigma})^{\kappa \gamma - 1} \exp[-\kappa (\frac{x}{\sigma})^{\gamma}], x \in R^{+}$

Disadvantages of CFAR

- > False alarms which have high scattering: azimuth ambiguity.
- ➤ Loss targets which have low RCS: especially high sea state in which clutter can submergence vessel targets.
- Depended on the accuracy of sea clutter fitting.

(3) Multi-Look Cross Correlation (MLCC)

- ➤ For realizing high resolution in azimuth direction, SAR needs illuminating a zone in an integration time.
- > Splitting the illuminating beam into two or more sub-beams, so that center time of each look is difference.
- > Ships are deterministic targets, so their inter-look sub-images possess higher coherence than the uncorrelated random images of the sea surface and azimuth ambiguity.

sublook1

sublook1

Azimuth ambiguity and dynamic sea surface

Ship target and dynamic sea surface

	SCR (dB)			
1# 2# 3#				
MLCC	40.84	38.96	29.31	31.81
$\mathbf{V}\mathbf{V}$	12.19	11.45	8.10	7.63
НН	13.45	16.02	16.51	15.94

MLCC can dramatically improve SCR, compared with HH, SCRs increase 27, 22, 13, 16dB.

Hosted by

 $FOM = \frac{N_{tt}}{N_{fa} + N_{gt}}$

Sentinel-1 HH

MLCC

CFAR

(4) Polarimetric filter

- Polarimetric SAR provides more information than single-polarization data.
- Scattering components can be decomposed from PolSAR returns.
- Ship consists of single-bounced, double-bounced and multi-bounced reflection.
- In the case of sea surface, single-bounced is the mainly scattering component.

A simply filter can be used to distinguish ships from sea background.

Don't need clutter fitting!

$$\begin{cases} \operatorname{Re}(\langle s_{hh} s_{vv}^* \rangle) < 0: & \text{ship target} \\ \operatorname{Re}(\langle s_{hh} s_{vv}^* \rangle) \geq 0: & \text{sea surface} \end{cases}$$

conjugate product of copolarization (CPC)

Result of CFAR

Result of Polarimetric filter

2. Ship Classification Algorithms

Possible features:

- •Length, width, contour
- Moments of inertia
- Fractal measures

- Intensity of pixels
- Polarimetric parameters
- Attributed Scattering Center

(1) Ship samples database

- ▶ 101 SAR images; 3388 samples;
- More than 20 categories;
- Three bands; multi-polarization;
- > 1873 samples' resolution higher than 8m (55%)

Satellite	Polarization	Incident angle	No. SAR	No. Sample
RADARSAT-2	HH/HV/VV/VH	22—43	27	967
TerraSAR-X	HH/HV/VV	29—45	7	116
ENVISAT ASAR	VV	20—34	1	32
UAVSAR	HH/HV/VV/VH	60—80	6	51
GF-3	HH/HV/VV/VH	20—50	59	1798
Sentinel-1	VV/VH	35—45	3	424

Fishing Tug Container Ship Tanker

1983

(2) Ship classification by moderate-resolution SAR

Although from moderate-resolution SAR (30~50m) we can't see much more details of ship, the swath is large compared with high resolution SAR.

100 ships with AIS

	Cargo	Tanker	Container	Accuracy
Cargo	41	27	2	58.57%
Tanker	7	14	1	63.64%
Container	0	1	7	85.7%
Accuracy				62%

(3) Ship classification by high-resolution SAR

- Selecting discriminate features and constructing an appropriate classifier are two essential factors for HR SAR ship classification.
- According to our comprehensive analysis, we find an optimal combination of features and classifier which has the highest ship classification accuracy in SAR-AIS matched samples.

Nonredundant complementary feature subset in all 21

- shippehyths
- ship perimeter
- mean of RCS
- mean/std of RCS

Optimal classifier for selected features

- Naive Bayes
- Minimum distance
- Decision tree
- KNN
- SVM

For cargo, tanker, container ship classification accuracy ~90%

Accuracy depends on the number and types of categories!!!

3. Ship monitoring application

Part II. Sea ice monitoring by SAR

Motivation of sea ice monitoring

- The region surrounding the Bohai Sea accounts for about 23% of China's GDP.
- Most of ships in the Bohai Sea have not ice breaking capabilities.
- Sea ice seriously threatens marine navigation and engineering safety.

Ice information requirements

- Ice type (charting)
- Ice thickness
- Ice velocity

[→] ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

1. Sea ice classification and charting

(1) Sea ice characteristic in the Bohai sea

(2) Sematic feature

- Geometry characterization:
 - Grey ice is rounded
 - New ice more rectangular
 - •
- Spatial relationship characterization:
 - Grey ice symbiotic with grey-white ice
 - Land fast ice is adjacent to land

•

伴生	应用	对象	对应伴生关系的描述		
关系	误判类别	应属类别	对应许生大系的抽坯		
固定》 与陆步 相接	也 初期冰、	固定冰	固定冰与陆地的邻接距离 为0,而初生冰、灰冰和灰 白冰等类型与陆地的邻接 距离大于零,由此可将误 判斑块归为固定冰。	冰等类型斑块到陆地的 距离为 d ,则: 当 $d=0$	
海水和初生》 相接		初生冰	海水与初生冰的邻接距离 为0,固定冰与海水的邻接 距离大于零,由此可将误 判斑块归为初生冰。		
海水和初生的包围	大海水	初生冰	如果误判海水斑块完全被 初生冰包围,面积小于一 定阈值,则可被修正为初 生冰。	设 B_{ij} 中 i 代表海水, j 代表初生冰,若海水斑块面积为 S_{i} ,则:当 $B_{ij} \geq 0.9$,且 $S_{i} \leq S_{i}$ 时,斑块类型修正为初生冰。	
海水和初生的包围	大和生洲	海水	如果误判初生冰斑块完全 被海水包围,且面积小于 一定阈值,则可被修正为 海水。	设 B_{ij} 中 i 代表初生冰, j 代表海水,若初生冰斑 块面积为 S_i ,则:当 B_{ij} ≥ 0.9 ,且 $S_i \leq S_i$ 时,斑 块类型修正为海水。	

伴生	应用对象			
关系	误判类别	应属类别	对应伴生关系的描述	
海水和 灰冰的 包围度	海水	灰冰	如果误判海水斑块被灰 冰的包围程度大于一定 阈值,则可被修正为灰 冰。	设 B_{ij} 中 i 代表海水, j 代表灰冰,则:当 $B_{ij} \ge B_i$ 时,斑块类型修正为灰冰。——般情况下, B_i 在 $0.6~0.7$ 之间。
初生冰 和灰冰 的包围 度	灰冰	初生冰	如果误判灰冰斑块被初 生冰包围程度大于一定 阈值,可被修正为初生 冰。	设 B_{ij} 中 i 代表灰冰, j 代表初生冰,则:当 $B_{ij} \ge B_i$ 时,斑块类型修正为初生冰。——般情况下, B_i 在0.7~0.9之间。
灰冰和 固定冰 的度	固定冰	灰冰	如果误判固定冰斑块被 灰冰包围程度超过一定 阈值,可被修正为灰冰	设 B_{ij} 中 i 代表固定冰, j 代表 灰冰,则: 当 $B_{ij} \ge B_{i}$ 时,斑 块类型修正为灰冰。 一般情况下, $B_{i} > 0.6$ 。
灰灰斑面紧 次白块积 致 面致 度	初生冰	灰冰或 灰白冰	通过对误判初生冰斑块 面积和紧致度的计算和 比较,分别设定面积和 紧致度的阈值,大于阈 值的是灰冰,反之是灰 白体。	若初生冰斑块面积为 S_i ,紧致度 C_i ,则; 当 $C_i \geq C_i$,且 $S_i \geq S_i$ 时,斑块类型修正为灰冰 类二 $C_i = C_i$,且 $S_i \leq S_i$ 时,斑块类型修正为灰白冰。

12 to 17 November 2018 | Shenzhen University | P.R. China

12 to 17 November 2018 | Shenzhen University | P.R. China

■New ice ■Grey ice ■Grey-white ice

■Open water

■Land fast ice

2. Sea ice thickness retrieval

- Sea ice in the Bohai Sea is first-year ice, which has large dielectric constant due to high salinity content;
- The growth of sea ice is linked to a desalination process. Ice salinity decreases as ice becomes thicker.
- Polarization ratios have strong correlation with dielectric constant when standard deviations of sea ice surface slope are small (level surface ice, @X-Bragg)

Ice thickness \rightarrow Dielectric \leftarrow Pol-ratio

3. Sea ice velocity estimation

Pattern matching

- Block-wise correlations in spatial or frequency domain
- About 10-20 x image resolution, regular grid
- Time consuming, negligible rotation

Feature tracking

- Identification & tracking of stable structures
- Includes rotational, preferable for marginal ice zone
- Fast computation speed
- Irregular grid, much false matches

Filter false matched key points: 358

Multi-scale sea ice drift estimation based on principal direction constraint

Sentinel-1 SAR Application

	Prop.	FT	PM
Matched	2088	5762	170
Corrected	1834	476	145
Percent	87.8%	8.3%	85.3%
Time/s	342	545	8128

	Prop.	FT	PM
Matched	1462	4521	342
Corrected	1254	362	269
Percent	85.8%	8.0%	78.7%
Time/s	163	237	1888

Proposed method

Feature tracking

Pattern matching

(4) Sea ice hazard risk assessment

For marine transportation, I_1 =Ice concentration × thickness

For offshore construction, $I_2 = I_1 + 1$ lce concentration \times thickness \times velocity

- Ice concentration (%): 0-15, 15-50, 50-80, 80-100
- Ice thickness (cm): 0-10, 10-20, 20-30, >30
- Ice velocity (m/s): 0-0.2, 0.2-0.4, 0.4-0.6, >0.6
- I_1 for marine transportation
 - No hazard: 0~1.5
 - Low hazard: 1.5~10
 - Median hazard: 10~24
 - Severe hazard: >24

- I₂ for offshore construction
 - No hazard: 0~1.8
 - Low hazard: 1.8~14
 - Median hazard: 14~38.4
 - Severe hazard: >38.4

Example 1. A normal ice year

2006.2.3-10:13 (ASAR) 2006.2.3-11:00 (MODIS)

2006.2.4-13:20 (MODIS)

Hosted by

→ ADVANCED TRAINING COURSE IN OCEAN AND COASTAL REMOTE SENSING

 I_2 for offshore construction

Example 2. A heavy ice year

2010.2.12-12:55 (MODIS)

2010.2.13-09:50 (ASAR) 2010.2.13-10:20 (MODIS)

 \rightarrow ADVANCEE I_1 for marine transportation

Thanks for your attention!