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ABSTRACT

Rainfall is one of the meteorological forcing terms in hydrologic
modelling and therefore its spatial variability in coverage, frequency and
intensity affects simulation results. Rainfall variability in particular under
the effect of orography adjacent to a large water body is not fully explored.
Such study is done for the Gilgel Abbay watershed of the Lake Tana basin
(Ethiopia). The study area is the source basin of the Upper Blue Nile River
which is one of the major contributors to the River Nile. The livelihood in
the Lake Tana basin largely depends on rainfed agriculture and therefore
understanding rainfall variability in the basin is required. As part of the
study, a set of recording rain gauges have been installed to observe rainfall
at high resolution.

First, rainfall variability in the Lake Tana basin is evaluated by
statistical analysis of rain gauge observations. Furthermore, a convective
index is derived from remote sensing observations to infer the pattern of
rainfall variability in the basin. Results suggest that orography and the
presence of Lake Tana largely affect the diurnal cycle, frequency and intra-
and inter-event properties of the rainfall. The rainfall varies significantly at
scales much smaller than inter-station distances suggesting that the existing
rain gauge network may be inadequate to fully capture the space-time
pattern of the rainfall. Such affects the accuracy of spatial rainfall estimation
that serves to specify the input to hydrologic models.

Second, two remote sensing based approaches have been developed
to estimate spatial rainfall: (i) a multi-spectral remote sensing approach, and
(ii) a conceptual cloud model approach with inputs from remote sensing
and typical ground based observations (pressure and temperature). Results
show the potential of remote sensing observations for rainfall estimation
although the ground based data still provided some limitations at this point.

Third, the effect of the rainfall variability on the accuracy of the
simulated stream flows by a physically based rainfall-runoff model is
evaluated. The effect of rain gauge density and configuration on rainfall
representation and consequently on stream flow simulation is evaluated
through a set of performance measures. The large rainfall variability in the
study area caused the accuracy of the simulated flow to be significantly
affected by both the density and the configuration of the network. The use
of rainfall from a single rain gauge resulted in a relative difference of up to
100 % between the simulated and observed stream flows. It is also shown
that simulated stream flow largely differs if uniform rainfall input is
compared to non-uniform rainfall input. This study is relevant to



hydrologic modeling since much research has focused on model
development and assessing parameter uncertainty while less attention is
given to aspects that relate to effects of rainfall representation.
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Introduction

1.1. BACKGROUND

SCIENTIFIC RELEVANCE

Rainfall is one of the meteorological forcing terms of hydrological
systems and understanding its variability in coverage, magnitude and
frequency is of key importance. Rainfall variability is caused by various
factors that, for instance, relate to atmospheric processes, effects of
orography and large water bodies such as lakes (Buytaert et al., 2006; Barros
et al., 2004; Ba and Nicholson, 1998; Johnson and Hanson, 1995). The effect
that such factors have on rainfall variability differs from region to region
which makes rainfall variability difficult to predict.

Rainfall variability is commonly affected by orography that
influences the arrival directions of wet air masses. The variation in daily,
monthly and annual rainfall as caused by factors such as terrain elevation,
slope and aspect is relatively well explored (e.g. Buytaert et al., 2006;
Johnson and Hanson, 1995; Basist et al, 1994) and some generic
understanding has been gained. Studies show that rainfall amounts that are
accumulated at daily to annual time scales generally increase with terrain
elevation but also rainfall is affected by terrain slope and aspect with wind
and lee side effects. However, variability of sub-daily rainfall as caused by
these factors is not well explored (e.g. Allamano et al., 2009; Loukas and
Quick, 1996). For instance, the effect of orography on the properties of rain
events such as duration, depth, and intensity, and the length of the time
period between two consecutive events, i.e. inter-event time, is not well
explored. This is particular for the tropical areas of the African continent
that generally have poor observation networks.

Rainfall studies are commonly restricted by availability of time
series observations. Although radar provides spatial coverage of rainfall,
such data is commonly not available since it is considered too expensive.
Also, the spatial coverage of radar is constrained by high mountain ranges.
Rain gauges serve as the main source of rainfall data in many regions. Rain
gauges record rainfall data at discrete points in space and time while rain
gauges are often sparsely and unevenly distributed in space. For rainfall
monitoring, World Meteorological Organization (WMO) recommends an
average rain gauge inter-station distance of 25 — 30 km in flat areas and
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approximately half that distance in mountainous areas (see Gandin, 1970).
Such requirement, however, is rarely met in practice.

In practice, the density and configuration of a rain gauge network is
determined based on the availability of funds, accessibility of site and the
purpose of the network. Rain gauges in developing countries are commonly
installed in towns that are located along main roads that provide
accessibility. As a result, relatively inaccessible areas such as mountainous
areas may remain uncovered by the observation network.

As part of an effort to overcome rainfall data unavailability, various
model approaches are proposed in literature to synthetically generate
rainfall data. Examples include models that are based on dimensionless
event hyetographs (e.g. Garcia-Gazman and Aranda-Olivier, 1993; Hulff,
1967) and models that are based on the scaling properties of rainfall (e.g.
Olsson and Berndtsson, 1998; Over and Gupta, 1994). The calibration and
validation of these approaches commonly rely on rainfall data at high, i.e.
sub-daily, resolutions.

A second alternative to overcome unavailability of rainfall data is
the use of remote sensing. Observations by remote sensing provide spatial
coverage in contrast to the point observations by single rain gauge.
Additional advantage of remote sensing in rainfall studies is that the
observations are commonly available free of charge. Such advantages have
triggered researchers to develop satellite remote sensing based methods of
rainfall estimation.

Since the late 1960s, a plethora of satellite remote sensing based
rainfall estimation methods has been developed to meet the demands by
various applications for rainfall data. Reviews of the methods are presented
by Stephens and Kummerow (2007); Levizzani et al. (2002); Barrett and
Martin (1991); Kidder and Vonder Haar (1995); Petty (1995). Reviews
revealed that the methods in general have poor performance. As stated by
Barrett and Beaumont (1994), satellite sensors view from the top of the
atmosphere downwards to the land surface but not upwards from the land
surface that would be a more logical approach for rainfall observation. As
such, through satellite remote sensing only “proxy” variables of rainfall are
observed. Those variables which include cloud reflectance and cloud top
temperature only have a weak and indirect relation to surface rainfall rate.

A conceptual cloud model that integrates remote sensing and
ground based observations to simulate rainfall is proposed by Georgakakos
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and Bras (1984a,b). That model is evaluated and extended using radar
observations by Andrieu et al. (2003); Bell and Moore (2000b); French and
Krajewski (1994) and French et al. (1994). Advantages of the approach are
the model structure that may be considered simple and the use of readily
available observations as model inputs. In the cloud model, the vertical
profile of a cloud system was represented by a single model layer and the
approach showed to have some limitations. Increasing the number of the
model layers is considered necessary to account for the differences in rain
generation time along the vertical profile of a cloud system. Georgakakos
and Bras (1984a,b) proposed the conceptual model at first to overcome
restrictions by rain gauge data availability. It is noted the model has not
been evaluated for regions where radar data is unavailable and where the
ground based observation network is poor.

Despite the poor performance of remote sensing based methods of
rainfall estimation, remote sensing has found applications in rainfall studies
mainly since it provides a spatial coverage of rain producing clouds. Some
applications of remote sensing include: rainfall detection to study the
diurnal cycle of rainfall (Dai 2001; Imaoka and Spencer, 2000), to monitor
and characterize clouds that produce heavy rainfall (Curtis et al. 2007;
Feidas, 2003; Laing et al., 1999) and to analyze the scaling behaviour of
rainfall (Gebremichael et al., 2008; Nykanen, 2008).

Studies of rainfall variability and estimation commonly are
restricted by data availability. Rainfall estimation becomes challenging for
areas where the rainfall largely varies over small time and space domain
while the observation network is sparse. In such cases, the accuracy of the
estimated rainfall may deteriorate with consequences for its further use.

Studies by Segond et al., (2007); Bell and Moore (2000a) revealed
that rainfall variability can largely affect hydrological model outputs while
Chaubey et al., (1999); Younger et al., (2009) showed that rainfall variability
affects estimation of model parameters. Beven and Hornberger (1982) noted
that spatial variability of rainfall mainly affects the timing of peak runoff.
However, these studies were carried out in regions where either the rainfall
is relatively uniform or the rain gauge network is dense. Where data
availability is poor, studying the effect of rainfall variability on simulation
results of hydrological models can be overcome by using synthetically
generated rainfall and runoff data (e.g. Arnaud et al., 2002; Obled et al.,
1994).
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SOCIETAL RELEVANCE

Lake Tana is the largest lake in Ethiopia and is considered the
source of the Upper Blue Nile River which contributes approximately 50 %
to the stream flow of the Nile River. According to Conway (1997), the
outflow from Lake Tana contributes 8 % to the Upper Blue Nile flow in
Ethiopia.

The outflow from Lake Tana contributes to the Tis Abbay I and Tis
Abbay II hydropower plants. There is an ongoing construction of a 12 km
tunnel to transfer water from Lake Tana to the Beles basin of the Upper Blue
Nile River. In terms of irrigation, 6 dams are proposed in the Lake Tana
basin (see, BCOEM, 1999). The Koga dam is nearly completed while the
construction of Megech and Ribb dams is about to be commenced but the
remaining dams are only at a pre-feasibility study stage. In addition to
irrigation and hydropower purposes, Lake Tana serves for fishing,
navigation and tourism. The reader is referred to SMEC (2007) for some
information about the possible impacts of the various water resources
projects in the Lake Tana basin.

Despite its major socio-economic importance, the hydrology of the
Lake Tana basin is not well documented in literature. The lake has a large
surface area, i.e. approximately 3100 km? and therefore receives large
volumes of rainfall that may significantly affect the water balance of the
lake. However, the lake rainfall has not been monitored and as a result
hydrological studies extrapolate rainfall from inland stations (e.g. Wale et
al., 2009; Kebede et al. 2006). Such studies can benefit from understanding
the spatio-temporal variability of the rainfall in the basin.

1.2. RESEARCH OBJECTIVES

The main objective in this study is to evaluate the spatio-temporal
pattern of rainfall variability and its effect on runoff. Sub-objectives of the
study are:

e To evaluate the spatio-temporal variability of rainfall as affected by
orography and the presence of a lake.

e To develop and evaluate a remote sensing based approach for rainfall
detection and estimation.
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e To develop and evaluate a conceptual cloud model for rainfall simulation
with remote sensing and ground based observations as model inputs.

e To evaluate the performance of a physically based rainfall-runoff model
and its sensitivity to a rain gauge network density and configuration.

As part of this study, a network of 10 recording rain gauges and 1
automatic weather station has been installed in May 2007. The location and
terrain attributes of the network are shown in figure 3.1 and table 3.1 in
Chapter 3 of this thesis.

By the objectives of this study, the data from the rain gauges is used
to study the rainfall diurnal cycle, the spatio-temporal structure of rainfall
and rain event properties. The rain gauge observations are also used to
evaluate the remote sensing based rainfall estimates and to assess the
sensitivity of a rainfall-runoff model to rain gauge network density and
configuration.

Remote sensing observations are obtained from the Meteosat
Second Generation (MSG-2) and the Tropical Rainfall Measuring Mission
(TRMM) satellites. Thermal infrared (TIR) observations from MSG-2 are
used to analyze patterns in rainfall diurnal cycle. In this thesis, two
parsimonious rainfall model approaches are developed and evaluated to
estimate rainfall from remote sensing observations. Surface rainfall rates
from Precipitation Radar (PR) of TRMM satellite served as the ground truth
to calibrate the remote sensing indices for rainfall detection and estimation.

1.3. STRUCTURE OF THE THESIS

This thesis is structured in eight chapters. In Chapter 1, the scientific
and the social relevance of the study are presented. The research objectives
in this study are stated in this Chapter.

In Chapter 2, the study area which is the Lake Tana basin is
described and includes a description of its geographic and climatic settings.
The long-term rainfall and stream flow statistics of the Lake Tana basin are
analyzed and presented in Chapter 2.

In Chapter 3, the spatio-temporal patterns of the rainfall in the Lake
Tana basin and the Gilgel Abbay watershed in particular are analyzed. The
rainfall data that are obtained from 8 recording rain gauges of the network
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are analyzed to study the space-time structure of the rainfall, the diurnal
cycle of the rainfall and its temporal intermittence. In Chapter 3, a
convective index was developed using thermal infrared (TIR) observations
of cloud top surface to analyze the spatial pattern of the rainfall diurnal
cycle.

In Chapter 4, the properties of the rain events of the Lake Tana
basin and their temporal variability are analyzed. The rain event properties
include frequency of occurrences, intensity and duration of rain events, and
inter-event time. Dimensionless event-hyetographs are derived in this
Chapter and a simple model that only has two parameters is fitted to the
hyetographs.

In Chapter 5, the potential of remote sensing observations for
rainfall detection and estimation is evaluated. First, a set of indices was
derived using multi-spectral observations from MSG-2. The performance of
the indices for rainfall detection is evaluated in terms of selected
performance measures. In Chapter 5, an exponential model was developed
to estimate rainfall using TIR brightness temperature of cloud top surface.
The PR of TRMM satellite provided the rainfall rates that served as the
ground-truth for calibration and validation of the rainfall detection and
estimation approach.

In Chapter 6, a conceptual cloud model is developed to simulate
convective rainfall using readily available model inputs. The cloud model
operates based on a parsimonious formulation of conservation equations of
mass for a cloud layer. The model inputs are ground-surface temperature,
pressure and dew-point temperature, and TIR brightness temperature of
cloud top surface. Model sensitivity is evaluated through Regional
Sensitivity Analysis (RSA).

In Chapter 7, the sensitivity of a physically based rainfall-runoff
model to rain gauge network density and configuration is evaluated. The
accuracy of the estimated rainfall is evaluated through a set of performance
measures by comparing it against a reference rainfall. The main objective is
to determine how rain gauge network density and configuration affects the
stream flow simulated by the Representative Elementary Watershed (REW)
rainfall-runoff model. In Chapter 7, model sensitivity to model resolution
and rainfall variability is evaluated.
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In Chapter 8, the main results of this thesis are summarized. Some
concluding remarks and recommendations for future studies are presented
in Chapter 8.
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THE LAKE TANA BASIN




The Lake Tana basin

2.1. DESCRIPTION OF THE BASIN

The centre of Lake Tana is located approximately at 12° 00' N and
370 15 E in Ethiopia, East Africa. The lake has a surface area of
approximately 3100 km? with a mean and a maximum depth of 9 m and 14
m, respectively and an altitude of 1786 m above mean sea level.

The Lake Tana basin has a surface area of approximately 15,000 km?
with a north-south length of 200 km and a west-east length of 165 km. The
geology of the basin is dominated by basalts while the soil is dominated by
luvisols which have a soil texture of clay to silty clay. The basin is mostly
covered by agricultural land.

247586
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Figure 0.1: The topography of the Lake Tana basin and its major watersheds. The
boundaries are represented by white lines.
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The Lake Tana basin

More than 40 watersheds contribute to the inflow of Lake Tana.
According to Wale et al. (2009), the gauged river inflow to the lake is 1280
mm yr'! while the ungauged river flow is 880 mm yr!. Most of the
recording rain gauges that provided the rainfall data for the analysis in
Chapter 3 to 7 of this thesis are installed in Gilgel Abbay watershed. Gilgel
Abbay is the largest watershed of the Lake Tana basin with a surface area of
about 5000 km? and an altitude that ranges between 1790 — 3500 m above
mean sea level. The Gilgel Abbay watershed has mountain ranges in the
southern part, extensive flat plains near its main river mouth and a large
water body (Lake Tana) north of its outlet (see figure 2.1). The other major
watersheds of Lake Tana basin are Gummara, Ribb and Megech that have a
surface area of approximately 1400 km? 1900 km?, and 850 km?
respectively. The surface areas of the watersheds are extracted through
watershed area delineation based on a Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) which has 90 m resolution.

2.1.1. Temperature
INTER-ANNUAL VARIABILITY

The inter-annual variability of surface temperature in the Lake Tana
basin is analysed using data from four ground based weather stations.
These stations are Dangila, Bahir Dar, Debre Tabor and Gondar which are
located in the southern part of the basin, the south shore of the lake, the
eastern part and the northern part of the basin, see figure 2.6. The daily
temperature data that is used in this analysis is recorded for the time period
1994 - 2003.

The inter-annual variability of the daily minimum temperature is
shown in figure 2.2 and represents monthly averaged values. The figure
shows that the patterns of the minimum temperature of the four stations are
somewhat similar. The minimum temperature is highest in April or May
and reaches its lowest value in January. The mean of the minimum
temperature ranges between 8.7 °C at Dangila to 13.8 °C at Debre Tabor.

Figure 2.3 shows the inter-annual variability of the maximum daily
temperature which is averaged for each month. The temporal pattern of the
maximum temperature differs from that of the minimum temperature with
their lowest value occurring in different months. Figure 2.3 shows that the
maximum temperature of the four stations has a similar pattern with higher
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value in April and lowest values in July and August. Bahir Dar and Gondar
have higher temperature values while Debre Tabor has lowest values. The
mean of the maximum temperature ranges between 22 °C at Debre Tabor
and 27.3 °C at Bahir Dar.

DIURNAL VARIABILITY

The diurnal cycle of the surface temperature is analysed using the
data that was recorded at Durbet station. The data was recorded in June -
August (JJA) of 2007 by the weather station that has been installed as part of
the present study.
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Figure 0.2: Inter-annual variability of the daily minimum temperature at four stations
in the Lake Tana basin (time period 1994 — 2003). The 95 % confidence intervals of
the mean values are also shown. Note: the first month corresponds to January.

Figure 2.4 shows the diurnal cycle of temperature at Durbet. The
figure shows that the diurnal cycle has maximum temperature at 14:00
Local Standard Time (LST) and minimum temperature at 7:00 LST. The
temperature ranges between 14 °C — 22 °C showing large diurnal variability.
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The figure also shows the 95 % confidence interval of the estimated mean of
the temperature on each LST. The confidence interval is larger in the
afternoon than in the evening or in the morning and is due to large
variation in the afternoon temperatures.
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Figure 0.3: Inter-annual variability of the daily maximum temperature at four selected
stations in the Lake Tana basin (time period 1994-2003). The 95 % confidence
intervals of the means are shown.
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Figure 0.4: The diurnal cycle of temperature at Durbet weather station in Gilgel Abbay
watershed.

2.1.2. Rainfall variation

THE ANNUAL AND SEASONAL RAINFALL

The annual and the wet season rainfall of the Lake Tana basin are
estimated using rainfall records of 15 stations (see figure 2.6d) in the time
period 1987 — 2006. First, the mean annual rainfall of each station is
estimated and then the annual rainfall is interpolated over the basin at grid
elements of 200 m. The rainfall is interpolated using the ordinary kriging
technique with a spherical semi-variogram model (see, figure 2.5a). The
estimated parameters of the model are: nugget = 0, sill = 2x10°, and range =
80 km. The annual rainfall of the grid elements is averaged to estimate the
basin rainfall. The mean annual rainfall of the Lake Tana basin is estimated
to be 1424 mm while the mean annual rainfall of Lake Tana is estimated to
be 1534 mm. As such, there is a difference of 110 mm with the lake receiving
larger rainfall depth than the land surface of the basin.

14



The Lake Tana basin

x 10° (a) for annual ranfall x 10° (b) for JJA rainfall

T T 2.5 T T
Estimated . Estimated
35l Fitted i Fitted

N
3
T
I

Semivariogram (mm4)
N
T
|
Semivariogram (mm4)
=
[62]
T
|

=
ol
T
I
-
T
I

0.5 : . —

0 | | 0 | |
0 5 10 15 0 5 10 15
Distance (m) % 10* Distance (m) x 10°

Figure 0.5: Estimated and fitted Spherical semivariaogram for the annual and JJA
rainfall of the Lake Tana basin.

The wet season rainfall is estimated following the same procedure
that is applied to estimate the annual rainfall. The time period between June
— August (JJA) is considered as the main wet season of the basin. The
parameters of the semi-variogram model for the wet season rainfall are (see
figure 2.5b): nugget = 0, sill = 9x10* and range = 80 km. In JJA, the mean
rainfall of the basin is 948 mm which is 67 % of the annual rainfall of the
basin while the mean rainfall of the Lake is 1030 mm which is also 67 % of
the annual rainfall of the Lake.

Figures 2.6a-d show some features of the rainfall of the Lake Tana
basin. The stations” code is shown in figure 2.6d while the name of the
stations is presented in Table 2.1. Sekela station has missing values in the
dry season and therefore is not used to estimate the annual rainfall but it is
used to estimate the JJA rainfall since the wet season rainfall record at this
station covers the full time period.
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(a) Annual rainfall (b) JJA rainfall
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Figure 0.6: The long-term mean annual and seasonal (JJA) rainfall of the Lake Tana
basin. Fraction of rainfall represents the ratio of the JJA rainfall over the annual
rainfall. Note: figure 2.6d shows the stations that are shown by the numbers while
the name of the stations is presented in table 2.1.

The annual rainfall in the Lake Tana basin ranges between 830 —
2368 mm which shows large spatial variability with a maximum rainfall as
large as 2.8 times the minimum rainfall. Figure 2.6a shows that the south
part of the basin receives the largest amount of annual rainfall while the
north part of the basin receives the smallest amount of rainfall. The rainfall
of the area that is situated between the mountains in the south part of the
basin and Lake Tana shows mixed properties. In the south part, the rainfall
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depth decreases as the distance from the mountain increases until some
intermediate location and then the rainfall increases with a decrease in
distance to the lake.

Figure 2.6b shows the JJA rainfall of the basin. Overall, the JJA
rainfall has a similar spatial pattern as that of the annual rainfall. However,
figure 2.6c shows that there is some spatial variation in terms of the fraction
of the annual rainfall that falls in the wet season. The areas near the lake
receive about 70 % of their annual rainfall in JJA while the mountain areas
in the south part of the basin receive 60 % of their annual rainfall in JJA. In
terms of coefficient of variation (CV), figure 2.6d shows that there is no clear
spatial pattern in the temporal variation of the seasonal rainfall.

Table 0.1: Spatial features of the rainfall stations. Note: The Coordinate System
projection is Universal Transverse Mercator, Datum Adindan, Clark Ellipsoid
(1880).

Station  Station Easting Northing
Code Name (m) (m) Altitude (m)
1 Dangila 264717 1244326 2127
2 Bahir Dar 321101 1282608 1798
3 Sekela 304733 1215046 2715
4 Adet 332531 1245493 2218
5 Injibara 272548 1216055 2592
6 Gundil 289084 1211018 2549
7 Abbay Sheleko 267202 1259116 2075
8 Zege 316786 1291520 1791
9 Kidamaja 259514 1216449 2462
10 Gondar 327882 1387682 2123
11 Addis Zemen 376577 1339504 2111
12 Aykel 288018 1386105 2153
13 Debre Tabor 392163 1310040 2744
14 Deke Istifanos 311120 1315878 1799
15 Delgi 285688 1352646 1865
16 Infranz 356388 1346686 1889

Figure 2.7 shows some features of the daily rainfall at four stations
in the Lake Tana Basin. Injibara is located on a mountain in the southern
part of the basin; Bahir Dar is located on the south shore of Lake Tana;
Gondar is located in the northern part of the basin and Debre Tabor is
located in the eastern part of the basin. The data of Bahir Dar was recorded
in the time period 1981 — 2006 while the data of Injibara, Gondar and Debre
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Tabor was recorded in the time period 1987 — 2006. The days with missing
data are excluded during the analysis and the daily rainfall is arranged in
the respective months.

The top and the bottom horizontal line of the box plot indicate the
75 % quartile plus 1.5IQR and the 25 % quartile minus 1.5IQR, respectively
where IQR is the interquartile range. The IQR is defined by the difference
between the 75 % quartile which is represented by the top edge of the box
and the 25 % quartile which is represented by the bottom edge of the box.
Therefore, the IQR is represented by the size of the box.

Figure 2.7 shows that January, February, March, November and
December are the driest months of the basin. The IQR suggests that Injibara
station recorded high daily rainfall in April which shows that the wet
season starts first at Injibara, i.e. at the southern part of the Lake Tana basin.
In May, all of the four stations recorded relatively large rainfall depth but a
large range of daily rainfall is recorded at Injibara. Also, Injibara is
characterized by a wider range of daily rainfall in October as compared to
the remaining stations.

In terms of skewness, a median value that is observed closer to the
25 % or the 75 % quartiles than to the median indicates a skewed
distribution. For instance, the daily rainfall in May and April is largely
skewed since the median is closer to the 25 % quartile than the 75 %
quartile. However, the skewness is less pronounced for the July and the
August rainfall since the median is closer to the middle of the box which
indicates that 50 % of the rainfall records that are above and below the
median value are distributed over a similar range of values.

Table 2.2 shows the median value of the daily rainfall at the selected
stations in the Lake Tana basin. Most of the days in June and September are
rainy while Injibara recorded significant rainfall in the months of May and
October. It is shown that the median value of the September rainfall at
Gondar is close to zero that indicates Gondar has much more non-rainy
days than rainy days in this month. Overall, Injibara has the longest wet
season and the largest daily rainfall depth as compared to the other stations.
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Figure 0.7: Box plots of the daily rainfall at four stations in the Lake Tana basin.

In all the wet months, Injibara receives the largest daily rainfall
while Gondar receives the lowest daily rainfall, see Table 2.2. In terms of
median, the daily rainfall of Injibara is as large as 2.1 times that of Bahir Dar
and 2.5 times that of Gondar. The daily rainfall at Debre Tabor is
approximately 3 mm smaller than that of Injibara in July and August while
it is 4 times smaller than that of Injibara in June and September.
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Table 0.2: The median value of the daily rainfall at four stations in the Lake Tana
basin.

Station Apr. May Jun. Jul. Aug.  Sept. Oct.
Injibara 0.0 21 9.5 13.0 14.1 9.8 1.8
Bahir Dar 0.0 0.0 12 8.9 6.9 2.1 0.0
Gondar 0.0 0.0 1.8 6.6 5.7 0.4 0.0
Debre Tabor 0.0 0.0 2.5 10.4 11.3 2.8 0.0

2.2. SUMMARY

The inter-annual variability of temperature of the Lake Tana basin is
analyzed using data from four meteorological stations. The daily maximum
and minimum temperature in the Lake Tana basin have a somewhat similar
inter-annual pattern. The maximum temperature peaks in April and reaches
its lowest value in July. The annual-mean of the minimum temperature
ranges between 8.7 °C at Dangila to 13.8 °C at Debre Tabor while the
annual-mean maximum temperature ranges between 22 °C at Debre Tabor
and 27.3 °C at Bahir Dar. A distinct pattern is observed in the diurnal cycle
of the temperature in the basin with the minimum and peak temperature
occurring on 7:00 LST and 14:00 LST, respectively. The peak of the diurnal
cycle is 1.6 times its minimum.

The mean-annual rainfall of the Lake Tana basin and Lake Tana is
estimated to be 1424 mm and 1534 mm, respectively showing that the lake
has larger rainfall depth than the land surface of the basin. In JJA, the mean-
seasonal rainfall of the basin and the lake is 948 mm and 1030 mm,
respectively which is 67 % of the annual rainfall of the respective areas.

The annual rainfall in the Lake Tana basin ranges between 830 mm
in the northern part of the basin and 2368 mm in the southern part with the
maximum rainfall as large as 2.8 times the minimum rainfall. The areas near
the lake and the mountain areas in the southern part of the basin receive
approximately 70 % and 60 %, respectively of their annual rainfall in JJA.

The rainy period in the mountain areas south of Lake Tana starts in
May and ends in October. However, the rainfall in the other parts of the
basin starts in June and ends in September. In most parts of the basin, large
amounts of daily rainfall occur in July and August but the mountains in the
south also receive significant daily amounts of rainfall in June and
September. Therefore, the large spatial variation that is evident in the
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annual and the season rainfall of the basin is caused not only by large
differences in daily rainfall amounts but also by differences in the length of
the wet periods in the basin.
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Rainfall variability over mountainous and adjacent lake area

ABSTRACT!

Water resources of the Blue Nile River are of key regional
importance to the north-eastern African countries. However, little is known
about the characteristics of the rainfall in the basin. In this study, the space-
time variability of rainfall is evaluated in the vicinity of Lake Tana which is
the source of the Blue Nile River. The analysis was based on hourly rainfall
data from a network of newly installed rain gauges, and cloud temperature
indices from the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
sensor of the Meteosat Second Generation (MSG-2) satellite. The spatial and
temporal patterns of rainfall were examined using not only statistical
techniques such as exceedance probabilities, spatial correlation structure,
harmonic analysis and fractal analysis but also marginal statistics such as
mean and standard deviation. In addition, a convective index was
established from remote sensing images to infer the spatial and temporal
patterns of rainfall. Heavy rainfall is frequent at stations that are relatively
close to the lake. The correlation distances for the hourly and the daily
rainfall are found at about 8 and 18 km, respectively. The rainfall shows a
strong spatially varying diurnal cycle. The nocturnal rainfall was found
higher over the southern shore of Lake Tana than the mountainous area
further to the south. Maximum convection occurs between the 1600 — 1700
Local Standard Time (LST) over the Gilgel Abbay, Ribb and Gumara
catchments, and between 2200 — 2300 LST over Lake Tana and the Megech
catchment. In addition, the hourly rainfall of the station with highest
elevation is relatively closely clustered as compared to those stations at
lower elevation. The study provides relevant information to understand
rainfall variation with elevation and distance from a lake. This
understanding benefits climate and hydrological studies, water resources
management and energy development in the region.

Key words: Blue Nile, Lake Tana, rainfall variability, diurnal cycle, MSG,
SEVIRI

1 This chapter is based on: Haile, A. T., Rientjes, T., Gieske, A., Gebremichael, M.,
2009. Rainfall variability over mountainous and adjacent lake areas: the case of
Lake Tana basin at the source of the Blue Nile River, Journal of Applied Meteorology
and Climatology, 48(8), 1696 —1717.
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3.1. INTRODUCTION

Rainfall is of major importance to water resources assessment and
management and therefore considerable research has been devoted towards
characterizing its spatial and temporal variability. Information about space-
time variability of rainfall is important for a range of applications in climate
and hydrology. Examples of applications include evaluation of the rainfall
predictions from global climate models (Lee et al.,, 2007), evaluation of
satellite-based rainfall products (Gebremichael et al., 2003; Bowman et al.,
2005), rain gauge network design (Rodriguez-Iturbe and Bras, 1976), rainfall
modeling (Arnaud et al., 2007) and rainfall-runoff modeling (Reggiani and
Rientjes, 2005).

Accurate estimation of the space-time variability of rainfall is one of
the major challenges in hydrometeorology. Rainfall variability is often
influenced by several factors that may interact. For instance, in
mountainous areas, rainfall is influenced by the spatial orientation of terrain
in terms of terrain altitude, slope and aspect. The terrain orientation may
affect wind patterns and cause rain shading which often results in
variations in rainfall distributions (e.g., Buytaert, 2006; Gebremichael et al.,
2007). Also, a large water body commonly affects rainfall distributions since
the water body can influence local meteorological conditions (e.g., Ba and
Nicholson, 1998).

The inter-annual variability of the Ethiopian rainfall and the
prevailing large scale circulation that influence its distributions have been
studied by many authors (for instance, Eklundh and Pilesjo, 1990; Conway
and Hulme, 1993; Camberlin, 1997; Bewket and Conway, 2007). However,
the role of terrain in affecting the diurnal and inter-seasonal variability of
the Ethiopian rainfall is not clearly known. This is, in part, due to the lack of
sub-daily rainfall observations.

In this Chapter, the spatial and temporal pattern of rainfall
variability is analyzed at the source region of the Blue Nile River basin. This
region is mountainous and is located in a tropical humid area adjacent to
Lake Tana, a large inland lake in the Ethiopian highlands. Therefore, this
region can be used to study rainfall variability that is affected by orography
and the presence of a large water body. In the present study, several
statistical techniques have been applied to assess various aspects of spatial
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and temporal patterns. These are marginal statistics, exceedance
probabilities, spatial correlation structure of the observation network, the
rainfall diurnal cycle and fractal analysis. The data consisted of in-situ
rainfall observations from a network of eight tipping-bucket rain gauges,
and cloud-top temperature observations from the Meteosat Second
Generation (MSG-2) geostationary satellite with the SEVIRI sensor.

3.2. DATA SETS

3.2.1 Rainfall

As part of the present study, ten rain gauges (Hobo S-RGA-MO002)
were installed in May 2007 in the valley and mountain area of the Gilgel
Abbay catchment as shown in figure 3.1. The rain gauges have a funnel
diameter of 15.4 cm, a tipping bucket mechanism with a resolution of 0.2
mm and a measurement range of 0-10 cm per hour. One of the rain gauges
was installed at Sekela (Gish Abbay) which is considered to be the
legendary source of Blue Nile River (see Hurst et al, 1959). To the
knowledge of the author, the rainfall in the area has never been monitored
at high temporal and spatial resolution. Table 3.1 shows the characteristics
of the rain gauge stations. The information in table 3.1 is based on a Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of 90 m
resolution.

Out of the ten rain gauges, eight rain gauges provided complete
observations in the wet season. Two of the rain gauges, which were placed
at Wotet Abbay and Gult, did not provide observations for the time periods
June 1 to August 24 and June 23 to August 31, 2007, probably because of
human interference. These stations are excluded from the analysis since the
data covers a time period much smaller than the time period of the study
which extends from June 1 to August 31 of 2007, i.e. June, July August (JJA).
As a sample case, the hourly rainfall observation at Jema station is shown in
figure 3.2. The figure shows three peak events with hourly rainfall higher
than 30 mm and some regularity is observed in the time of occurrence of
rainfall events higher than 5 mm.
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Elevation

3000
2750
2500
2250
2000

Lake Tana

JK-—HAJ“\-_ i

Stations

1 = Bahir Dar

2 = Durbet

3 =Jema

4 = Sekela

5 = Injibara

6 = Addis Kidam

7 = Dangila

8 = Koga

9 = Wotet Abbay
A 10 = Gult

Figure 3.1: Digital Elevation Model of Lake Tana basin with watershed boundaries of
the major rivers and location and names of rain gauges as indicated by numbers.
Transect A-A’ is described in section 3.5.
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3.2.2. Cloud infrared temperature

Surface observations of rainfall can be used to evaluate temporal
variability at discrete point locations. Evaluation of rainfall variability over
space domains requires the use of remote sensing data that provides spatial
coverage. Remote sensing data for this study is thermal infrared
temperature data from the SEVIRI sensor on the Meteosat Second
Generation (MSG-2) satellite and images are received via the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
Multicast Distribution System (EUMETCast). The International Institute for
Geo-Information Science and Earth Observation (ITC) receives the images
under the license from EUMETSAT. Information about the MSG image
processing that is undertaken at ITC can be found in Gieske et al. (2005) and
Maathuis et al. (2006).

Table 3.1: Characteristics of the location of the rain gauge stations: Note: The

Coordinate System projection is Universal Transverse Mercator, Datum Adindan,
Clark Ellipsoid (1880).

Geographic coordinates

Stations  Easting Northing Elevation Slope Aspect
(m) (m) (m) (%) ()
Bahir 321101 1282608 1798 1.11 West
Dar
Durbet 276868 1256270 1984 2.07 East
Jema 288938 1252964 1970 2.48 West
Sekela 304733 1215046 2715 4.60 South-west
Injibara 272548 1216055 2592 5.15 South
Addis 266687 1231060 2370 1.61 South
Kidam
Dangila 264717 1244326 2127 1.94 North-west
Koga 298104 1261710 2011 0.95 North-west
Wotet 286263 1257411 1917 3.23 North-east
Abbay
Gult 272969 1249501 2063 2.92 North-east
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Figure 3.2: Rainfall observations at Jema for the time period June 1 to August 31,
2007. Note the Date is in month/day format.

The thermal infrared (TIR) brightness temperatures in the range of
10-12.5 um have been used in studies of rainfall estimation since the late
1960s. In TIR based rainfall estimation, cloud top brightness temperatures
are commonly used as proxy variables to infer rainfall rates (see Adler et al.,
1993; Todd et al., 1995). The underlying physical assumption for this
method is that relatively cold clouds can be associated with thick and high
clouds that often produce relatively high rainfall rates. Some applications of
TIR temperatures for diurnal cycle assessments are also presented for
instance by Ba and Nicholson (1998); Ohsawa et al. (2001).

In this study, the 10.8 um channel is selected and the brightness
temperature images are analysed at hourly time intervals for the time
period of JJA in 2007. Images in this study are of 3 km spatial resolution. For
the period from August 26 to 31, images were not available by ITC receiver
failure. As such, the 10.8 um TIR data was analysed for the time period June
1 - August 25 for which high resolution data was available.

3.3. METHOD OF ANALYSIS

Statistical methods and indices are applied to analyse the different
aspects of spatial and temporal patterns of the observed rainfall. Statistical
methods have been applied to the network data to assess the effect of
elevation and the effect of distance to the lake on rainfall variability. Also,
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procedures have been applied to the remote sensing data to analyze cloud
behaviour over selected time and space domains.

3.3.1. Spatial variability

First, the spatial variability of the statistics of the data that is
recorded at the rain gauges is considered. The statistics include: mean,
coefficient of variation (standard deviation divided by mean), probability of
rainfall occurrence and exceedance. The exceedance probability values were
estimated using the Weibull plotting position method that provides
unbiased estimates (Stedinger et al., 1993). Examples of the Weibull method
in rainfall studies can be found in Rappold (2005).

3.3.2. Spatial correlation structure

For analysis of spatial rainfall distributions, correlation functions are
defined to measure the spatial arrangement at the order level of the second
moments. Correlation functions can be used for both descriptive and for
predictive purposes. In a descriptive mode, the correlation functions are
used to infer the dominant meteorological process (see Gebremichael and
Krajewski, 2004) while in a predictive mode, the correlation functions are
used in spatial estimation. The correlation functions are usually expressed
as a function of Euclidean distance that also is in this study. In the
correlation analysis, the Pearson product-moment correlation, p, (d), is

first estimated for each pair of gauges at a specific separation distance that
was followed by fitting a correlation model to the correlation values.
Studies such as by Ciach and Krajewski (2006) used the following equation
that is also adapted here:

So
d

P, (d) =, exp —[d—J
° [3.1]

where: C,, d, and S, are fitting parameters to the estimated

correlation values. Here, d is the separation distance between two gauge
locations, C, is the correlation value for the near-zero distances, do is the

correlation distance (the spatial decorrelation scale) which is commonly
referred to as the ‘scale parameter” while S, is the ‘shape parameter’.
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The partial correlation coefficient is applied to analyze the relation
between seasonal rainfall and elevation, after removing the effect of the
Euclidean separation distance. The formula for the partial correlation, Iy,

between two random variables Y and X with effects of a controlling, third,
variable W reads:

My = xw Fyw [3.2]

e Vl_riw Vl—rvzvv

where: I, , Iy,, and r, are correlation coefficients between

rainfall (here Y variable) and elevation (here X variable), elevation and the
controlling variable W (here distance with respect to a reference point), and
rainfall and the controlling variable, respectively.

3.3.3. Diurnal variability

To understand the diurnal cycle of rainfall over the Lake Tana basin,
both rain gauge and remote sensing data are analysed. The accumulated
rainfall and the frequency of rainfall occurrences at each hour of the day is
also analysed and the effects of extreme events on the diurnal cycle
characteristics is examined. The 10.8um images are applied to characterize
the temporal and spatial patterns of convective activity. The analysis was
following a commonly applied procedure to establish the diurnal cycle from
TIR images similar to that applied in Ohsawa et al. (2001) and Barros et al.
(2004) among others. The seasonal cloudiness for each hour of the day is
inferred from the frequency index that also is referred to as the convective
index (see Ba and Nicholson, 1998). In this work, the convective index (Cl )
over a given pixel for a time period T at a specific hour h is defined as

Cl, =100{§:ti }N * [3.3]
i=1

where: t is equal to one when the observed brightness temperature
is in the range of specified temperature values, otherwise it is equal to zero;
N is the number of observations at local time h over the time period T . In
this study, T corresponds to the time period that spans from June 1 to
August 25, 2007. The established indices correspond to brightness
temperature values lower than 210 K, between 210 and 225 K, and between
225 and 240 K to account for high, mid and low level clouds, respectively.

31



Rainfall variability over mountainous and adjacent lake area

A harmonic analysis is applied to the frequency of rainfall
occurrences and the convective index data. The results provide information
on the spatial consistency and strength of the diurnal and the semidiurnal
cycles. The following form of Fourier decomposition is applied:

F@)=m+S; +S, +..+5, [3.4]

where: F(t)is the fitted series, m is the daily mean value of the
diurnal cycle and S, is the n™ harmonic of the series. In rainfall studies, the

main interest is on the first and second harmonics that are often applied to
determine the diurnal and the semidiurnal cycles, respectively, see also Dai
(2001). The harmonics of the series are expressed by:

S; =a; cos(awt —¢) [3.5]
S, =a, cos(2mt —¢,) [3.6]

where: a and ¢ are the amplitude and phase angle of the
harmonics, wequals 27/24 since the number of hours in a day is 24. The
parameters a and ¢ are determined using the method of least squares. The
fraction of variance (o) of each harmonic can be determined from a? /2
and as such the variance explained by each harmonic is o? /o2, where o is

the standard deviation of the observations.
3.3.4. Fractals of rainfall intermittence

The fractal dimension of the rainfall intermittency (rain — no-rain) of
the time series is estimated to assess rainfall scaling behaviour. By the box-
counting method, the fractal dimension of the rain — no-rain observations is
estimated at hourly time intervals. For each station, 2048 hourly rainfall
records, i.e. 85.3 days which include both the rain and no-rain cases for the
time period from June 1 to August 25 are analysed.

In the box-counting method, the time domain is divided into non-
overlapping boxes of size 1. For each box size, which is consecutively
decreased by a factor 2, the number of boxes of size 1 that contain rain,
N(4), are counted. The fractal dimension, D, is applied to characterise the
behaviour of the process under consideration. In the present study, if the
rainfall intermittency is scale-invariant, then for any change in the box size,
N(4) will linearly be changed by a factor A™°:
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N(A)oc AP [3.7]

The box size N(4)is plotted against 4 on a log-log scale to evaluate

the scaling behaviour of the rainfall intermittency where the process is
termed scale-invariant if the plot shows a straight line. Further information
on the box-counting method is available in the work of De Lima and
Grasman (1999).

3.4. RESULTS

3.4.1. Spatial variability

Marginal statistics of the hourly rainfall observations are shown in
table 3.2. The statistics of the rainfall changed when no-rain hours are
excluded from the analysis. For instance, without excluding the no-rain
hours, the median and interquartile range (IQR), which was calculated as
the difference between the 75 % and 25 % quartiles, of the hourly rainfall are
zero. However, after excluding the no-rain hours, the median and IQR are
between 0.6 — 0.8 mm and 1.6 — 2.6 mm, respectively. Considering rain
hours only, the mountain stations have relatively small IQR suggesting
relatively small variability. As shown in table 3.2, the relatively high
Kurtosis that was observed at Koga and Addis Kidam suggests that most of
the variance at these stations is due to relatively high variability in the
observations.

Most of the stations on the mountain areas of Gilgel Abbay have
higher probability of rainfall occurrences than those on low elevation areas,
see figure 3.3b. The lowest probability of rainfall occurrences was found on
the southern part of the lake shore, i.e. Bahir Dar. The seasonal rainfall that
was observed in JJA 2007 is in the range of 810 mm (at Durbet) and 1185
mm (at Jema), see figure 3.3c. The conditional mean rainfall was estimated
as the ratio of the sum of the hourly rainfall values over the corresponding
number of rainy hours. Figure 3.3d shows that the highest conditional mean
rainfall was observed at Jema while the lowest conditional mean rainfall
was observed at Sekela that is located on the mountain.
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Table 3.2: Statistics of the hourly rainfall observations.

B.Da Dur. Jema Sek Inji. AKi Dan. Kog.

(a)Unconditional statistics

Data (hours) 2208 2208 2208 2208 2208 2208 2208 2208
Mean (mm) 0.41 037 054 0.48 0.53 0.38 0.47

041
Median (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
St. Dev.(mm) 2.06 1.52 2.35 1.69 2.11 1.80 1.95 215

IQR (mm) 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0

Skewness (-) 8.7 7.2 8.5 71 89 133 77 123

Kurtosis (-) 950 652 986 704 1023 2788 742 2316
(b) Statistics conditioned on rainfall occurrence

Data (hours) 369 433 464 593 625 443 490 390

Mean (mm) 247 187 256 177 18 189 213 232

Median (mm) 0.8 0.6 0.8 0.6 0.8 0.8 0.8 0.6
St. Dev.(mm) 4.50 299 461 2.89 3.64 3.64 3.69 4.67

IQR (mm) 22 21 26 18 16 18 20 20
Skewness (-) 36 32 40 39 50 69 37 56
Kurtosis (-) 150 123 220 209 311 692 164 474

As shown in figure 3.3e, the values of the coefficient of variation
(CV) are greater than one indicating a standard deviation that exceeds the
mean rainfall. The largest CV was observed at Koga while the smallest CV
was observed over the mountain at Sekela. The maximum hourly rainfall
and the Julian day of the maximum hourly rainfall are shown in figure 3.3f-
g. The highest maximum rainfall which is 55 mm hr! was observed at Koga
station on the same Julian day on which the maximum hourly rainfall at
Durbet was observed. However, the maximum rainfall at the remaining
stations was observed on different Julian days, which suggests a convective
nature of the rainfall formation that also applies to most other days.

The exceedance probabilities of the hourly rainfall are shown in
figure 3.4a and 3.4b. To clearly show the difference between the stations in
terms of the probabilities the result is presented in two plots that are for
hourly rainfall in the ranges 0.2 — 2.5 mm and 5 — 20 mm. These ranges are
selected based on visual judgment of the rainfall distribution. Figures 3.4a-b
show that the highest exceedance probability of low hourly rainfall is
observed at Sekela while the highest exceedance probability of high hourly
rainfall is observed at Jema. As shown in figure 3.4c, Durbet has the lowest
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mean rainfall conditioned on any specific threshold while Jema has the
highest conditional mean rainfall.

Although the exceedance probabilities of the hourly rainfall show
spatial variation, there is no unique relation between the variation of
exceedance probabilities and elevation or distance to the lake. Therefore, the
data is first arbitrarily grouped into five classes of hourly rainfall and then
the number of rain hours within a specified range is counted, see table 3.3.
For hourly rainfall lower than 10 mm, a direct relation is found between the
number of rainfall occurrences and terrain elevation. However, for hourly
rainfall greater than 10 mm, an inverse relation is found between the
number of rainfall occurrences and elevation. Table 3.3 also shows the
partial correlation between the number of rainfall hours and elevation after
removing the effect of distance to the center of Lake Tana, which is a
potential source of moisture for rain formation in the area. Equation [3.2]
was applied for this purpose. In general, the correlation between the
number of rainfall occurrences and elevation decreased when the effect of
distance to Lake Tana was removed.

A correlation coefficient of 0.340 is found between the accumulated
JJA rainfall and elevation. The partial correlation between the two variables
became rather small (-0.001) when distance from the centre of Lake Tana
was considered as a controlling factor. To evaluate the effect of the choice of
reference points from which distance is measured, the partial correlation is
estimated by changing the reference points since finding best reference
location is far from trivial. Using nine alternative reference locations that is
the location of the rain gauges, the estimated partial correlation ranges
between 0.134 and 0.403 with a mean of 0.268 and a CV of 0.500. Therefore,
the seasonal rainfall distribution of the 2007 rainy season in the study area
may not simply be explained by elevation and inter-station distance only.
The effect of rainfall variation on runoff is evaluated in Chapter 7.
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Behir Dor
+

(a) Stations names

(d) Conditional mean rainfall (mm/hr) (e) CV (-) (f) Maximum rainfall (mm/hr)

(9) Julian date of maximum rainfall

Figure 3.3: Statistics of hourly rainfall in June-August, 2007. In the diagrams, a line
is added that shows the main river that separates the east and west sides of Gilgel
Abbay watershed. Note: for the mean rainfall, the conditioning was done on non-
zero rainfall values.
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Figure 3.4: Exceedance probability of the hourly rainfall (a) and (b), and mean rainfall
conditioned on specific rainfall depth (c).

3.4.2. Spatial correlation structure

A model is established between the inter-station distance and the
corresponding correlation values for the hourly rainfall. At inter-station
distance smaller than 12 km, the data set was too small to accurately
establish the parameters. This is similar to the results shown in Young et al.
(2000). Figure 3.5b and 3.5d show the changes in the value of the correlation
distance (d,) with changes in the value of the correlation at zero inter-

station distance ( ¢y ). The results in these figures are obtained by optimizing

the two parameters (d, and S;) of equation [3.1] while constraining C,. For
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instance, the correlation distance of the hourly rainfall varies between 8 — 12
km for c, values between 0.8 and 1. The result suggested that accurate
estimation of the correlation distance of the hourly rainfall requires rain
gauges with inter-station distance smaller than 10 km. However, to obtain
the approximate values of the correlation parameters for the hourly rainfall,
at first the exponential model is fitted such that the correlation at zero inter-
station distance (¢, ) is equal to 1.0. Second, the same procedure is repeated

without forcing the model.

Table 3.3: Correlation between number of rain hours and elevation. Note: Distance to
the stations is measured from the centre of Lake Tana.

Correlation
Average Elevation (Effect

number of of distance

Hourly rainfall rain hours Elevation removed)
0.2 mm to 1.0 mm 265 0.90 0.52
1.0 mm to 5.0 mm 160 0.86 0.36
5.0 mm to 10.0 mm 32 0.45 -0.27
10.0 mm to 15.0 mm 9 -0.90 -0.90
> 15.0 mm 9 -0.34 0.22

In the first case, the shape parameter is 0.51 with a correlation
distance (d,) of 8.1 km, see figure 3.5a. In the second case, it is found that

¢o = 0.9, the shape parameter is 0.54 and the correlation distance is 9.8 km

for which the correlation became 0.37. Therefore, less than 15% of the total
variance at a specified station is explained by the variance of a station
located beyond some 8 — 10 km. The value of the shape parameter revealed
a sharp decline in the correlation structure that is a characteristic of a
rainfall structure which largely varies over a relatively small domain. Also,
the value is smaller than the commonly reported values in the literature, see
Ciach and Krajewski (2006) and Gebremichael et al. (2007).

As shown in figure 3.5¢, there is a decreasing trend in the daily
correlation structure of the rainfall. It was not possible to fit an exponential
model of the form in equation [3.1] due to large scattering. Instead, the
correlation coefficient is averaged at equal distance intervals following the
same procedure that was applied by Sen and Habib (2001). A decreasing
trend of an exponential form was obtained when the correlation coefficient
was averaged at 12 km interval. After fitting the modified-exponential
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model for the averaged daily correlation structure with ¢, =1, the parameter

values are a shape parameter (S, ) of 0.46 and a correlation distance (d,) of
18.4 km.

Correlation (-)

Correlation (-)

Figure 3.6 shows the cross-correlation of the hourly rainfall for five
pairs of stations. The pattern in the figure suggests that in some cases, the
+1-hr lag cross-correlation is higher than that for the 0-hr lag. Examples are
the cross-correlation of the hourly rainfall at the station pairs Durbet-Koga,
Durbet-Bahir Dar and Koga-Dangila. The fact that the 1-hr lag cross-
correlation is higher than the 0-hr lag cross-correlation can be caused by the
movement of convective clouds. It also indicates that the movement of
clouds between these stations takes place within 1-hr.

(a) Hourly rainfall
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Figure 3.5: Spatial correlation structure of the rainfall observations (a) and (c), and

values of correlation distance (d ) for several assumed values of correlation at zero

distance (Cy) (b) and (d). Note: For the daily rainfall, the correlation coefficient
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and its averaged values are shown in small hollow and large solid circles,
respectively.
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Figure 3.6: Cross-correlation of the hourly rainfall.

The 1-hr lag cross-correlation for Koga-Dangila is higher than the 0-
hr lag cross-correlation suggesting movement of clouds from Koga to
Dangila stations. The -1-hr lag cross-correlation for Durbet-Bahir Dar is
higher than the 0O-hr lag cross-correlation suggesting movement of clouds
from Bahir Dar to Durbet stations.

3.4.3. Diurnal cycle

RAINFALL OCCURRENCES

In this section, results of the analysis on the diurnal variability of the
observed rainfall are present. Figure 3.7a shows hourly rainfall observations
at Jema station for the time period of June 1 — August 31, 2007. The figure
shows that in the specified time period, three events with an hourly rainfall
of higher than 30 mm were observed between 1700 and 1800 LST. For the
same station, a comparison is made between the diurnal distributions of the
maximum hourly rainfall and the total rainfall that was accumulated for
each hour over the season. The objective is to evaluate to what extent the
pattern of the diurnal cycle is affected by the contribution from the
maximum hourly rainfall.

Figure 3.7b shows that the afternoon rainfall at Jema station is
higher than the rainfall in the remaining periods of a day. In the afternoon,
the maximum hourly rainfall at Jema was only about 25 % of the seasonal
rainfall in each hour. However, in the morning (0900 — 1200 LST) the
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maximum hourly rainfall was about 50 - 70 % of the seasonal rainfall in
each hour. Compared to the late morning rainfall, the afternoon rainfall
distribution at Jema was less affected by the contribution from the
maximum rainfall. Such observations are of relevance for real-time flood
forecasting studies but also in soil erosion studies where information on
timing and magnitude of the maximum rainfall is required at high temporal
resolution.

Figure 3.8 shows the diurnal distribution of the hourly rainfall and
the frequency of rainfall occurrence in JJA at four stations namely Sekela (on
the mountain), Bahir Dar (on the shore of Lake Tana), and Jema and Durbet
(on opposite sides of the main valley). The threshold for rainfall occurrence
is assumed to be 0.2 mm which is the lowest measurement range of the rain
gauges. The frequency of rainfall occurrence is commonly used to assess
rainfall diurnal variation and it shows the percentage of rain hours at each
time during the day. After analysing the data from eight rain gauges, the
maximum rainfall frequency was observed between 1600 and 1700 LST over
land and on 2300 LST over the lake shore. The maximum frequency of
rainfall occurrence varied between 23 and 61 %, with a mean of 40 % and a
standard deviation of 10.8 %.

Over the southern part of the lake shore, the total rainfall depth and
rainfall frequency in 0900 — 1700 LST were found low with a total rainfall of
less than 10 mm and rainfall frequency of less than 10 % on each LST.
However, over the mountains and inland areas, the smallest depths and
frequencies were observed during a shorter period of time than over the
lake shore at Bahir Dar (i.e. 0900 — 1200 LST).
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Figure 3.7: Hourly rainfall variation (a) and comparison between the maximum hourly
and 3-month accumulated hourly rainfall (b) in JJA at Jema station.

Table 3.4 also shows that the percentage of nocturnal (in this case
2100 — 0900 LST) and afternoon-evening rainfall varies spatially. The
selection of this time period for the comparison is because daily rainfall is
recorded on 0900 LST. Also the selected time period of a day helps to make
a comparison between nocturnal and afternoon-evening rainfall
distribution. For instance, the nocturnal rainfall on the lake shore (Bahir
Dar) was 73 % of the seasonal rainfall. However, the nocturnal rainfall on
the mountain (Injibara) was about 24 % only.
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Figure 3.8: Rainfall diurnal cycle at selected four stations.

Figure 3.9 shows that the nocturnal rainfall distribution is inversely
related to distance to the centre of Lake Tana. About 70 % of the variance in
the spatial distribution of the nocturnal rainfall in the season is explained by
distance to the centre of the lake. The relation of the seasonal rainfall with
elevation and distance is discussed in section 3.5.1.

Table 3.4: Rainfall depth (% of the seasonal rainfall) in JJA, 2007.

Stations B.Dar Dur. Jem Sek Inj AKi Dan Kog

09-21LST 274 444 608 654 759 659 614 613
21-09LST 726 556 392 346 241 341 386 387
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Figure 3.9: Nocturnal (2100-0900 LST) rainfall distribution as a percentage of the
seasonal rainfall.

COMPARING RAINFALL OCCURRENCES AND CONVECTIVE INDEX

Although the rain gauge network covers Gilgel Abbay, rain gauges
are not available that provide sub-daily observations over Lake Tana and
over the remaining catchments. An alternative data source for ungauged
areas is obtained from remote sensing images that provide spatial coverage.
First, it is evaluated whether the convective index (CI) derived from the TIR
images can be used to infer the area-average diurnal variations over Lake
Tana and its catchments.

The relation between rainfall magnitude and CI values over a lake
and its surrounding land would be similar when the precipitation efficiency
over both surfaces is the same. Ba and Nicholson (1998) argue that this
assumption can be reasonably applied for humid areas in tropical
conditions. Since Lake Tana has a similar setting and since the interest is
more interested on rainfall occurrence than magnitude, it can be assumed
that the analysis is not much affected by any difference in effective
precipitation.

The area-average convective index (CI) is compared against the
frequency of rainfall occurrence over Gilgel Abbay. To obtain area-averaged
values, the frequency of rainfall occurrence was interpolated using the
inverse distance weighting (IDW) method with power 2. It is assumed that
the results of the comparison will not be much affected by the bias due to
the interpolation method. The interpolation was done for a grid element
size of 3x3 km? which is equivalent to the resolution of the MSG-2 images
for Ethiopia.
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Scatter plots of the statistics of the CI and the frequency of rainfall
occurrence over Gilgel Abbay are shown in figure 3.10. The CI values were
calculated for temperature values less than 240 K. The regression equations
and the coefficient of determination, R? are also shown in figure 3.10.
Results indicate that about 60 % and 80 % of the variance of the standard
deviation and the mean of the frequency of rainfall over Gilgel Abbay is
explained by the convective index. This suggests that the CI values can be
applied to study the diurnal variation of convective activity over the lake
and over its ungauged catchments.

CONVECTIVE INDEX

The spatial variation of the normalized convective index for
specified hours of a day is shown in figure 3.11. Somewhat different
conditions prevail in the distribution of CI values over Lake Tana and its
catchments. First, in the morning, maximum CI values were observed in the
form of cells that are somewhat scattered over the basin. Then these isolated
cells of maximum CI merged on mid afternoon to form large areas of
maximum CI. On 1600 LST the maximum CI was observed over the ridges
of Gilgel Abbay which are located on the southern part of Lake Tana basin.
Between 1600 and 2000 LST, the location of maximum CI moved from the
mountains of Gilgel Abbay towards Lake Tana. On 2200 LST, a somewhat
opposite trend to that of the 1600 LST trend was observed with the
minimum CI observed over the ridges of Gilgel Abbay while the maximum
CI was mostly found over Lake Tana and over Megech that is located on
north of Lake Tana.

Figure 3.12 shows the convective index variation with terrain
elevation along a transect that passes through Bahir Dar and Addis Kidam.
The orientation of the transect is shown in figure 3.1. The CI values were
estimated for temperature values less than 240 K. There is a direct relation
between CI and terrain elevation on 1500 and 1800 LST. However, there is
an inverse relation in the early night hours. For the remaining LST, a trend
is also observed in the variation of CI with respect to elevation although this
trend is much less pronounced.
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Figure 3.10: Scatter plot of catchment-average mean (a) and standard deviation (b) of
the CI and the frequency of rainfall occurrence averaged over each hour (expressed
in LST) in JJA, 2007.

A comparison is also made between the area-average CI over Lake
Tana and over four of its major tributaries, i.e. the Gilgel Abbay, the
Gumara, the Ribb and the Megech catchments. The Gilgel Abbay catchment
is located south of Lake Tana, the Gumara and Ribb catchments are located
east of the lake and finally the Megech catchment is in the north. The mean
Cl in the time period June — August was 17.5, 15.9, 14.1, 13.5 and 17.4 % over
the Gilgel Abbay, Gumara, Ribb, Megech catchments and Lake Tana. As
shown in figures 3.13a and 3.13b, somewhat different conditions prevail
over Lake Tana and its catchments.
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Figure 3.11: Diurnal variation of the convective index (CI).

A CI maximum first occurs over the Gilgel Abbay catchment
between 1600 and 1700 LST (see figure 3.13a). This is in agreement with
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observations from the rain gauges that were placed in the same catchment.
The CI maxima over the Gumara and Ribb catchments were observed on
about 1700 LST. However, in the afternoon, a relatively active convection
was observed for a larger time interval over the Gumara than over the Ribb
catchment. As such, several cloudy hours prevailed over Gumara than Ribb.
The pattern of the diurnal cycle over the Megech catchment appears to be
similar to that over Lake Tana, with a CI maximum observed between 2200
and 2300 LST.
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Figure 3.12: Variations of elevation and CI along transect A—A’ which is shown in
figure 3.1. Distance is measured from the Lake near Bahir Dar.

Figure 3.13b shows the coefficient of variation (CV) of the CI values

at each specific LST. The maximum CV over the four catchments, which is
in the range of 1.0-4.0, was observed in the late morning. However, over
Lake Tana, a relatively high CV, which is about 1.0, was observed in the
early afternoon. Figure 3.13c shows the CI distribution covering the shore of
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Lake Tana. The highest convective activity can be observed along the

southern parts of the lake shore in the afternoon.
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Figure 3.13: Convective index over Lake Tana, its basin area and the shores of the lake.
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The temporal and spatial distribution of the maximum CI values is
also evaluated. The selected CI values correspond to brightness temperature
values less than 210 K, 210-225 K and 225-240 K that are assumed to
represent high, mid and low level clouds, respectively. The CI values were
divided by the maximum values over the study area to obtain the
normalized values. The maximum CI is relatively small for high, mid and
low level clouds over the eastern ridges of Gilgel Abbay catchment, see
figure 3.14. The same figure shows a trend in the occurrence time of the
maximum CI. Commonly, high and thick clouds first seem to develop over
the southern part of the Gilgel Abbay catchment, next over its northern part,
and finally over Lake Tana.

Normalized maximum CI

0.90
0.70
0.50
0.30
0.10

v

(a) 225-240 K (b) 210225 K
Time to maximum CI

(d) 225-240K (e) 210225 K (N210K

Figure 3.14: The maximum (peak) CI and Local time to this peak CI for various
temperature thresholds. The maximum CI values are divided by the maximum
values to obtain the normalized values.
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HARMONIC ANALYSIS

A trigonometric series of the form in equations [3.4 — 3.6] was fitted
to the frequency of rainfall occurrences and convective index (CI) data. This
procedure was used to determine the amount of the diurnal and
semidiurnal rainfall variations and the degree to which the first two
harmonics represent the observed variations. The CI values are estimated
for temperature values less than 240 K.

The fitted diurnal and semidiurnal cycles of the area-averaged CI
over Lake Tana and its major tributaries, and the frequency of rainfall
occurrences at five stations in the basin are shown in figure 3.15. The
variance of the observed CI cycle that is explained by both the first and
second harmonics is in the range of 77-99 % with the first harmonic
explaining most of the variance. The amplitude of the semidiurnal cycle is
found to be relatively small over Lake Tana and Megech catchment, north
of the lake.

The variance in the observed variation of the rainfall frequency that
is explained by both the first and the second harmonics is in the range of
63-76 % (see also table 3.5). The variance that is explained by the first
harmonic is in the range of 28 % (at Dangila) and 76 % (at Bahir Dar).
However, the variance explained by the second harmonic and the
amplitude of the semidiurnal cycle at Bahir Dar which is on the lake shore
was found very small. For this station, the second harmonic explains 0.4 %
of the variance in the observed diurnal cycle.
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Figure 3.15: Results after applying a harmonic analysis to the rainfall frequency and
the CI. Results are only for 5 rain gauges, the complete results are given in table
3.6.
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Table 3.5: Results from the harmonic analysis.

Variance explained (%) Sum of the two harmonics

LST to the

First Second Amplitude  amplitude
Stations harmonic harmonic (%) (h)

Rainfall occurrence
Bahir Dar 76 0.4 28 00
Durbet 32 36 31 18
Jema 38 26 30 18
Sekela 43 31 41 17
Injibara 48 26 49 17
A. Kidam 48 20 33 18
Dangila 28 39 36 17
Koga 36 27 24 17
Convective index

Gilgel Abb 63 22 33 18
Gumara 70 11 29 18
Ribb 75 2 26 20
Megech 99 0 27 22
LakeTana 92 1 33 21

Table 3.6 shows the parameters of the harmonic analysis that are
fitted to the observations. The phase angle is interpreted as the time to the
amplitudes, which can be obtained from the phase angle (¢ ) divided by the
frequency (@) . The mean of the diurnal cycle varies between 16 and 17 %

with large mean values found at the mountain stations and low values
found at stations that are relatively near Lake Tana. However, the
maximum amplitude of the diurnal cycle is found at the mountain station
(Injibara) and the lake shore (Bahir Dar) while low values are found at
intermediate stations between the mountain and the Lake shore. The
diurnal cycle peaks between 18:00 hour at Injibara and 00:00 hour at Bahir
Dar. The amplitude of the semi diurnal cycle at the lake shore, i.e. Bahir
Dar, is 0.85 % only while that at the mountain station, i.e., at Injibara is
about 9 %. The time to the amplitudes of the semi diurnal cycles at each
station is also presented in table 3.6.
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Table 3.6: Fitted parameters of the harmonic analysis. Note: phase angle is interpreted
and presented as time to the amplitude of the diurnal and semidiurnal cycles.

Diurnal cycle Semi diurnal cycle
Mean of Time to the Time to the
the diurnal  Amplitud  amplitude  Amplitude  amplitude
Stations cycle (%) e (%) (hr) (%) (hr)
Bahir
Dar 16.72 11.25 0.60 0.85 3.6 and 15.6
Durbet 19.56 6.82 20.80 7.20 5.0 and 17.0
Jema 21.01 7.00 21.60 5.79 5.0 and 17.0
Sekela 26.86 8.51 19.60 7.17 4.6 and 22.6
Injibara 28.30 12.40 18.10 9.08 4.8 and 16.8
Addis
Kidam 20.06 8.85 19.50 5.72 5.1 and 17.1
Dangila 22.19 7.75 20.20 9.04 44 and 164
Koga 17.35 5.61 21.80 4.89 45 and 16.5

3.4.4. Fractals of rainfall intermittence

The fractal dimension of the rainfall intermittency is estimated to
analyse the scaling behaviour of the rainfall observations. Figure 3.16 shows
a log-log plot of the number of boxes that contain rain, N(1), against the
size, A, of the boxes. The same figure shows that the rain-no rain
distribution is scale-invariant. Two regimes that fit equation [3.7] are
identified. The first scaling regime extends from 2 hour to 8 hour while the
second regime extends from 2.7 days onwards.

For the first scaling regime, the values of the slopes are determined
with a maximum standard error of about 0.02. The slopes also define the
fractal dimension that ranges from 0.42 to 0.50 with a standard deviation of
0.03. High values of the fractal indicate temporal clustering of rainfall. The
correlation between the fractal dimension and elevation is 0.69 when all
stations are considered and it is 0.74 for the stations on the west. Thus, the
rainfall at higher elevation areas are mostly characterised by closely
clustered rainfall events as explained by larger fractal dimensions. For the
second scaling regime, the fractal dimension for all stations is 1 which
indicates that for the time period between June 1 and August 25, rainfall
was observed at least once in 2.7 days.
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3.5. DISCUSSION

The results of this study revealed the variation of rainfall and its
relation to elevation and distance to a lake at the source of the Blue Nile
River. A high difference in seasonal rainfall was observed between Durbet
and Jema stations that are 12.5 km apart. The Jema station has a higher
seasonal (JJA) rainfall, more frequent rainfall, a higher hourly rainfall and a
larger coefficient of variation than the Durbet station. The rainfall depths
recorded in JJA 2007 show a difference of about 375 mm between the
rainfall of the two stations. These stations are at about the same distance
from the main valley axis and the center of Lake Tana while Durbet is
situated about 15 m higher than Jema. The terrain slope of Durbet and Jema
is 2.07 % and 2.48 % with an east and west facing terrain slope, respectively.
Therefore, the difference in rainfall may be partly caused by the differences
in terrain aspect. However, multi-annual observations are required before
definite conclusions can be drawn.

The shape parameter of the correlation structure of the hourly
rainfall as determined here is much less than the commonly reported
values, e.g.,, Ciach and Krajewski (2006) and Young et al. (2000). This
suggests that the rainfall distribution varies substantially over a relatively
small domain. The correlation distances (d,) of the hourly rainfall and daily

rainfall are determined here at about 9 km and 18 km, respectively.
However, d0 was found to be sensitive to the correlation at zero-distance.

Thus, care must be exercised in interpreting the correlation structure for
sparse rain gauges. In some cases, the lag-1 hour cross-correlation was
found higher than the lag-0 hour cross-correlation suggesting a possible
movement of clouds with a speed less than the inter-station distance per
hour. These results reveal information for the estimation of area-averaged
rainfall and possible improvements to the existing rain gauge network.

A north-south stretching trend in the spatial variation of the rainfall
diurnal cycle was observed. The maximum frequency of rainfall events
occurs between 1600 and 1700 LST over the mountain areas while the
maximum frequency occurs around 2300 LST over the southern part of the
lake shore at Bahir Dar. Using in situ rainfall data and thermal infrared
images, Ba and Nicholson (1998) showed that the maximum rainfall over
Lake Victoria is observed between 0500 — 0800 LST. As such, the rainfall
over Lake Tana peaks earlier than the rainfall over Lake Victoria.
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Figure 3.16: Log-log plot of Number of boxes with rain (N(A1)) against the size of

boxes, i.e. the scale factor (A ). Note: The slope of the second scaling regime is 1.0
for all the stations.
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It is also shown that convective index (CI) values that are computed
from remote sensing data can be used as proxy variables to estimate
convective activity over the lake and its ungauged catchments. In general, it
was observed that in the afternoon, the CI value increases from the area
near Lake Tana to the mountain areas of Gilgel Abbay catchment. The
reverse was observed in the evening and early morning hours. The CI
revealed that the afternoon conditions in the north-eastern and south-
western parts of the lake shore are less favourable for convective
development as compared to the shores on the other sides of the lake.

The harmonic analysis of the lake CI results show a similar result
with that of the rainfall at Bahir Dar that suggests the second harmonics
does not have much contribution to the diurnal variation near and over the
lake. However, there is some difference in the time to the amplitude of the
rainfall over the lake and its shore. The harmonic analysis of the Gilgel
Abbay CI results show a similar result with that of the rainfall at most of the
stations in the catchment that suggest the LST to the amplitude is 1700 or
1800 LST. The amplitude of the Gilgel Abbay CI is within the range of the
observed amplitude at the stations.

The fractal analysis revealed that the rainfall intermittence is scale-
invariant and that, based on a Pearson’s correlation of 0.69, a direct relation
could be established between fractal dimension and terrain elevation.
Except for the highest elevation area, the difference in the fractal dimension
values is within the standard error of the estimates. The relation suggests
that the rainfall at higher elevation area is mostly characterised by closely
clustered rainfall events. However, the smallest fractal dimension does not
correspond to the lowest elevation that is Bahir Dar which is also close to
the lake. Instead the smallest value of the fractal dimension is found at
Durbet which recorded the lowest seasonal rainfall. The result is not in
agreement with Gebremichael et al. (2007) who reported closely clustered
rainfall events at low elevations for the rainfall in a mountainous area of
Sonora, Mexico.

This study provides relevant information for hydrologic and
climatic studies in the basin. Information on rainfall variability at high
temporal resolution is required for the simulation of runoff production as
well as real-time runoff forecasting for the flood prone area. Information on
rainfall intensities and its temporal distribution is highly relevant to study
gully erosion that largely has affected the basin. Information on the diurnal
and spatial variability of rainfall is commonly required by climatic studies

57



Rainfall variability over mountainous and adjacent lake area

and this study provides such information for a mountainous area that is
adjacent to a lake. In the future, it is recommended to install hydro-
meteorological sensors, for sub-daily observations, on the ungauged
catchments of the Lake Tana basin and on the islands of the lake. This will
provide data that is necessary to study the rainfall characteristics over a
longer time period.

3.6. CONCLUSION

Several statistical techniques are applied to determine the pattern in
rainfall variation with respect to terrain features and distance to lake. The
results suggested that variation of rainfall at the source of Blue Nile River is
affected by terrain elevation and distance to the centre of the lake. The
lowest conditional mean rainfall of the hourly observations was observed
over the mountains of Sekela where also the hourly rainfall with the
smallest coefficient of variation was observed. There appears to be less
rainfall variation over high elevation areas than low elevation areas of the
Gilgel Abbay catchment close to Lake Tana. The lowest probability of
rainfall occurrences was found on the southern part of the lake shore, i.e.
Bahir Dar. Heavy rainfall events of higher than 10 mm hr! were frequent at
stations relatively close to Lake Tana. Light to moderate hourly rainfall of
less than 10 mm was frequent over mountain areas. In addition, frequent
rainfall and convective activity were observed in the afternoon over the
southern mountains and in the night over the southern part of the lake
shore. The amount of nocturnal rainfall over the lake shore was about 75 %
of the total and is much higher than the nocturnal rainfall over the
mountain areas. The results of the fractal analysis revealed that the rainfall
at the station with the highest elevation is mostly characterised by closely
clustered rainfall events.

The CI analysis revealed that, commonly, the time at which high
and thick clouds were observed showed a spatial trend stretching from
mountain areas towards Lake Tana. High and thick clouds first occurred
over mountain areas of Gilgel Abbay (in the afternoon), next over valleys
and lowlands of Gilgel Abbay (in the late afternoon), and finally over Lake
Tana and Megech catchment (in the night). The amplitude of the
semidiurnal cycle of convective activity was found to be rather small over
Lake Tana and the Megech catchment, north of the lake. Also, the
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amplitude of the semidiurnal cycle of the rainfall frequency at Bahir Dar
which is on the lake shore was found very small.
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ABSTRACT!

An understanding of rain event properties over space and time is of
great importance for hydrology as well as for climate studies. Rainfall data
for the present study has been obtained from a field campaign in two wet
seasons of June — August (JJA) of 2007 and 2008 in the Gilgel Abbay
watershed that is situated at the source basin of the Upper Blue Nile River
in Ethiopia. The rainfall data was recorded at eight stations. In the present
study, the spatial and temporal patterns of the rain event properties are
analysed. The event properties are rain event depth, event duration, mean
event intensity, peak intensity and the time span between two consecutive
rain events which is referred to as inter-event time (IET). Dimensionless
event hyetographs are established by relating fractions of event intensities
to the corresponding fractions of event durations. The spatial variation of
the characteristics of hyetographs is also evaluated. A model in the form of
the beta distribution function is applied to reproduce the dimensionless
hyetographs. The results reveal that rain event depth is more related to
peak intensity than to event duration. At the start and towards the end of
the wet season, the rain events have larger depth with longer duration and
longer IET than the rain events in the mid-season. Mean event intensity and
IET are strongly related to terrain elevation. Overall, Sekela which is on a
mountain area has the shortest IET while Bahir Dar which is at the south
shore of the lake has the longest IET.

Keywords: Blue Nile River, Lake Tana, Rainfall, rain event

1 This chapter is based on: Haile, A. T., Rientjes, T., Jetten, V., 2009: Rain event
properties and dimensionless rain event hyetographs at the source of the Blue
Nile River. Hydrological Processes. Prepared for submission.
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4.1. INTRODUCTION

An understanding of rain event properties at specific spatio-
temporal scales is of great importance for both hydrology as well as for
climate studies. According to Brown et al. (1985), rain events are a
convenient way of summarizing a time series of rainfall amounts into
entities that are defined so that they are meaningful in terms of a particular
application. Such applications include studies of runoff generation (e.g.
Kusumastuti et al., 2007; Milly and Eagelson, 1987a), soil erosion (e.g. Angel
et al., 2005), interception losses (e.g. Zeng et al., 2000) and rainfall modeling
(e.g. Wooliser and Osborn, 1985).

In rainfall-runoff modeling, daily or coarser resolution observations
of rainfall commonly serve as model inputs. By use of such observations,
the assumption of spatial uniformity of rainfall is commonly applied and
therefore spatially averaged rainfall estimates can serve as inputs to rainfall-
runoff models, e.g. Haile et al. (2009d). However, Milly and Eagelson
(1987b) stated that the constraining assumption of spatial uniformity is not
especially helpful in the analysis of single events. Properties of single rain
events often vary at scales much smaller than a watershed scale and event
properties consequently affect runoff generation.

Lack of high resolution observations of rainfall often restricts the
applicability of rainfall-runoff models at high temporal and spatial
resolutions. In literature, it is shown that this restriction can be overcome by
the use of stochastic rainfall models. For instance, Kusumastuti et al. (2007)
evaluated the effects of catchment storage on runoff generation by coupling
a stochastic rainfall model with deterministic rainfall-runoff models. Their
stochastic rainfall model considers variability of rain event duration and
inter-event time (IET) and the occurrences of infrequent tropical cyclones.
For a synthetic watershed, Kusumastuti et al. (2007) showed that variability
within a rain event which is referred to as intra-event variability can largely
affect quick runoff generation mechanisms and consequently affects flood
generation. Through rainfall-runoff modeling with the objective to study
the scaling behaviour of flood frequency, Robinson and Sivapalan (1997);
Menabde and Sivapalan (2001) showed that the runoff discharge is
proportional to the watershed area for relatively small watersheds with a
response time less than the mean duration of rain events. However, the
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authors noted that the stream flow at the watershed outlet will be affected
by the branching structure of the stream network in case the response time
is greater than the mean duration of rain events.

Rain event properties also serve as main inputs to soil erosion
studies. For instance, the maximum 30-minute rainfall intensity is one of the
main inputs to the Revised Universal Soil Loss Equation (RUSLE), e.g.
Diodato and Bellocchi (2007). However, lack of long-term rainfall records at
the required spatial and temporal resolution often restricts the applicability
of erosion models in many regions. van Dijk et al. (2005) state that this
problem has been overcome in literature in two ways: (i) by using
synthesised idealised rain events, or (ii) by using empirical relations
between hydrological model variables and more readily available rainfall
characteristics. An example of the second one is the empirical relation
between the rainfall erosivity factor within RUSLE and the monthly or
annual rainfall amount, see Renard and Freimund (1994); Diodato and
Bellocchi (2007). The use of synthesized or empirical relations to derive rain
event properties can benefit from information about these properties on a
short term base through observation and analysis.

To overcome restrictions by lack of high resolution data, sub-daily
rainfall data can be generated from daily or coarser-resolution rainfall data
by rainfall disaggregation models, see Hingray and Haha (2005); Segond et
al. (2006); Arnaud et al. (2007); Koutsoyiannis and Onof (2001). Rainfall
disaggregation models extend the short-term records of sub-daily rainfall to
long-term data of sub-daily rainfall by disaggregating the long-term daily
records which are commonly available. However, the calibration of
disaggregation models requires availability of short-term sub-daily records
at one or more rain gauge stations, e.g. Arnaud et al. (2007); Koutsoyiannis
and Onof (2001).

Hulff (1967) established a relation between the fraction of rain event
depth and the corresponding fraction of rain event duration through
dimensionless hyetographs. These hyetographs are also called “Huff
curves”, see Tsubo et al. (2005). Huff (1967) showed that the dimensionless
hyetograph for the area in Illinois was affected little by event depth and
event duration. Woolhiser and Osborn (1985) observed that the
dimensionless hyetograph of an experimental watershed in South-eastern
Arizona was affected by event duration. Garcia-Guzman and Aranda-
Oliver (1993) advocated evaluating the assumption that the hyetographs are
invariant with respect to event depth, duration and area averaging.
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However, such requires large data sets covering several years to obtain
sufficient data for statistical analysis.

Rainfall models that are based on dimensionless hyetographs are
presented in Woolhiser and Osborn, 1985; Garcia-Guzman and Aranda-
Oliver (1993). Other examples are Bras (1979) who applied the
dimensionless hyetograph concept to study the sampling of the rainfall-
runoff process and Tsubo et al. (2005) who developed dimensionless
hyetographs for the Highveld of South Africa. Similar studies, however, are
noticeably absent for the Upper Blue Nile Basin in Ethiopia.

The use of only one or two rain gauge stations may not be adequate
to evaluate the spatial pattern of rain event properties (see Brown et al.,
1985; Tsubo et al., 2005). To analyze the effect of terrain attributes such as
elevation on rain event properties, see Loukas and Quick (1996); Palecki et
al. (2005), records from spatially distributed rain gauge stations are
required. However, studies that report on the spatial and temporal patterns
of rain event properties are absent for many geographic locations and such
also applies for the Upper Blue Nile basin.

As part of the present study, a network of 10 recording rain gauges
was setup in May 2007 at the source basin of the Upper Blue Nile River.
From the network, eight stations recorded the rainfall data of the full wet
season of the year 2007, i.e. June — August (JJA) while only 2 rain gauges
recorded the full wet season rainfall of 2008. The remaining gauges did not
record the full season rainfall probably due to human interference.

In Haile et al. (2009a), the orientation of the rain gauges is
presented and the spatial patterns of the diurnal cycle of the basin rainfall
are analyzed which showed that both orography and the presence of Lake
Tana affects the spatial pattern of the diurnal cycle, see Chapter 3 of this
thesis. Using the same rain gauge network as in the present study, Haile et
al. (2009d) showed that runoff simulations in the basin are largely sensitive
to rainfall representation and reported runoff volume errors as large as 15 —
40 % when the model input is only from 3 — 5 rain gauges instead of 8 rain
gauges, see Chapter 3 of this thesis. However, these studies did not
explicitly explore the rain event properties in the basin.

In the present study, the temporal patterns of rain event properties
are analyzed using rainfall records of Jema station which recorded the
rainfall data for the wet season of the years 2007 and 2008. This station is
situated at an intermediate location between the mountains of the Gilgel
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Abbay watershed and Lake Tana. Haile et al. (2009d) suggested that Jema
station should be part of any rain gauge network that is applied to estimate
rainfall input to a runoff model, see Chapter 7 of this thesis.

In this Chapter, the spatial patterns of rain event properties are
evaluated using data from eight stations that recorded the JJA 2007
recorded. Rain event properties that are of general interest to the study of
hydrological processes are rain event depth, intensity, duration and inter-
event time (IET). Also, dimensionless event hyetographs are developed for
selected stations while the spatial variation of the characteristics of the
hyetographs is evaluated. Finally, a beta distribution type model is fitted to
the observed dimensionless hyetographs.

4.2. METHOD OF ANALYSIS

4.2.1. Properties of rain events

Selected criteria to identify rain events have influence on the
properties of rain events that are derived. For instance, the number,
duration and intensity of rain events can change subject to the criterion to
identify events (see Dunkerley, 2008b). Commonly, the minimum inter-
event time (MIT) and/or the minimum event depth serve to identify rain
events or to classify a series of rain observations as a single event.
Dunkerley (2008a, b) reviewed a large number of criteria and reported that
the applied MIT varies from 3 min to 24 h while the minimum event depth
varies from the measurable amount that is the resolution of the rain gauge
to 13.0 mm. The consequence of a change in criterion is for instance that the
mean event intensity may decrease as the MIT increases since the events
may include several rainless periods.

By absence of a commonly applied criterion in literature, a set of
criteria has been chosen to identify rain events, i.e. to mark the start and end
time of the events. The applied criteria are a minimum event depth of 1.0
mm and a minimum inter-event time (MIT) of 30 minute. According to
Brown et al. (1985), rain events identified by such criteria can be termed
“primitive” events and are based on the simplest and most logical approach
without the use of additional information regarding the synoptic weather
condition such as cloudiness.
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The rain event properties that are analyzed in the present study
include event depth, event duration, mean event intensity, peak intensity of
an event and inter-event time (IET) which is defined as the length of the dry
period between two consecutive events. These event properties are selected
since they are considered to be relevant to hydrologic studies. The reader is
referred to Dunkerley (2008a,b) for further discussion on the importance of
these event properties in hydrologic studies.

The event depth (d, ) is defined as:

d.=> 1, [4.1]

where: E is the event duration while I, is the one-minute rainfall
depth at the i"™ minute since the start time of the rain event.

The mean event intensity (R.) is:

R = e [4.2]

where: d, and E, are the depth and the duration of the rain event,

respectively.
The peak intensity (Imax) is:
I ..« =max(60l,) [4.3]

1Si<E,
where: max indicates the maximum while the constant 60 is applied
to convert the one-minute rainfall depth to hourly rainfall intensity. The
remaining terms are as defined previously.

Relations between the various event properties are evaluated
through the Pearson’s product-moment correlation. The effect of terrain
elevation on the event properties is also evaluated.

4.2.2. Dimensionless event hyetographs

A dimensionless hyetograph relates the fractions of rain event depth
to the respective fractions of rain event duration. Following Garcia-Guzman
and Aranda-Oliver (1993); Tsubo et al. (2005), the 10 %, 50 % and 90 %
fractions of event depth are selected to develop dimensionless hyetographs
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since these correspond to small, normal and large event depths. The spatial
variability of the properties of the hyetographs is evaluated using rainfall
records at three stations. These stations are Bahir Dar which is at the south
shore of Lake Tana, Sekela which is on the mountain area and Jema which is
at an intermediate location between Bahir Dar and Sekela. Haile et al.
(2009a) showed that the diurnal cycle of the rainfall at Bahir Dar is largely
different from the other stations in the basin while in Haile et al. (2009d) it is
shown that the rainfall of Jema and Sekela stations largely affect the
accuracy of runoff simulations in the Gilgel Abbay watershed of Lake Tana
basin.

The dimensionless hyetographs at the selected stations are
evaluated graphically and statistically. Following Tsubo et al. (2005), the
Kolmogorov-Smirnov goodness of fit test is applied to evaluate whether
differences between the hyetographs are statistically significant. The
absolute value of the difference (D) in the fractional event depths of two
dimensionless hyetographs at the increment j of the fraction of the event
duration reads:

D; =‘Hj’1—Hj’2‘ [4.4]

where: Hj is the fraction of the accumulated rain event depth over
the time interval (0,f) where t is time instant which is expressed as the
fraction of the total event duration, for instance t = j/10 for process with 10
increments where j=1, 2, 3, ...,9, 10. The subscripts 1 and 2 indicate the two
dimensionless hyetographs that are compared.

The test statistic (D) for the Kolmogorov-Smirnov test is defined as:
D =max(D,) [4.5]
where: max indicates that the maximum D; in equation [4.4] is used

as the test statistic. The critical values D,  for a selected significance level

o and number of increments n are presented in text books on statistics
such as Zar (1996) that is used in this study. The null hypothesis is that the
two hyetographs are from the same statistical distribution and therefore
will be rejected if D in equation [4.5] exceeds Dy p -

A model in the form of a beta distribution function is applied to
reproduce the observed dimensionless hyetographs by assuming that the
increment process of the rain events can be represented by a beta
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distribution function. The increment process Z j for 0<Z j< 1 at a fixed

time is, see Woolhiser and Osborn (1985); Garcia-Guzman and Aranda-
Oliver (1993):

Z;=H,; [4.6]
H: —H.
Z; B Y [4.7]

where: H; is as defined previously and j=23,...,9.

Following Garcia-Guzman and Aranda-Oliver (1993); Tsubo et al.
(2005), a model in the form of the beta distribution function is fitted to the
distribution of the increment process. The beta distribution function for the
increment process Z is:

_ ['(a+ f) _Za—l
C(e)T(B)

where: I' is the gamma function, o > 0. Both are shape parameters

£(2) 1-z)/ [4.8]

which are fitted using thechniques of optimization. In this study, the
maximum likelihood method is applied using a built in function in Matlab®.
Garcia-Guzman and Aranda-Oliver (1993) described that when a < f3, it is

more probable to have all observed H ; close to zero than close to one while

for a = f# >1, the beta density is symmetrical and has a maximum at ¢ = 0.
For o = f <1, the beta density has a minimum at ¢ = 0. The data base in the

present study is considered too limited to evaluate the sensitivity of the
model parameters to factors such as rain event duration.

4.2.3. Conditional probability of rainfall occurrences

The estimation of the conditional probability of rainfall occurrence
at any two stations is important to understand the spatial structure of
rainfall intermittence in particular the size of rain events in terms of
geographic location. Examples of such studies are found in Gebremichael et
al. (2007) who studied the spatial behavior of hourly rainfall intermittence
for an area in Sonora, Mexico and in Robinson (1994) who evaluated the
intermittence of daily rainfall for Colorado and North Carolina. Haile et al.
(2009a), see Chapter 3 of this thesis, evaluated the temporal structure of the
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hourly rainfall intermittence in the Gilgel Abbay watershed but ignored the
spatial structure of the rainfall intermittence that is evaluated in the present
study.

The probability (Pj) that it is raining at station j while it is raining at
station 7 as well can be estimated through the conditional probability that is
defined as:

Ty

=— b [4.9]
o+ 1+,

P,

where: I is the number of time steps when there was rain at both

stations; I; is the number of rainfall occurrences at station i while it is not

raining at station j; I; is the number of rainfall occurrences at station j while

it is not raining at station i. Pij = 0 shows that it does not rain at all at station
j when it is raining at station i while B, shows that it always rains at station
j when it is raining at station i. Note that P
The conditional probability of rainfall occurrences has been estimated for an

is not necessarily equal to P;;.

arbitrary chosen time interval of 1 hour, 6 hour and 1 day to evaluate the
change in probability with changing time scales. The use of 6 hour and 1
day intervals allows considering effect of event durations longer than 1
hour. An arbitrarily chosen rainfall depth of 1 mm is defined to
differentiate rainy from non-rainy time periods.

4.3. RESULTS

4.3.1. Rain event properties

In this section, the rain event properties at Jema station are
analysed. Jema station is selected since this rain gauge recorded rainfall
data for two consecutive wet seasons that are in JJA of 2007 and 2008. Also,
the station is located at somewhat an intermediate distance between the
mountain areas of Gilgel Abbay watershed and Lake Tana and therefore,
following the work in Haile et al. (2009a), which is presented in Chapter 3 of
this thesis, the rain event properties are, presumably, affected by orography
and the presence of the lake. A total of 236 rain events have been observed
at Jema with 122 events in JJA 2007 and 114 events in JJA 2008.
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Table 4.1 shows the statistics of the rain events at Jema station. A
maximum event depth of 67.6 mm has been recorded in the two seasons.
This event depth is 12 times higher than the median of the observed event
depths which is only 5.6 mm indicating that the event can be considered an
extreme event. In terms of event duration, a single event has lasted up to
344 minutes, i.e. about 5.7 hours. However, the median of the duration of
the rain events is only about 1 hour which is 6 times shorter than the
maximum duration.

Table 0.1: Statistics of rain events at Jema in two wet seasons that are JJA of the years
2007 and 2008.

Statistics ~ Depth Duration Peak Event Inter-
(mm) (min.) intensity intensity event
(mm h) (mm h) time (h)
Minimum 1.20 3.00 12.00 0.93 0.52
Maximum 67.6 344.00 180.00 54.67 94.62
Mean 9.11 76.55 42.56 10.01 17.12
Median 5.60 60.00 36.00 6.18 13.42
Std. Dev. 9.84 66.97 35.45 10.45 16.67

The maximum peak intensity at Jema is 180 mm h which is
equivalent to 12 bucket tips per minute. In terms of median, the peak
intensity is 36 mm h! which is equivalent to 3 bucket tips per minute. The
median of the peak intensity is 6 times the median of the mean event
intensity indicating large differences which is partly explained by the
presence of several rainless periods in a single rain event that causes low
mean event intensity.

Mean event intensities range between 0.93 mm h! and 54.67 mm h'!
with a median of 6.18 mm h'. The median of the IET is 27 times the
specified MIT which is 30 minutes. Such shows that changing the MIT
value, for instance, to 1 hour will not largely change the statistics of the
estimated event properties. In terms of median, the IET at Jema is about
13.42 hours that is about 13 times the median of the rain event duration
indicating longer dry periods than event duration. The median value of the
IET also shows that the daily rainfall depths at Jema are mostly caused by
one or two rain events. It is noted that the presence of multiple events in a
day restricts the applicability of daily rainfall records for event based
analysis. As such, the rainfall needs to be recorded at sub-daily time scales
for such analysis.

71



Rain event properties

4.3.2. Relation between rain event properties

The relation between the rain event properties has been evaluated
for the rainfall records of Jema station during the two consecutive wet
seasons. Table 4.2 shows the lower triangle of the correlation matrix
between the rain event properties. The depth of the rain events is positively
correlated to all of the remaining event properties. Overall, event depth
increases with an increase in event duration or mean event intensity. Event
depth has the strongest relation with peak intensity which reveals that
event depth at Jema is more related to peak intensity than event duration.

Table 0.2: Lower triangle of correlation matrix between the properties of the selected
rainfall events at Jema. The events are observed in two wet seasons that are JJA
2007 and 2008.

Depth Duration = Mean Peak I1 Inter-
intensity event
time
Depth 1.000
Duration 0.446(%) 1.000
Mean intensity  0.481(*) -0.313(%) 1.000
Peak I1 0.739(*) 0.028 0.800(*) 1.000
Inter-event 0.059 0.046 0.087 0.067 1.000

time

* Correlation is significant at the 0.01 level (2-tailed)

Although the relation is not strong, rain event duration is negatively
correlated to mean event intensity and therefore events with short duration
have relatively high mean event intensity. Such can be partly caused by
high rainfall intermittency that is due to the presence of several rainless
periods in a single event as the event duration increases which consequently
results in relatively low mean event intensities. The correlation value also
shows that events with high peak intensity also have high mean event
intensity. Overall, high event intensity at Jema is more related to peak
intensity than to event duration. The IET at Jema has shown a weak relation
with all of the other rain event properties.

4.3.3. Temporal variation of rain event properties

To evaluate the intra-season variability of rain event properties, the
rain event properties at Jema have been analysed for each of the three
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months of the wet seasons of 2007 and 2008. Table 4.3 shows the median of
the rain event properties for each of the three months during the wet
season. It is noted that June is at the beginning of the wet season while
August is towards the end of the wet season. In terms of the median of the
rain event depth, there are some differences between the events in June, July
and August. June has the highest rain event depth while July has the lowest
event depth with a 2 mm difference between the median of the event depth
of the two months.

Table 0.3: The temporal variation of the median of rain event properties at Jema for
MIT = 30 min. The events are observed in two wet seasons that are [JA 2007 and
2008.

Statistics Depth Duration Peak Event Inter-
(mm) (min.) intensity, I1 intensity event
(mm h?) (mm h1) time (h)
Median
June 6.6 64.0 36 6.52 17.6
July 4.7 55.5 24 6.11 11.33
August 54 61.0 36 6 13.56
CvV
June 0.998 0.773 0.824 1.002 0.882
July 1.161 0.905 0.860 1.030 0.928
August 1.020 0.931 0.797 1.093 1.024

In terms of the median value, the rain events in July have the
shortest duration while the events in June have the longest duration with a
10.5 minute difference between the median of the event durations in the
two months. In terms of peak intensity, the events in July have the lowest
intensity. In terms of mean event intensity, the rain events in August have
the lowest intensity while the events in June have the highest intensity.
Also, the July events have the shortest IET which shows that the rain events
are likely to be clustered while the June rain events have the longest IET.
There is a 6.3 hour difference between the median values of the IETs of the
events of June and July.

Overall, the event properties at the start and towards the end of the
wet season have somewhat similar characteristics while the events in the
mid-season differ in this respect. At the start and towards the end of the wet
season, the rain event depth is large with long event duration and long IET
as compared to events in the mid-season.
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The coefficient of variation (CV) in table 4.3 shows that the rain
event depth in July is more variable as compared to that of the other
months. Also, there is some difference in terms of the variability of the rain
event duration in each of the months. The event duration in June is less
variable than for the other months of the wet season.

Table 4.3 also shows that the peak intensity of the events in August
has the smallest variability while the difference in CV of mean event
intensity in the three months is less than 10 %. In terms of IET, the largest
variability has been observed in August. Overall, the mid-season events
have depth, duration and peak intensity that are more variable than for
events at the start and end of the wet season.

4.3.4. Spatial variation of rain event properties

In this section, the spatial variation of rain event properties is
analysed based on rainfall records from 8 stations. The number of rain
events is 122, 100, 140, 112, 177, 122, 105, and 153 for Addis Kidam, Bahir
Dar, Dangila, Durbet, Injibara, Jema, Koga and Sekela, respectively. The
largest number of events is observed at Sekela station that is located on a
mountain area while the smallest number of events is observed at Bahir Dar
which is at the south shore of Lake Tana. Haile et al. (2009d) showed that
considering the rainfall of the Sekela station is largely important for runoff
modelling of the Gilgel Abbay watershed. The result in the present study
suggests that one of the reasons for the importance of the station could be
due to the relatively large number of rain events that are observed as
compared to the other stations.

RAIN EVENT DEPTH

Statistical properties of the rain event depths of the eight stations are
presented in figure 4.1. The top and the bottom horizontal bars represent
the 25 % quartile minus 1.5IQR and the 75 % quartile plus 1.5IQR,
respectively. IQR is defined as the interquartile range which is the 75 %
quartile minus the 25% quartile and is as such defined by the size of the box.
The 25 % and the 75 % quartiles are shown by the bottom edge and the top
edge of the box, respectively while the median is shown by the line inside
the box.
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By the box plot in figure 4.1 some suggestions can be made with
respect to the rain event depth in the basin. Overall, the rain event depths
have skewed distribution where event depths higher than the median are
distributed over a larger range than the event depths that are lower than the
median. In terms of median, Addis Kidam, Dangila, Injibara and Sekela
stations which are on the mountain areas have events with lowest rainfall
depths as compared to the stations on the lowland areas. In terms of
median, the lowest event depth is 3.6 mm at Injibara which is located on a
mountain area while the highest depth is 6.0 mm at Jema which is situated
at an intermediate location between the mountain areas and the lowland
areas near Lake Tana. On average, Jema receives an event depth of 1.67
times that of Injibara indicating significant spatial variation of event depth
in the study area. Bahir Dar which is on the south shore of the lake has a
median value of 4.8 mm event depth.
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AKidam BDar Dangila Durbet Injibara Jema Koga Sekela

Figure 0.1: Box plot of the rain event depths in [JA of 2007 as observed at eight rain
gauge stations. The lower and the upper bars indicate the 25 % quartile minus 1.5
IQR and the 75 % quartile plus 1.5 IQR, respectively. IQR refers to the
interquartile range which is defined by the height of the box. The bar inside the
boxes shows the median while the upper and lower edges of the boxes show the 75
% and the 25 % quartiles.
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The stations that are relatively close to the lake which are Bahir Dar,
Koga and Jema station have lowest terrain elevation and have a larger IQR
that shows these stations have event depth which is more variable than for
the stations near the mountain areas. Such implies that the variability of
event depth decreases by the combined effect of an increase in distance
from the lake and an increase in terrain elevation.

The box plot also shows that the 75 % quartiles of the event depths
of the stations near the lake are larger than the event depths in the
mountain areas. Injibara station which is situated on a mountain area has
the smallest 25 % quartile of event depth.

RAIN EVENT DURATION

Figure 4.2 shows a box plot of the rain event duration at the eight
stations. Similar to the rain event depth, some suggestions can be made
regarding the spatial variation of rain event duration. Overall, the
distribution of the event duration is skewed since events that have longer
durations than the median are distributed over a larger range than event
durations that are shorter than the median. However, this skewness is less
pronounced compared to the skewed distribution of the rain event depth.
As such, the mean event duration is less affected by extreme values as
compared to the event depth in the study area.

In terms of median, Addis Kidam, Dangila, Injibara and Sekela
stations which are higher in the mountain areas have events with longest
duration compared to events of the remaining stations that are in the
lowland. An exception is Jema which has relatively low elevation but on
average has event duration which is comparable to that of the events on the
mountain areas. Koga and Bahir Dar which are relatively close to the lake
have events that have the shortest duration on average.

Durbet, Jema and Sekela have a larger IQR of event duration than
the remaining stations and thus event duration of these stations is relatively
more variable. Although the median of the event duration at Sekela and
Injibara are comparable, the IQR does not show that the event duration is
equally variable at these stations. The rain event duration at Sekela is more
variable as compared to the event duration at Injibara.
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MEAN EVENT INTENSITY

Figure 4.3 shows a box plot of the mean event intensities at the eight
stations. Similar to the rain event depth, the distribution of the mean event
intensity is skewed. In terms of median, Addis Kidam, Dangila, Injibara and
Sekela station which are all located on mountain areas have events with
lower intensity than the stations that are relatively close to the lake. The
lowest median value of event intensity is 3.5 mm h' at Injibara while the
highest median value of event intensity is 6 mm h'! at Jema and Koga that
are relatively close to Bahir Dar which has a median value of 5.5 mm hl. As
such, on average the maximum intensity in the study area (i.e. at Jema) is
1.7 times that of the minimum intensity. Bahir Dar, Koga and Jema which
are relatively close to the lake and at low elevation in the basin have a larger
IQR than the stations near the mountain areas indicating that the event
intensity at the lowland areas is more variable.
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Figure 0.2: Box plot of the rain event durations in JJA of 2007 as observed at eight rain
gauge stations.
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The 75 % quartiles of the rain event intensities at the stations which
are near the lake are higher than that of the intensities on the mountain
areas. Injibara station which is located on the mountain area has the lowest
25 % quartile of event intensities from the network. Over all, the event
intensities in the study area have similar spatial pattern to that of the rain
event depths.

INTER-EVENT TIME

Figure 4.4 shows the cumulative distribution of the IET at three
stations. The cumulative distribution shows some difference which is
consistent throughout the observed ranges of IET. For the same IET, the
number of occurrences of dry periods shows a spatial variation. The 10 %
quantile is 1.4 hours, 1.5 hours and 1.0 hour at Sekela, Jema and Bahir Dar,
respectively. The median is 9.0 hours, 13.5 hours and 16.5 hours at Sekela,
Jema and Bahir Dar, respectively while the 90 % quantile is 29.5 hours, 31
hours and 42.5 hours at Sekela, Jema and Bahir Dar, respectively.
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Figure 0.3: Box plot of average rain event intensity in JJA of 2007 as observed at eight
rain gauge stations.
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Figure 0.4: Cumulative probability of inter-event time in JJA of 2007 as observed at
three rain gauge stations.

At a selected cumulative probability, Sekela has the shortest IET
while Bahir Dar has the longest IET. The cumulative distribution reveals
that, on average, the lowland areas have a dry period length of 1.8 times
that of the mountain areas. Jema which is situated at an intermediate
distance between the mountain areas and the lake has an IET which is
shorter than at Bahir Dar but longer than at Sekela.

RELATION BETWEEN ELEVATION AND EVENT PROPERTIES

In the previous paragraphs, it is shown that event properties of the
study area have some relation with terrain elevation. Therefore, a regression
analysis is performed to evaluate such relation. Dairaku et al. (2004)
performed a linear regression to relate event properties and terrain
elevation. In the present study, a non-linear regression is found to be
suitable since it showed a small improvement in the coefficient of
determination (R?) value as compared to a linear regression.

Table 4.4 shows the regression equation that relates event properties
to terrain elevation. The 10 %, 50 % and 90 % quantiles are selected to
consider low, normal and high event properties, respectively. The R? value
in table 4.4 shows that terrain elevation weakly explains the variation in the
10 % quantile event depth. However, the 50 % and the 90% quantiles of
event depth are strongly related to terrain elevation. The results suggest
that normal and large event depths in the study area are largely affected by
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orography. In terms of event duration, the 10 % quantile is weakly related
to terrain elevation while the 90 % quantile is more strongly related to
terrain elevation as compared to the relation between other quantiles and
terrain elevation. The spatial distribution of long event duration is affected
by orography but that of short event duration is not affected by orography.

The R’ value shows that the variations in the three quantiles of
mean event intensity are largely related to the variation in terrain elevation.
The lowland areas in the study area receive rainfall with high intensity as
compared to the mountain areas. However, in terms of peak event intensity,
a relation could not be established between the 10 % and the 50 % quantiles
with terrain elevation since quantiles of peak intensity are found to be equal
at all stations. However, the 90 % peak intensity is related to terrain
elevation and the slope of the regression equation shows that the events in
the lowland areas have high peak intensities. Although the 10 % quantile of
IET is weakly related to terrain elevation, the 50 % and the 90 % quantiles of
IET have strong relation to terrain elevation. Overall, the high quantiles of
event properties are largely affected by orography while low quantiles of
event properties except that of event intensity are weakly affected by
orography.

Figure 4.5 shows the relation between event properties and terrain
elevation. The median of the event properties is selected to evaluate the
relation while the regression equations are presented in table 4.4. The plot
shows that rain event depth, mean event intensity and IET decrease with an
increase in terrain elevation while event duration increases with an increase
in terrain elevation. As such, the mountain areas receive rainfall of
relatively small depth, low intensity, long duration and short IET. Haile et
al. (2009a) showed that the mountain areas of the Lake Tana basin receive
relatively large seasonal rainfall depth. The result of the present study
showed that the large seasonal rainfall of the mountain areas is mainly due
to frequent and long duration events. However, the seasonal rainfall of the
lowland areas is largely due to events with high intensity but short
duration.
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Table 0.4: Relation between rain event properties and terrain elevation (Elev.)

Equation R?
Event depth
10 % Quantile -0.0002Elev.+1.8730 0.1527
Median 2007.1Elev. 07954 0.4915
90 % Quantile 14311Elev.0879% 0.5161
Event duration
10 % Quantile 11.629Elev.0.0546 0.0042
Median 3.4611Elev.036% 0.3312
90 % Quantile 4986.8Elev.-04521 0.5248
Mean event intensity
10 % Quantile 648.84Elev . 07763 0.5628
Median 34407Elev. 115 0.6819
90 % Quantile 459710Elev. 13301 0.6755
Peak event intensity
10 % Quantile - -
Median - -
90 % Quantile -0.0327Elev.+154.41 0.4884
Inter-event time
10 % Quantile 0.0169Elev.0-5509 0.0732
Median 3611447Elev. 164 0.9100
90 % Quantile 259888Elev. 11659 0.5666

81



Rain event properties

(@) (b)

651 . : -

60 . -

Event depth (mm)
S
Event duraion (min)

0.492

0.331
0 50 ;
1500 2000 2500 3000 1500 2000 2500 3000

I

(© (d)

Intensity (mm h 1)
I o
IET (h)
[=Y
(6)]

10 b
2r i 5r b
0.682 0.910
0 ; ; 0 ; ;
1500 2000 2500 3000 1500 2000 2500 3000
Elevation (m) Elevation (m)

Figure 0.5: Relation between event properties and terrain elevation. The event
properties are (a) Event depth, (b) Event duration, (c) Event intensity and (d)
Inter-event time (IET). The median of each of the event properties is selected for the
regression and the regression equations are shown in Table 4.4.

4.3.5. Dimensionless event hyetographs

Figure 4.6 shows the observed dimensionless hyetographs of Bahir
Dar at the south shore of Lake Tana and that of Sekela on a mountain area.
Some differences are observed between the hyetographs of the two stations.
In terms of the 10 %, 50 % and 90 % quantiles, Bahir Dar has higher fractions
of event depths than Sekela for all ranges of fractions of event duration. This
shows that Bahir Dar receives larger rainfall depth within an event than
Sekela. The largest difference between the dimensionless hyetographs of the
two stations is observed for the 10 % quantile.

The difference in the dimensionless hyetographs of Bahir Dar, Jema
and Sekela is also statistically evaluated using the Kolmogorov-Smirnov
test, see equation [4.4 — 4.5]. Table 4.5 shows the observed test statistic (D)
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which is here defined as the maximum difference in the fractions of event
depths of two stations, see equations [4.4 — 4.5]. The critical value of the test
statistic for the Kolmogorov-Smirnov goodness of fit test for an arbitrary
selected significance level of 0.05 % and number of increments n = 10, (i.e.
Doos10) is 0.4092. The observed D as shown in table 4.5 is less than the

critical value in all cases indicating there is no statistically significant
difference between the dimensionless hyetographs of any of the two
selected stations. However, the outcome of the test depends on the n value
that is the number of increments. The Kolmogorov-Smirnov test shows that
the dimensionless hyetographs do not have statistical difference for n < 160.
The median of the rain event durations at Bahir Dar, Jema and Sekela is 54,
65 and 62 minutes, respectively and therefore applying n =160 is equivalent
to using an increment that is much smaller than 0.5 minutes.
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Figure 0.6: The observed dimensionless hyetograph of the rain events at two stations
for three quantiles.
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Figure 4.7 — 4.9 show the observed and simulated dimensionless
hyetographs of the rain events at Bahir Dar, Jema and Sekela stations,
respectively. The hyetographs are simulated based on the beta probability
distribution model in equation [4.8].

Table 0.5: Absolute difference between two dimensionless hyetographs (Dumax) for
Kolmogorov-Smirnov test. Note Dy g5 19 =0.4092.

Stations Quantiles Bahir Dar Jema

Jema 10 % 0.0601 -
50 % 0.0864 -
90 % 0.1007 -

Sekela 10 % 0.1313 0.0716
50 % 0.0868 0.0267
90 % 0.1040 0.0340

Figure 4.7 shows that overall the beta model satisfactorily
reproduced the shape of the dimensionless hyetographs. For the 10 %
quantile, the model overestimated the fraction of event depth at the middle
fractions of event duration but satisfactorily reproduced the depth towards
the end of the fractions of event duration. This suggests that the model
developed in this study has difficulties to reproduce low rainfall intensities
of Bahir Dar.

The model satisfactory reproduced the 50 % quantile hyetograph
over all fractions of event duration showing that normal rainfall intensities
could be reproduced using the model. However, the model underestimated
the fractions of event depth at all fractions of event duration for the 90 %
quantile but the difference is too small as compared to that of the 10 %
quantile.

Figure 4.8 shows that the beta model largely overestimates the
fractions of the 10 % quantile event depth at Jema but relatively small
difference are observed for the 50 % and the 90 % quantiles. Figure 4.9 show
that the model reproduced the 10 % quantile hyetograph of Sekela better
than that of Jema. At the start and middle fractions of event depth, the
modelled hyetograph of Sekela deviates from the observed hyetograph but
the modelled and simulated hyetographs show very good agreement at
large fractions of event duration. For low intensities, the dimensionless
hyetograph of Sekela follows the beta cumulative distribution more than
that of Jema. The simulated and the observed 10 % quantile hyetographs
show a better agreement at Sekela than that at Jema station. The beta model
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shows some bias in simulating small and large dimensionless event depths.
Small event depths are consistently overestimated while large event depths
are underestimated at the selected stations.
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Figure 0.7: The observed and the modelled dimensionless hyetograph of the rain events
at Bahir Dar station for three quantiles.
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Figure 0.8: The observed and the modelled dimensionless hyetograph of the rain events
at Jema station for three quantiles.

The difference between the simulated and the observed
dimensionless hyetographs is also statistically evaluated wusing the
Kolmogorov-Smirnov test. The test statistic D which indicates the
maximum difference between the simulated and the observed hyetographs
is shown in table 4.6 and is less than the critical value in all cases. The result
shows that there is no statistically significant difference between the
modeled and the observed hyetographs of the three stations. The largest
deviation between the simulated and the observed hyetographs is observed
for the 10 % quantile at Jema station.

86



Rain event properties

Fraction of event depth (-)
o
(03]
T

0.3

0.2

0.1

—¥k— Observed 10 %
—A— Simulated 10 %
—4— Observed 50 %
—©&— Simulated 50 %
—><— Observed 90 %

—&— Simulated 90 %
1 1 1 1

0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
Fraction of event duration (-)

Figure 0.9: The observed and the modelled dimensionless hyetograph of the rain events
at Sekela station for three quantiles.

Table 0.6: Absolute difference between observed and simulated dimensionless
hyetographs (Dmax) for Kolmogorov-Smirnov test. Note Dy 519 =0.4092.

Station 10 % 50 % quantile 90 %
quantile quantile
Bahir Dar  0.0744 0.0412 0.1136
Jema 0.1307 0.0591 0.0647
Sekela 0.0712 0.0538 0.0737

The parameter values for the beta model are shown in table 4.7.

Both parameter values increase with an increase in terrain elevation.
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Table 0.7: Parameters of the beta distribution model that is fitted to the dimensionless
hyetographs.
Parameter 10 % quantile 50 % quantile 90 % quantile

Bahir Dar
a 2.146 5.956 25.005
B 9.385 16.221 44.087
Jema
a 1.705 3.680 21.333
B 6.884 9.778 37.237
Sekela
a 1.510 5.077 22.088
B 7.344 15.363 43.573

4.3.6. Conditional probability of rainfall occurrences

Figure 4.10 shows the plot of the conditional probability (F;) of

rainfall occurrences (equation [4.9]) against inter-station distance. The
conditional probability at a selected inter-station distance increased when
the rainfall aggregation time changed from 1 hour to 6 hour. Maximum Pij
values of 0.35 and 0.55 occurred at the smallest inter-station distance are
estimated for the 1 hour and the 6 hour rainfall, respectively.

It is shown that the conditional probability decreases exponentially
with an increase in inter-station distance for both aggregation times. As
such an exponential model of the following form is fitted to the data points
using least square fitting:

P; =axexp(-bxd) [3.10]

where: P; is the conditional probability of rainfall occurrences
which indicates thatrains at station j while it also rains at station i, 2 and b
are empirical fitting constants and d is the inter-station (separation) distance
between two selected stations. The exponential model is fitted with an R?
value of 0.86 and 0.63 for the 1 hour and the 6 hour rainfall, respectively.
The values of the constants for the 1 hour rainfall are a = 0.4057 and b =
0.0231 while the values of the constants for the 6 hour rainfall are a = 0.5927
and b = 0.0103. Although it is not shown in figure 4.10, the conditional
probability of daily rainfall occurrences ranges between 0.61- 0.82 with R?
value of 0.0005 for the fitted exponential model showing a poor model
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performance. This is caused by weak relation between inter-station distance
and daily rainfall occurrence.

4.4. DISCUSSION AND CONCLUSION

Studies show that changes in event properties affect the response of
hydrologic models (e.g. Kusumastuti et al., 2007) but lack of information on
event properties restricts the applicability of hydrologic models (e.g. Renard
and Freimun, 1994; Diodato and Bellocchi, 2007). For locations without sub-
daily rainfall records, generation of synthetic rainfall data is required to
allow application of hydrologic models at high temporal resolutions. Such
rainfall generation requires knowledge on the spatial and temporal patterns
of rain event properties on a short-term base. Few studies address the
spatial pattern of rain event properties (e.g. Bidin and Chappel, 2006;
Dairaku et al., 2004). The objective in the present study is to understand the
rain event properties in the source basin of the Upper Blue Nile River and to
evaluate the relation between rain event properties and orography of the
basin.

The temporal characteristics of rain event properties have been
analyzed to evaluate whether event properties change with time. Also,
relations between the various rain event properties are evaluated to
enhance our understanding of rainfall and provide information that may be
useful for synthetic generation of rainfall data. The considered event
properties are rain event depth, duration, mean intensity, peak intensity
and inter-event time (IET).

The relation between rain event properties is evaluated through
correlation analysis which showed that some relation exists between the
rain event properties. Overall, rain event depth increases with an increase in
event duration, mean event intensity, and peak intensity. In terms of
correlation, the rain event depth in the study area is more related to peak
intensity than to event duration. As such, large event depth in the study
area is caused not only by relatively a long duration event but also by high
intensity. The analyses show that the IET has a weak relation with the other
rain event properties.
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Figure 0.10: Conditional probability of rainfall occurrences against inter-station
distance. The exponential model is fitted with an R? value of 0.86 and 0.63 for the 1
hour and the 6 hour rainfall, respectively.

The results also show that at the start and towards the end of the
wet season, the rain event depth is relatively large with long event duration
and long IET. Such indicates that two consecutive events as observed in the
early and the late season are separated by longer dry periods than the
events in the mid-season. In terms of median, the June events have event
depth that is 2 mm higher and event duration that is 10.5 minutes longer
than the July events. The IET in June is 6.3 hours longer than that in July.
Also, mid-season events have depth, duration and peak intensity that are
more variable as compared to the events at the start and at the end of the
wet season. Such differences may affect hydrologic processes. Long IET
may result in large evapotranspiration between two consecutive rain events
and therefore decreases the effective rainfall which is available for runoff.

Haile et al. (2009a) showed that there is a weak relation between
seasonal rainfall and terrain elevation or distance to the lake but the diurnal
cycle of rainfall in the study area is strongly affected by orography. The
results of the present study revealed that terrain elevation of the Lake Tana

90



Rain event properties

basin affects rain event properties in particular high quantiles. The
interquartile range shows that the variability of event depth and mean
event intensity decreases with an increase in distance from the lake and
with an increase in terrain elevation. As such, the low land areas have
largely variable event depth and intensity as compared to the mountain
areas of the basin.

The coefficient of determination (R?) value indicates that terrain
elevation weakly relates to the 10 % quantile event depth, event duration,
peak intensity, and IET. Such suggests that events with small values of
properties such as small rainfall depth are not affected by terrain elevation.
In terms of the median values, the maximum spatial difference in the
watershed is 2.4 mm, 2.5 mm h?, 15.5 minutes and 7.85 hour for event
depth, mean event intensity, event duration, IET, respectively. Also, the
median of the event durations in the watershed is in the range of 1 hour +10
minutes. Such differences reveal that the rain events in the study area are
characterized by a short duration which is the case for convective events
that are commonly observed in the study area.

Rainfall amount is expected to increase with an increase in terrain
elevation due to orographic effects. Although some studies evaluated the
effect of orography on annual, seasonal or daily rainfall, there are few
studies in literature that evaluate the relation between orography and
rainfall at the scale of rain events. In the present study such relation is
evaluated for the rain events of the Lake Tana basin. The results revealed
that (i) the low land areas have events with relatively more variable depth
and intensity than the mountain areas, (ii) on average, the low land areas
receive rain events of larger depth, higher intensity, shorter duration and
longer IET than the mountain areas; (iii) relatively high quantiles of event
properties, such as large event depth, are affected by terrain elevation; (iv)
relatively low quantiles of event properties, such as small event depth,
except mean event intensity are weakly related to terrain elevation; (v) both
low and high event intensity are strongly related to terrain elevation with
low lands.

The results are similar to that by Barros et al. (2000) who, using 4
month data in Nepal, showed that the lower-elevation stations received
higher intensity rainfall over short durations. However, the results are
somewhat in contrast to that of Dairaku et al. (2004) who showed that
relatively low intensity events in the mountains of northwestern Thailand
are weakly affected by terrain elevation. Such difference can be caused not
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only by climatic factors but also due to the presence of Lake Tana in the
present study area that affect rain event properties.

A dimensionless rain event hyetograph serves to generate rainfall
intensity for data scarce areas. A dimensionless rain event hyetograph is
developed for the Gilgel Abbay watershed which is situated in the study
area. The 10 %, 50 % and 90 % quantiles of fractions of rain event depth at
the corresponding fractions of event duration are used to develop the
dimensionless event hyetographs. For the same event duration, the areas
near Lake Tana that are at lower elevation receive larger rainfall depth than
the mountain areas for all ranges of rain events, i.e. light, moderate and
heavy. Although such suggests that temporal patterns of rainfall intensity
within rain events of the study area show some spatial difference, the
difference is found to be statistically insignificant.

The beta probability distribution model is fitted to the observed
dimensionless hyetographs. The model consistently underestimated large
dimensionless depths while it overestimated small dimensionless depths of
selected stations. However, the Kolmogorov-Smirnov test showed that the
deviation between the modelled and the observed hyetograph is not
significant. This shows that the model satisfactorily reproduced the shape of
the observed dimensionless hyetographs in particular normal
dimensionless depths of the selected stations. As pointed out by Garcia-
Guzman and Aranda-Oliver (1993), the beta model is simple to implement
since it requires estimation of only two parameters. The model can be used
to generate synthetic rainfall data, for instance, for runoff and soil erosion
studies in the absence of rainfall observations at the required resolution.

Haile et al. (2009a) evaluated the temporal intermittence of the
hourly rainfall of the Lake Tana basin using fractal analysis and found that
rainfall occurs at least once in 2.7 days and that rainfall of the mountain
stations is closely clustered. In the present study, the spatial intermittence of
the hourly rainfall is evaluated. The conditional probability of rainfall
occurrences at any two stations is evaluated and an exponential model is
fitted to relate such probability to inter-station distance. The conditional
probability of 1 hour and 6 hour rainfall occurrences is approximately 0.35
and 0.55, respectively for inter-station distances of 10 km. Such small
probability of occurrences at scales smaller than 10 km shows the high
variability of the rainfall in the basin. The increase in the conditional
probability with an increase in the aggregation time of the rainfall data can
be caused by: (i) the presence of rain events with a duration that is longer
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than 1 hour; (ii) the movement of rain producing clouds at a speed that is
lower than the inter-station distance per hour, or (iii) the occurrence of
multiple rain events in the 6 hour or 1 day time period.

The fitted exponential model between the conditional probability of
rainfall occurrence and inter-station distance performed satisfactorily with
an R? value of 0.86 and 0.63 for the 1 hour and the 6 hour rainfall,
respectively. However, the model performed poor when it is fitted to the
conditional probability of daily rainfall occurrences since the probabilities
only vary over a very small range that does not show relation with inter-
station distance and as such a trend could not be established.

Haile et al. (2009d) have shown that the accuracy of the simulated
stream flows of the Gilgel Abbay watershed in Lake Tana basin depends on
whether a low land or a mountain rain gauge is considered. In the same
work, a relative error between observed and simulated stream flow of up to
100 % is reported when rainfall data from a single station served as model
input. Such indicates large variability in the rainfall over the study area that
largely affects the accuracy of runoff simulations. In particular the rainfall of
Sekela and Jema is very important and should be considered for runoff
modelling. The present study showed that Jema has high intensity events
while Sekela has the largest number of events with relatively short IET.
Also, the two stations have longest event duration as compared to the
stations in the low land areas.

Based on these result of the present study, we speculate that the rain
events of mountain areas have less soil erosive power than the rain events
in the low lands. We recommend that future studies should evaluate the
effect of soil erosion in the watershed since severe erosion has been
observed in the watershed during the field campaign of this study.
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Remote sensing based rainfall detection and estimation

ABSTRACT!

Many remote sensing based rainfall products have spatial
resolutions > 0.25° and temporal resolutions > 1 day which are coarser than
what is typically needed in hydrology. In this study, the rainfall data that
served as the ground-truth for rainfall is obtained from the Precipitation
Radar of the Tropical Rainfall Measuring Mission (TRMM) which acquires
data at 5 km resolution once or twice a day. The remote sensing data for
rainfall detection and estimation is obtained from the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) of the Meteosat Second Generation
(MSG-2) which acquires data at 3 km resolution at 15 minutes interval.
Three MSG-2 channels are evaluated for rain detection in the Upper Blue
Nile area in Ethiopia by the following indices: (1) the 10.8 um brightness
temperature, (2) the rate of change of the 10.8 um brightness temperature,
(3) the space gradient of the 10.8 um brightness temperature, (4) the
brightness temperature difference (BTD) at the 10.8 um and the 6.2 um and
(5) the BTD at the 10.8 pm and the 12.0 um channels. The evaluation was
made through categorical statistics that are bias, probability of detection,
false alarm ratio and Heidke skill score. In this work also, an exponential
model was developed for thermal infrared based rainfall estimation. The
model was evaluated using observations from a rain gauge network that
was installed at the source basin of the Upper Blue Nile River.

Keywords: Rainfall detection, Rainfall estimation, MSG-2, TRMM PR, Blue
Nile

! This chapter is based on: Haile, A. T., Rientjes, T., Gieske, A., Gebremichael, M.,
2009. Multispectral remote sensing for rainfall detection and estimation at the
source of the Blue Nile River, International Journal of Applied Earth Observation and
Geoinformation, http://dx.doi.org/10.1016/j.jag.2009.09.001 (In press).
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Remote sensing based rainfall detection and estimation

5.1. INTRODUCTION

Accurate rainfall estimation requires frequent observations with
continuous spatial coverage. Such observations are available from
geostationary satellites which carry sensors that measure radiances at a
range of wavelengths. The most commonly used is the thermal infrared
(TIR) radiance that is recorded in the wavelength range of 10.0 — 12.5 um
(e.g., Griffith et al, 1978; Negri et al., 1984; Adler and Negri, 1988).
However, TIR data do not provide direct observations of either surface
rainfall rates or cloud profiles of, for instance, cloud water content that
affect the rainfall process.

In TIR based rainfall estimation, rainfall rates are inferred from
cloud top temperatures. The underlying physical assumption is that
relatively cold clouds are associated with thick and high clouds that tend to
produce high rainfall rates. The limitation of this approach is that different
vertical profiles of clouds, which result in different rainfall rates, can have
the same cloud top temperatures. A second limitation is the difficulty to
detect clouds that produce rainfall. TIR based approaches assume that rain
occurs when the cloud top temperature is less than a selected threshold. For
instance, a threshold of 253 K was applied by Griffith et al. (1978) while a
threshold of 235 K was applied by Arkin (1979) and Arkin and Meisner
(1987) for the GOES precipitation index (GPI). However, as shown by Todd
et al. (1995), the effectiveness of a constant temperature threshold is
questionable as it ignores several factors such as the rain water profile in a
cloud system that govern rain generation.

The limitation associated with the inability of TIR sensors to detect
signals from the cloud profile that affect rainfall generation can be
overcome by the use of microwave (MW) sensors which respond primarily
to precipitation-size hydrometeors in the cloud profile. Currently, MW
sensors are mounted only on low-altitude orbiting satellites and therefore
the observations are snapshots that are available once or twice a day. Such
observation frequency makes it difficult to capture the temporal dynamics
of cloud systems.

The complementary strengths of the TIR and the MW sensors have
led to the development of algorithms that use multispectral channels for
rainfall estimation. Some examples of such algorithms are PERSIANN (Hsu
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et al., 1997; Sorooshian, et al., 2000; Hong et al., 2005), NRLgeo (Turk and
Miller, 2005), TRMM 3B42 (Huffman et al., 2007). Most of these products
are available at spatial resolutions > 0.25° and temporal resolutions > 1 day.
However, the spatial resolutions in particular are coarser than what is
typically needed in hydrology and water resources.

Motivated by the need to develop rainfall products of high temporal
resolution, in the present study, a relationship is established between MW
based rainfall rates and TIR brightness temperatures at a resolution of 5 km.
The MW based rainfall rates are obtained from the orbiting TRMM
(Tropical Rainfall Measuring Mission) precipitation radar (PR) sensor. The
TIR brightness temperatures are obtained from the geostationary MSG-2
(Meteosat Second Generation) channel of 10.8 um which is probably the
most commonly used channel for rainfall detection and estimation. Various
methods are evaluated and tested for rain detection using TIR based indices
from MSG-2. The TRMM PR rainfall estimates served as a reference data to
evaluate the rain detection methods. Also, rainfall is estimated by a simple
exponential rainfall model using MSG-2 TIR brightness temperature for
which the accuracy of the estimates was evaluated using rainfall
observations from a network of rain gauges.

In addition to the 10.8 um brightness temperature (T10s), various
TIR indices are evaluated for rain detection. The TIR indices are the rate of
change of Tws (ATiws ), the space gradient of Tws (VTiws) , and the
brightness temperature differences (BTD) between the 10.8 um and the 6.2
pum channels (T10s - Ts2), and the 10.8 um and the 12.0 um channels (T10s -
Ts.2).

5.2. DATA SETS

5.2.1. Remote Sensing observations

Observations from remote sensing which are used in this study are
rainfall rate estimates from TRMM PR and brightness temperatures from
three MSG-2 channels. The TRMM PR rainfall rates served as the reference
data set for calibration and evaluation of the brightness temperature indices
for rainfall detection and estimation. Among the variables in the TRMM PR
product 2A25, we used only the near-surface rainfall rate to calibrate and
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evaluate the MSG-2 brightness temperatures for rainfall detection and
evaluation. The 2A25 products represent snapshots of rainfall rates at a
horizontal resolution of 5 km and a temporal frequency of 1 or 2
observations per day depending on the latitude. The 2A25 products are
processed by the TRMM science team using the algorithms described in
Iguchi et al. (2000) and Meneghini et al. (2000). The 2A25 products and other
TRMM products can be downloaded free-of-charge following the links at
http://daac.gsfc.nasa.gov/precipitation/.

Observations from MSG-2 sensors have a spatial resolution of 3 km
at nadir and a temporal resolution of 15 minutes. The following three
channels of MSG-2 are used in the present study: water vapor (WV) channel
at 6.2 um, TIR channel at 10.8 pm, and TIR channel at 12.0 pm. Information
about MSG-2  observations is available from  EUMETSAT
(http://www.eumetsat.int). ~Software to convert MSG-2 radiance
observations to brightness temperatures and to re-project the images to
Universal Transverse Mercator (UTM) projection at selected grid element
sizes is developed by Gieske et al., 2005; Maathuis et al., 2006.

The following processing steps are followed here. First, the region of
interest is defined as a region covering 5° latitude by 5° longitude with the
Lake Tana basin located at the centre. Second, 17 convective events are
selected for this region based on TRMM PR observations for the time period
June — August of the years 2006 and 2007. Convective events were selected
if the lowest TIR temperature in an image was less than 210 K which
indicates heavy rainfall. It was also checked whether cloud systems were
not a result of merging of multiple clouds that affect cloud top
temperatures. Third, the MSG-2 images that were acquired close to the
TRMM PR overpasses are identified for collocation of the two data sets in
time. This procedure is necessary since the TRMM PR and MSG-2
observations are seldom acquired at the same time. Fourth, the MSG-2
images are re-sampled at the resolution of the TRMM PR rainfall estimates
to match up the respective resolutions at 5 km. Fifth, the PR surface rainfall
rates and the TIR brightness temperatures are collocated in space to
coincide observations.

Similar to the work by Vicente et al. (1998), the surface rainfall rates
and the brightness temperatures are collocated in space for each of the 17
convective cloud fields. The two data sets are joined based on the principle
that the lowest TIR temperature matches with the highest PR rainfall. Figure
5.1 shows that there is a shift of one or two pixels between the highest
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rainfall rate and the lowest brightness temperature. The rainfall rate
decreases exponentially with an increase in brightness temperature after the
two images are collocated. Such a procedure assures that the highest rainfall
rate is assigned to the lowest cloud top brightness temperature. This
procedure is selected, as also pointed out by Vicente et al. (1998), to
minimize collocation errors for instance due to the small differences in time
at which images are acquired. The procedure is applied for each of the 17
events. Collocation is manually checked to rule out errors that could occur
when multiple clouds are within the same image. In total, about 4500 pixels

of cloud top temperature and rainfall rates are collocated.
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Figure 5.1: Comparison of T1.s and TRMM PR rain rates for July 12, 2007 at 10:45.
(a) and (b) show the original images while (c) shows the collocated (matched) image
and (d) shows relation between T1os and rainfall rate after collocation by the
principle that the highest rainfall rate corresponds to the lowest T1s. The hollow
circles in (a) and (b) indicate the space shift between the highest convective rainfall
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locations from the two images. The map scale is 1:500,000.
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5.2.2. Ground based observations

The ground based observations are obtained from 10 tipping-bucket
rain gauges that were installed in the Lake Tana basin in May 2007 and rain
data has been collected since then. The inter-station distance of the rain
gauges ranges between 5 km to 82 km with an average of 35 km. The terrain
elevation of the stations is between 1798 m and 2715 m above mean sea
level. Further information on the rain gauge network layout and the
statistics of the observed rainfall is given in the work of Haile et al. (2009)
and in chapter 3 of this thesis. On the basis of the rain gauge data, 9
convective rainfall events are identified for the time period June — August
2007 that are used in the present study.

5.3. METHOD OF ANALYSIS

5.3.1. Rainfall detection

To evaluate the effectiveness of TIR based rainfall detection, the
various TIR indices that yield information on spatial and temporal cloud
dynamics are evaluated. The indices are developed based on the brightness
temperatures at three of the MSG-2 channels. The selected indices are (1) the
brightness temperature at the 10.8 um channel (T10s); (2) the rate of change
of brightness temperature over two consecutive images (AT,,5); (3) the
space gradient VT, ; over connected pixels in an image; (4) the brightness
temperature differences (BTD) at the 10.8 um channel and the 6.2 pm
channels (T, —T 4,) and (5) BTD at the 10.8 um channel and the 12.0 um
channels (T)ys —T,,,). The indices are discussed in the following

paragraphs.

The rate of change in T,,5over time (AT, 3) provides information

on cloud stage development (e.g., Griffith et al., 1978; Vicente et al., 1998)
and is defined as:

Tiosi — Tosiv
AT, = 108, 108,i-1 (5.1]

At
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where: At is the time difference between two consecutive images

(i.e. 15 minute for MSG-2), and | is a time index.

The space gradient of T,,, (VT,,5) serves to yield information on

rain producing clouds (e.g., Weiss and Smith, 1987) and is defined as:

2 2

where: x and y are the Cartesian coordinates. The space gradient of
T, in equation [5.2] is estimated using a central difference approximation

for the second derivatives.

One of the challenges in TIR-based rainfall detection is to
differentiate convective cloud systems that produce rainfall from other
high-level (i.e. cold) cloud systems such as cirrus clouds that do not
produce rainfall. The top surface of both cloud systems can have equally
low Ti0s. However, the cirrus cloud systems only are thin that as such do
not produce rainfall. Such cloud systems may be incorrectly classified as
rain producing clouds if the brightness temperature at the 10.8 um channel
is used as an indicator. Improving the accuracy of cirrus clouds detection
could therefore lead to a better rainfall detection capability. Cirrus clouds
could be detected using information from three MSG-2 channels as further
described below.

Fritz and Laszlo (1993) described that for cloud tops in the
troposphere where air temperature decreases with height, the water vapor
above the cloud top usually is colder (T4 >Ty,) than the cloud top
temperature at 10.8 um that as such could provide information that is useful
for rainfall detection. On the other hand, if the cloud is thick and the top is
above the tropopause, thenT,,;, <T;,. Therefore, following Kuligowski
(2002), the index T,j4 — T4, is used for rainfall detection by identifying

clouds with tops that are in the troposphere or above the tropopause.

A second approach to assess the presence of cirrus clouds is based
on the 10.8 pum and the 12.0 um channels. At the two channels, the
emissivity values for cirrus clouds may differ substantially while the
emissivity of thick clouds is close to 1. Therefore, thick clouds have small
values of T, 3 —T,, while thin clouds have large values of T, —T,,,

(Inoue, 1987) which indicate cirrus clouds.
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5.3.2. Rainfall estimation

Following the approach by Vicente et al. (1998); Boi et al. (2004) and
Wardah et al. (2008), we fitted an exponential model to relate the TRMM PR
rainfall rates to the MSG-2 brightness temperature Ti.s that is most
commonly used in rainfall estimation:

R=axexp(-b(T,; —T,)) [5.3]

where: R the rainfall rate averaged at each 1 K temperature interval;
Tt is a threshold temperature; a, b and c are constants, i.e. empirical
parameters that are estimated by least squares fitting; R is in mm hr! and
T1s is in K. A threshold temperature (T:) of 180 K was used to limit the
constant values to practical values. It is noted that Tis is always higher
than 180 K at the source of the Blue Nile River.

5.3.3. Performance measures

Categorical statistics are used to evaluate the effectiveness of the
selected TIR indices to detect rainfall. In this evaluation, the TRMM PR
surface rainfall rates are considered as the ground truth and in a sense serve
as a reference. The categorical statistics in the present study are: bias,
probability of detection (POD), false alarm ratio (FAR) and Heidke skill
score (HSS).

The categorical statistics can be defined by using the standard 2 x 2
contingency table where reference is made to Kuligowski (2002); Doswell et
al. (1990); Todd et al. (1995) for detailed information. Table 5.1 shows the
contingency table of rain detection by a selected TIR index in reference to
the rain detection by TRMM PR. In Table 5.1, k is the number of pixels for
which both the TIR index and TRMM PR detected rainfall and therefore
indicates the number of pixels correctly classified as rainy by the TIR index;
f is the number of pixels for which rainfall is detected by only the TIR index
but not by TRMM PR and as such indicates the number of pixels incorrectly
classified as rain by the TIR index; m is the number of pixels for which
rainfall is not detected by the TIR index while it is detected by TRMM PR
and as such it indicates the number of pixels incorrectly classified as non-
rainy by the TIR index; z is the number of pixels for which rainfall is not
detected by both TIR index and the TRMM PR which indicates the number
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of pixels correctly classified as non-rainy by the TIR index. The categorical
statistics are defined as follows:

. f+h
bias = [5.4]
m+h
POD = h [5.5]
m+h
f
FAR = [5.6]
f+h
Hss =S —E [5.7]
N-E
C=h+z [5.8]
E=(h+f)(h+m)+(f+z)(m+z) (5.9]
(h+m+z+f)
After substituting for C and E, equation [5.7] reads:
2(zh — fm) (5.10]

T (z+ £)(f +h)+ (M+h)(z+m)

where: C is the number of pixels for which both the TIR index and
the TRMM PR report the same result. E is the expected number of rainy
pixels correctly classified by the TIR index due purely to chance, see
Doswell et al. (1990). N is the total number of pixels that is (h+f+m+z).

Table 5.1: Contingency table

TIR based rainfall detection
Rain No-rain
TRMM PR Rain h f
rainfall
detection No-rain m z
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Bias is the ratio of the number of incorrect rain detection by a TIR
index to the total number of rain detection by TRMM PR and indicates
whether the selected TIR index underestimates or overestimates the number
of rainy pixels that are detected by TRMM PR. A bias greater than 1 implies
that the TIR index overestimates the number of rainy pixels while a bias of
less than 1 implies the TIR index underestimates. The POD is the ratio of the
number of correct rain detection by a TIR index to the total number of rain
detection by TRMM PR and it indicates the fraction of times the reference
rainy pixels are correctly detected by the selected index. A POD =1
indicates that the selected index correctly detects all rainy pixels. The FAR is
the ratio of the number of incorrect rain detection by the TIR index to the
total number of rain detection by the TIR index and it indicates the fraction
the selected index detects rainy pixels that were not detected by the TRMM
PR.

The HSS values range from -1 to +1. Some cases of HSS are (i) HSS =
0 for (h = 0) and (m = 0) which indicates that the reference data set (i.e.
TRMM PR) did not detect any rainy pixel. (ii) HSS = 0 for (h = 0) and (f = 0)
which indicates the TIR index did not detect any rainy pixel. (iii) HSS = -1
for ( (h = 0) and (z = 0) and (f = m)) that indicates the TIR index did not
correctly detect any rainy and non-rainy pixels, and the number of pixels
that are incorrectly classified as rainy and the number of pixels that are
incorrectly classified as non-rainy by the TIR index are equal. (iv) HSS =1
for (m = 0) and (f = 0) which indicates the TIR index did not incorrectly
classify any pixel.

These categorical statistics are estimated for various ranges of
threshold rainfall rates to evaluate the range of rainfall rates over which the
selected indices perform satisfactorily. For instance, if a threshold of 1 mm
h' is specified then a pixel is classified as rainy when the TRMM PR rain
rate exceeds 1 mm h-.

5.4. RESULTS

The statistics of the rainfall rates, which correspond to the 17 cloud
fields, are summarized. The frequency of occurrences of TRMM PR rainfall
rates that exceeded 1, 5, 10, 15 and 20 mm h! thresholds are 25.1, 8.9, 4.6, 2.4
and 0.6 percent of the total 4500 pixels considered. The mean rainfall for
rates higher than 1 mm hr! is 5.7 mm hr! and has a coefficient of variation
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of 1.0 indicating that the magnitude of the standard deviation is equal to the
mean.

5.4.1. Rainfall detection

Five TIR indices are applied to differentiate rainy from non-rainy
pixels. The indices are Tis, AT1ws, V T1ws, Tiws —Tez and Tis — T12zo. The
estimated categorical statistics are shown in Fig. 2 for a rainfall rate
detection threshold of 1.0 mm hr! which indicates a pixel is considered
rainy when the TRMM PR rainfall rate exceeds 1.0 mm hr!. For the TIR
indices, for instance, if the T10s threshold is 210 K then a pixel is considered
rainy when T1os is lower than 210 K. Figure 5.2 shows only the results for
the four best performing indices.

Figure 5.2 shows the categorical statistics are not equally sensitive to
the TIR indices. In terms of HSS, the performance of the rain detection
shows higher sensitivity to the Tis index than the other indices. The
highest HSS was obtained when using T10s or AT1w.s while the lowest HSS
was obtained when using T10.s — T120 (not shown in Figure 5.2) which was
applied to differentiate cirrus from thick clouds. The result suggests the
importance of considering both cloud top temperature and temporal
evolution of clouds in rainfall detection algorithms.

In terms of bias, the performance of the rain detection is sensitive to
all the indices except for the ATis index. The bias indicates AT10s
overestimated the number of rainfall occurrences while the other indices
overestimated or underestimated rainfall occurrences depending on their
threshold values.

In terms of POD, it is possible to obtain a POD value of 1.0 at some
value of T1os or AT indices. However, this is at the expense of large FAR.
For instance, the POD when using AT1s is always 1.0 but the FAR is still
large which suggests that the two categorical statistics should be interpreted
jointly since TIR indices that are selected based on high POD can result in
larger number of rainy pixels than detected by TRMM PR.
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Figure 5.2: Categorical statistics for rainfall detection using brightness temperature

(T1ws), rate of temperature change (ATws (here Delta Tis)), gradient of Tjgg

(VT10s (here Grad. T1.s)) and brightness temperature difference ( T1.s —Te.2). NB:
The rainfall rate threshold is 1.0 mm h'. The scales of the axis of the categorical
statistics are not equal for the selected indices.

Next, the optimized threshold values are identified for each of the
TIR indices by maximizing the HSS and the resulting statistics are shown in
Table 5.2 for threshold rainfall rates of 1.0 mm hr! and 10 mm hr'.
Considering rainfall rates higher than 10 mm hr! resulted in very few data
samples for the statistics and hence is ignored here.
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Table 5.2: Evaluation of rainfall detection using indices from MSG-2 images

T10s AT10s VTus T108—Ts.2 T108-T12.0
K  (Kmin?) (x1072 Km?) (K) (K)

Rainfall threshold = 1.0 mm h-!

0.724 and
Maximum HSS 0.716 0.642 0.210 0.334 0.092
-3.8 and
Maximum HSS at 215.0 0.2 0.2 6.0 2.5
POD 0.829 1.000 0.558 0.489 0.468
BIAS 0.937 1.928 0.890 0.635 0.929
FAR 0.115 0.476 0.374 0.230 0.435

Rainfall threshold = 10.0 mm h?

0.210 and
Maximum HSS 0.535 0.191 0.120 0.269 0.100
-3.4 and
Maximum HSS at 205.0 0.2 0.1 2.0 0.5
POD 0.580 1.000 0.344 0.324 0.200
BIAS 0.979 8.022 1.805 0.890 1.079
FAR 0.407 0.876 0.810 0.636 0.804

Considering all the indices, larger values of HSS and POD and
smaller values of optimized bias and FAR were mostly found for the 1.0 mm
hr threshold as compared to the 10 mm hr! threshold. For both thresholds,
the overestimation of rainfall occurrences was larger for ATw.s than for the
other indices. As such, the large POD value of 1.0 for AT is at the expense
of many false alarms of rainfall.

For both rainfall rate thresholds, the HSS values showed slight
sensitivity to AT1ws. The HSS results also suggest that the rainfall was
produced during the growing, the mature and the dissipation cloud stages.
Many studies assume that clouds produce rainfall during the growing stage
only (e.g. Griffith et al. 1978; Vicente et al. 1998). However, our results
suggest that such an assumption may affect the accuracy of the rainfall
detection approach since results indicate that rainfall occurs during the
three cloud stages.

In terms of HSS, T1.s and (T10.s — Te.2) performed better for detection
rainfall rates higher than 10 mm hr! than the other indices. However, (T10.s -
T120) showed the lowest performance with an optimized HSS value that is
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close to zero which according to Kuligowski (2002) suggests that the
number of correctly detected rainy pixels is not much higher than expected
to be estimated by random guessing.

For Ti0s, the optimum HSS value was found at 215 K for the 1.0 mm
hr! rainfall threshold and at 205 K for the 10 mm hr! rainfall threshold. The
result suggests that the accuracy of the traditionally used relatively high
temperature thresholds as in Griffith et al. (1978); Arkin (1979); Arkin and
Meisner (1987) is questionable for convective events.

In terms of bias, a temperature threshold that is higher than 215 K
leads to overestimation of rainfall occurrences. At the optimum HSS, Tios
largely outperforms the other indices in terms of bias, POD and FAR
although the HSS values for T1.s and AT10s indices are comparable.

In this study, the TIR indices are evaluated separately where two of
the indices are a combination of the brightness temperature from two
channels. The use of combined indices is left for future work.

5.4.2. Rainfall estimation

The mean of the TRMM PR rainfall rates at each brightness
temperature T1s and the 95 % confidence interval of the mean rainfall rate
are shown in figure 5.3a. The confidence interval (CI) is estimated using:

Cl=R+1.96-Z [5.11]

n

where: R and o are the mean and the standard deviation of the
TRMM PR rainfall rates at each 1 K temperature interval, respectively and n
is the number of data points at each temperature interval.

Figure 5.3a shows an exponential decrease of rainfall rate with an
increase in T1os. In the same figure it is shown that the calibrated model has
a standard error of 0.84 mm hr?! with constant values a = 45.851 mm hr?, b =
2.419%X10% and ¢ = 2.012. It is also shown that the confidence interval of the
mean rainfall rate is relatively larger at low temperature values than at high
temperature values.
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Figure 5.3: (a) Relation between estimated mean rainfall rate and brightness
temperature (T1s ). The 95 % confidence interval of the mean rainfall rate is
indicated by the vertical bars. Note: T is defined as T1w.s minus the threshold T:
which is set to 180 K. (b) Relation between standard ervor of mean rainfall rate for
each 1 K temperature interval and the number of data pairs of TRMM PR and
MSG-2 data used to estimate the mean.

A larger confidence interval at low temperatures can be caused by
difficulties in estimating rainfall from high level clouds using TIR
temperature as proxy variable and since high clouds are rarely observed in
the data set. The latter is also indicated by the results in figure 5.3b in which
the standard error of the mean rainfall rate is shown to decrease with an
increase in the number of data points. In figure 5.3b, the largest standard
error is associated to the lowest brightness temperature while the smallest
standard error is associated to Ti.s =210 K. Although it is not shown in the
figure, the standard errors at temperature values higher than 210 K are close
to zero.

5.4.3. Comparison against rain gauge observations

The rainfall estimates by the T1.s based exponential rainfall model
(i.e. Eq 5.3) are compared against the observations from the rain gauge
network. Figure 5.4 shows that POD for the rainfall model abruptly
decreased with an increase in rainfall depth threshold while in terms of bias,
the model underestimated the number of rainfall occurrences. However, it
cannot be conclusive on the cause of such low performance for high rainfall
depths partly since the “true’ spatial rainfall is not known.
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The performance of the rainfall model is also compared against that
of an inverse distance weighting (IDW) interpolation of the rain gauge
observations. A power of 2.5 was applied for the IDW scheme since smaller
weights were found more biased. The IDW estimates were defined through
cross-validation, i.e. by removing the station for which the IDW estimates
are made. In total, 73 data points have been used for comparison against the
reference rainfall that is obtained from the rain gauges.

Figure 5.4a shows that in terms of POD, the IDW method have
performed better than the TIR based rainfall model. In terms of bias, unlike
the rainfall model, the IDW overestimates the number of rainfall
occurrences, see figure 5.4b. The result suggests that even the interpolation
technique can result in poor performance for relatively high rainfall rates.
This is also shown by the scatter plot in figure 5.4c which indicates that both
methods perform poor when they are compared against the reference data.
An assessment of the errors in the rainfall estimates at hydrological relevant
spatial and temporal scales such as the catchment scale is necessary. Such is
a challenging topic in remote sensing based rainfall studies. For instance,
Hossain and Huffman (2008) used a dense rain gauge network to
investigate the errors in satellite based rainfall estimates, the spatial
variation of the errors and the temporal variation of the errors for
hydrological relevant scales that range between 0.04° to 1.0°. However, the
data base in the present study is too limited and the rain gauge network is
too sparse to carry out such studies and therefore future work in the region
should focus on quantifying the errors at scales that are effective in
hydrology.

5.5. CONCLUSION

In this study, observations from MSG-2 are used to detect rainfall
and to estimate rainfall intensities while rainfall rates from TRMM PR
served as ground truth. A network of 10 rain gauges was installed in the
Lake Tana Basin to evaluate the remote sensing based rainfall estimates.
The analysis revealed that by optimizing selected categorical statistics,
optimum threshold values can be defined for image based indices that can
be applied to detect rainfall.

For detecting rainfall rates higher than 1.0 mm hr?, the 10.8 um
brightness temperature (T1.s ) and the rate of Ti0s change (4T10s) indices
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performed better than the other indices that are the space gradient (V T10s)
and the brightness temperature differences (BTD) that are (T10.s — Ts2) and
(T108 — T120). For detecting rainfall rates higher than 10.0 mm hr, Ti0.s and
(T8 — Te2) indices performed better than the other indices. However, for
both rainfall thresholds, the BTD (T10.s — T120) which is commonly applied to
differentiate between cirrus clouds and convective clouds performed poor.
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Figure 5.4: (a) POD and (b) bias of the Thermal Infrared (TIR) based exponential
model and inverse distance weighting (IDW) rainfall estimates; (c) shows the plot
of the estimated rainfall by both methods against the reference rainfall as obtained
from the rain gauges.

Thresholds of 215 K and 205 K for Tiws can be used to detect
convective rainfall rates higher than 1.0 mm hr! and 10 mm hrt,
respectively. These temperature thresholds are much lower than the
commonly applied thresholds in TIR based rainfall estimation such as 235 K
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or 253 K. The two commonly applied constant temperature thresholds
overestimated the number of rainfall occurrences in the study area.

For the TIR based rainfall model, the POD decreased rapidly with
an increase in the selected threshold of rainfall depth. In terms of POD, the
performance of the rainfall model was poor compared to that of the IDW
interpolation method. In terms of bias, unlike the IDW approach, the rainfall
model underestimated the number of rainfall occurrences.

Validation of the remote sensing estimates in areas like the Lake
Tana basin is still a research challenge partly due to lack of knowledge on
the ‘true’ spatial rainfall rate as affected by many local factors such as the
presence of Lake Tana and the mountain areas. It is noted that presumably
the rain gauge network in the basin is too sparse too capture the time-space
distribution of rainfall. As such, research is required to study the rainfall
structure for scales smaller than 5 km and to study the effect of variability of
rainfall at scales smaller than the pixel scale on the accuracy of the rainfall
detection and estimation.
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ABSTRACT!

Motivated by the need for rainfall prediction models in data scarce
areas, a simple storage based cloud model is adapted to routinely available
thermal infrared (TIR) data. The data is obtained from the Spinning
Enhanced Visible and InfraRed Imager (SEVIRI) of the Meteosat Second
Generation (MSG-2) satellite. Model inputs are at 15 minute intervals of TIR
temperature of cloud top and at 30 minute interval observations of pressure,
temperature and dew point temperature from ground based stations. The
sensitivity of the parsimonious cloud model to its parameters is evaluated
by a regional sensitivity analysis (RSA) which suggested that model
performance is sensitive to few parameters. The model was calibrated and
tested for four convective events that were observed during the wet season
in the source basin of the Upper Blue Nile River. Simulation results are
satisfactory and indicate the effectiveness of this approach as evaluated by
selected performance measures. The various characteristics of the rainfall
events are satisfactorily simulated when ground based and remote sensing
observations are combined.

Key words: Blue Nile, Lake Tana, rainfall simulation, conceptual model,
MSG-2, Remote sensing

1 This chapter is based on: Haile, A. T., Rientjes, T., Gieske, A., Jetten, V. G,,
Gebremichael, M., 2009. Satellite remote sensing and conceptual cloud modelling
for convective rainfall simulation, Advances in Water Resources. Conditionally
accepted.
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6.1. INTRODUCTION

Prediction of convective rain events in data scarce areas is often
hampered by unavailability of meteorological data at the ground surface as
well as unavailability of atmospheric data that affect rain production.
Rainfall prediction models in general can be grouped in statistical and
numerical weather prediction models. Characteristic to statistical
approaches is that the models do not simulate cloud dynamics to predict
rainfall but much more rely on statistical analysis of historic rainfall
observations. Statistical models commonly apply a set of multiple linear
regression equations and as such are relatively simple. As opposed to these
approaches, Numerical Weather Prediction (NWP) models are complex and
data-demanding by the use of gridded and layered model domains for
which sets of partial differential equations are solved. These approaches
however have difficulty to predict highly dynamic convective rainfall
systems since they commonly operate at much larger scales as compared to
those at which convective cloud systems develop. Also, NWP models
require a large amount of input data that commonly restricts their
applicability.

An alternative to these approaches is to use models that have a
physical base with a simple structure. Such models should only require
input data which is routinely available but also should be parsimonious to
allow application in areas that are data scarce. Such approaches are
advocated, for instance, by Georgakakos and Bras (1984) and Dolciné et al.
(1998) and the reader is also referred to the works by Wardah et al. (2008)
and Haile et al. (2009b), see Chapter 5 of this thesis, where remote sensing
observations serve as model inputs to estimate convective rainfall based on
simple exponential models.

In the present study, the objective is to develop a parsimonious
conceptual cloud model to predict convective rainfall in a data scarce area
while input data must be through remote sensing and simple routinely
recorded ground observations. The rational for the study is to further
develop and evaluate the simple cloud model by Georgakakos and Bras
(1984a,b) through the availability of the observations of the Meteosat
Second Generation (MSG-2) satellite at 15 minutes interval. In this study, it
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is hypothesized that such high frequency of observation reflects on cloud
properties that affect rainfall generation in convective cloud systems.

Georgakakos and Bras (1984a,b) developed a simple one layer,
storage based cloud model with routinely available observations from
meteorological stations as inputs. The approach did not explicitly model the
details of micro-physical cloud processes but, by storage based accounting
principles, the model simulated rainfall by reserving the mass balance. In
the same work, the modeling of the cloud water phase was ignored
although this phase acts as an intermediate phase between the water vapor
and the rain water phases.

French and Krajewski (1994) and French et al. (1994) extended the
model by Georgakakos and Bras (1984a,b) by using ground-based radar
observations at temporal resolution of 10 to 15 minutes and satellite based
thermal infrared (TIR) observations at temporal resolution of 1 hour.
Results of this work were satisfying when satellite observations were
combined with radar observations but the relatively low temporal
resolution of 1 hour must be considered too low to capture the dominant
dynamic properties of convective cloud systems. The model by
Georgakakos and Bras (1984a,b) was also considered by Bell and Moore
(2000b) and Andrieu et al. (2003) who wused ground-based radar
observations as model input. Both works indicated that model inputs at
(higher) temporal resolution of 10 — 15 minutes could improve the
performance of the model but results also indicated some deficiencies of the
applied cloud model. Deficiencies appear to be primarily related to
mismatches between rainfall intensities and rainfall volumes for the various
events simulated. Also, Andrieu et al. (2003) speculate that ignoring the
time required for condensation of water vapour is the main reason that
rainfall is produced too quickly in comparison to field observations of
rainfall.

A major challenge to further develop the conceptual model by
Georgakakos and Bras (1984a,b) is to improve model performance while
retaining the parsimonious nature to allow application in data scarce areas.
With respect to model performance, the model should accurately simulate
duration and the onset point when rainfall starts to fall from a cloud and it
should accurately simulate the rainfall intensity distribution during the
various stages of cloud development. Also, the cloud model must produce
good estimates of the observed rainfall volume. Although much knowledge
on model complexity and effective performance evaluation is gained in
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hydrology, only few efforts are reported in the previous works to evaluate
effects of model complexity and related model parameterisation.

In this study, the model by Georgakakos and Bras (1984a,b) is
adapted and its performance is evaluated for the three objectives described
above when two coupled reservoirs are defined to simulate convective rain
events. Such allows considering the differences in rainfall response time
along the vertical cloud profiles. This study differs from the work by
French et al. (1994) since the model inputs are remote sensing observations
at 15 minutes interval and ground based observations at 30 minutes
interval. These relatively high observation frequencies are considered in this
study to be essential for capturing the dominant properties of convective
rain producing cloud systems. The model performance is evaluated for a
data scarce region at the source basin of the Blue Nile River that has poor
spatial and temporal correlation structure (Haile et al., 2009a) and where
radar observations are absent.

The sensitivity of the model to its parameters is also evaluated.
Model sensitivity is assessed through Regional Sensitivity Analysis (RSA) as
available in the Monte Carlo Simulation Toolbox (MCST) (Freer et al., 1996;
Wagener et al., 2001). In rainfall-runoff modeling such analysis has proven
to be very effective in the work by Demaria et al. (2007) for instance. In this
study, the RSA approach is applied to evaluate the sensitivity and
performance of the conceptual cloud model to its parameters.

6.2. MODEL APPROACH

6.2.1. Model equations

Continuity equations for saturated water vapour, cloud water, rain
water and air density are given by French and Krajewski (1994) and Bell
and Moore (2000b) and here are presented as follows:

0Q,

7 +V. QVU = —AQC [6.1]
a%+ V.Q.0 = AQ, - AQ, [6.2]
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azR ¥t a(VVT ER)
ot R oz R [6-3]
op _
—24+V-p =0 6.4
Pa [6.4]

where: U is a vector of wind velocities in X,y and Z directions of a
Cartesian coordinate system, respectively; t is the simulation time step and
W; is the terminal velocity of rain water in still air. The quantitiesQ,, Q,

and Qgare saturation water vapor, cloud water and rain water
concentrations, respectively; p, is the density of dry air; 0/0t indicates the

local time derivative; V is the divergence operator; A indicates the rate of
change; AQc and AQrare the rate of conversion of saturated water vapour to
cloud water and the rate of conversion of cloud water to rain water,
respectively.

ONE LAYER MODEL

The set of continuity equations (equations [6.1 — 6.4]) commonly is at
the core of the algorithms of the complex NWP models but require
simplifying assumptions when applied to the simple storage based cloud
model as developed in this study. Assumptions however must be plausible
while the principle of mass conservation must be respected. A first
assumption is that the rate of conversion of water vapour to cloud water
(AQ,) is equal to the rate of cloud water conversion to rain water (AQg)
with a transfer efficiency of 100 % (French and Krajewski, 1994). This
assumption suggests that the water vapour input is directly transferred into
liquid water and makes equation [6.2] redundant. A second assumption is
that air is incompressible and thus air density becomes a fixed property that
does not require updating during a simulation and makes equation [6.4]
redundant.

By the first assumption, equation [6.1] and equation [6.3] can be
combined to:

0 .0 _ 0(QgW.
%+V-Qvu+%+V-QRu—%=O [6.5]

When assuming V-0 = 0, the second and fourth terms of equation
[6.5] can be expressed as follows:
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QR . 9Q

V-Qu=u +V +W 6.6
Q, ox oy o [6.6]

V-QRU:uéQR +anR +WaQR [6.7]
OX oy 0z

where: u, v, and w are wind velocities in X,y and Z directions of a

Cartesian coordinate system, respectively. The remaining terms are as
defined previously.

Air is assumed to be incompressible and its saturation vapour
density is assumed to be locally steady and horizontally uniform (Bell and
Moore, 2000b) and thus only vertical variation of QV has to be considered.

Thus the first term of equation [6.5] and the first and second term of the
right-hand side of equation [6.6] are eliminated. By the assumption that rain
water content is horizontally uniform, the first and second term of the right-
hand side of equation [6.7] are eliminated. After substituting the non-zero
terms of equations 6.6 — 6.7 in equation 6.5, after rearranging for the local
derivative of the rain water concentration and when grouping similar
terms, equation [6.5] becomes:

8?; =W a§” + %[QR Wy —w)] [6.8]

where: Wis updraft velocity which is the wind velocity in the
vertical direction. The remaining terms are defined previously.

By integration between the bottom level (Z,) and the top level (Z,)

of a unit area of cloud layer equation [6.8] becomes:

ds
g = o Qn —Qu) = (Wr —wp)S, [6.9]
S = J' Qgdz [6.10]

where: S is the liquid water amount that is vertically integrated
over the cloud layer; W, is the vertically averaged updraft velocity; S, is

liquid water (i.e. rain water) concentration at the bottom of the cloud layer;
Q,, and Q,, are the saturation water vapour concentrations at the cloud

bottom and cloud top surfaces, respectively. The remaining terms are

121



Remote sensing based conceptual cloud modelling for rainfall simulation

defined in the previous paragraphs. Following Georgakakos and Bras
(1984a,b), a vertically-averaged updraft velocity W, is assumed in the cloud

layer. The left hand side of equation [6.9] indicates that S is defined as a
function of time.

TWO LAYER MODEL

In the work by Georgakakos and Bras (1984b) and Bell and Moore
(2000b), it is shown that it is rather difficult to simulate rainfall events
accurately with a one layer model. Here, it is hypothesized that these
mismatches are caused by incorrect estimates of the response time that
applies to the entire cloud layer. Such limitation restricts the models
applicability when several peak intensities characterise a rain event. To
overcome such limitations, Sinclair (1994) used a vertically varying rain
formation time in one dimensional cloud modelling by arguing that the rain
formation time in the upper part of a cloud system is longer than the rain
formation time in the lower part of a cloud system. Such difference could
result in several peak intensities in the hyetograph of a rain event. It is
noted that rainfall intensity observations in the study area, which is the
Gilgel Abbay watershed in Lake Tana basin, show that the rain events
usually have more than one peak intensity.

Following the line of argument that is presented in the previous
paragraph, the assumption that a cloud system can be represented by a
single layer of reservoir (see Georgakakos and Bras, 1984a,b) has been
relaxed. Instead, an alternative approach that represents the cloud system
by two layers of reservoir is proposed, see figure 6.1. It is noted that the set
of equation 6.5 — 6.10 easily can be applied for more than two layers but
such can be against the premise for the development of a parsimonious
conceptual model.

In this work a two layer model is proposed and equation [6.9] is
adapted as follows:

ds
d—tl=Wo (Qu _Qvi)_(\NTl —W;)Sy, [6.11]
ds
d_t2 =W, (Q,i — Q) — Wy, —w,)S,, [6.12]

where: the subscripts 1 and 2 indicate the lower and the upper part
or, in modelling terms, layers of a cloud model. S is the liquid water
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amount that is vertically integrated over the cloud layer; S, is the rain

water concentration at the bottom of the cloud layer; Q, and Q, are

saturation water vapour concentrations at the bottom of the lower layer and
at the top of the upper layer, respectively; Q, is saturation water vapour

concentration at the interface of the two layers; W; is the terminal velocity
of rain water in the layers. The vertically-averaged updraft velocity (W, ) in

the two layers is assumed equal while the updraft velocity is maximum at
the interface of the two layers that is assumed where the pressure gradient
in the cloud column is highest. Figure 6.1 shows the model schematization
for the two layer model and reference is made to Georgakakos and Bras
(1984b) and French and Krajewski (1994) for further description.

Ty, Py

3

Cloud top 1 E
[__X_f 1 =7 __W__2x_ Description of terms:
1 = Saturated water vapor

input to lower layer
W, 2 = Saturated water vapor
A input to upper layer
which is the same as
water vapour output

2 4 from lower layer
Interface of the P_ L __L Ti » P 3 = Saturated water vapor

output from upper layer
4 = Rainfall from upper layer
to lower layer
T 5 = Rainfall from the cloud
b+ Pp system

W, = Updraft velocity
Cloud bottom l 0

Grqund

Figure 6.1: Schematization of the two layer model. T and p are temperature and
pressure while subscripts 0, b, i and t indicate the temperature and the pressure
at the ground surface, the cloud bottom, the interface of the layers and the cloud
top surfaces, respectively.
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Equations [6.11, 6.12] describe the mass balance of the cloud layers
and their solution requires defining the terms which govern the rate of mass
exchange. These terms are pressure and temperature at the bottom and top
surfaces of the layers. In the following sections, the model inputs are
presented first which is followed by the estimation of pressure and
temperature.

6.2.2. Model inputs

The model inputs are ground-station pressure ( p,), temperature
(T,) and dew point temperature (Td,), and cloud top brightness
temperature (T, ) from the sensor of the MSG-2 satellite. The ground-station

observations have a temporal resolution of 30 minutes while the MSG-2
images have a resolution of 15 minutes. Following French et al. (1994), the
10.8 um brightness temperature is used as a proxy variable of cloud top
temperature based on the assumption that the 10.8 um emissivity of thick
clouds is 1.0. Such assumption is plausible when convective clouds are thick
and is commonly applied in TIR-based rainfall estimation (Adler et al., 1993;
Boi et al., 2004; Todd et al., 1995). It is noted that the brightness temperature
images have a spatial resolution of 3 km at nadir.

Ten tipping-bucket raingauges and a weather station were installed
in the Gilgel Abbay watershed in May 2007. Information on the raingauge
network and the statistics of the collected rainfall data are presented in the
work of Haile et al. (2009a). Data from Durbet station have been used to
calibrate the conceptual model and to evaluate model simulations. The
station is selected since both rainfall and weather variables that are
pressure, temperature and dew-point temperature are observed at the
station. Rainfall at this station is dominated by light to moderate rainfall
and has few convective rain events during the three month for which high
resolution observations are available. It is noted that other network stations
in the Gilgel Abbay area have recorded (many) more convective events but
pressure, temperature and dew-point temperature are not available.
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6.2.3. Model parameterization

PARAMETERIZATION OF THE ONE LAYER MODEL

First, the model parameterization for a one layer model will be
presented that will be followed by a discussion on the difference between
the parameterization of the one layer and the two layer models.

Cloud bottom pressure and temperature

The governing equations to estimate the lifting condensation level
(cloud bottom) pressure ( P,) and temperature (T,) are, see Georgakakos

and Bras (1984a):

1
P, = — P, [6.13]

To-Td, )
223.15
1

T,-Td,
22315

where: the terms are as defined previously. Equations 6.13 — 6.14 are

T, = Ty [6.14]

applicable for the dry adiabatic condition, i.e. for T,, <T,. At initiation

stage of cloud formation in the model, the cloud bottom temperature just
exceeds the cloud top temperature, which is obtained from MSG-2
observations. As such, the time instant at which the cloud bottom
temperature exceeds the cloud top temperature is considered as the onset
point for the simulation period, i.e. t = 0.

Estimation of cloud top pressure from remote sensing observation

The cloud top temperature obtained from the TIR images has been
used to estimate the cloud top pressure. First, the cloud layer is sliced in to
several thin layers that have equal temperature differences between their
top and bottom levels. Next, the pressure of the top of the first layer is
estimated using the pressure and the temperature of the cloud bottom. The
estimated pressure and the temperature of the top of the first layer serve as
the start values to estimate the pressure at the top of the second layer. This

125



Remote sensing based conceptual cloud modelling for rainfall simulation

is repeated until the pressure of the cloud top is estimated while the entire
procedure is repeated for all simulation time steps.

The equation to estimate the pressure can be expressed in finite
difference form as follows (Stull, 2000):

0
pj+1 = pj +[8_$) '(Tj+1_Tj) [6.15]
]

And,

©

1+ b-,
op sz
(_j - L [6.16]

or),  aT +co

(rj+1_Tj)

where: Tj is the temperature at pressure level p; while Tj1 is the

j=04,...int MJ [6.17]

temperature at pressure level pP;,;; ®;is saturation mixing ratio. The index

j is a space index that indicates the pressure level while “int” indicates that
an integer value is considered as a result of rounding-off. The temperature
and pressure at the cloud bottom serve as start values, i.e. initial values.
The solution for equation (15 — 16) is obtained by estimating the pressure
from an initial temperature T at the cloud bottom and an initial pressure
P, at the cloud bottom up to temperature Tt at the cloud top by introducing

a constant temperature step of (AT =T — T;j) which should be small
enough (here 0.1 K) to avoid instability of the solution procedure and to
ensure sufficiently accurate pressure values.

In equations 6.15 — 6.16, ,is the saturation mixing ratio at pressure

P; and temperatureT;. The equation to estimate the saturation mixing

ratio is given in Georgakakos and Bras (1984a) and in meteorological text
books such as by Stull (2000) and will be presented in the subsequent
paragraphs. Following Stull (2000), the remaining terms of equation [6.16]
are: a=0.28571, b =1.35 * 107K?, ¢ =2488.4 K.
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Rate of liquid water input

The rate of liquid water input to a unit area of cloud layer which
results from the ascent of a moist air is given by Georgakakos and Bras
(1984a):

| = p, - AW, [6.18]

where: [ is the rate of liquid water input to a cloud layer; p,, is the

vertically averaged density of moist air for the cloud layer; Aw is the
change in mixing ratio between the cloud bottom and the cloud top surface
and W, is the vertically averaged updraft velocity in the cloud layer.

The approximation introduced by Georgakakos and Bras (1984a) to
estimate the saturation mixing ratio at a cloud top surface results in non-
numeric values for cloud top temperatures lower than 223 K by a negative
number to the power 3.5. However, MSG-2 observations indicate that
temperatures of lower than 223 K are common for the top of the cloud
systems at the source of the Blue Nile River and equations 6.20-6.21 are
applied in this study, (see Stull, 2000).

The change in mixing ratio in equation [6.18] is defined as follows:

Ao =wy, -y [6.19]

The saturation mixing ratio at ground surface is defined as follows,
see Stull (2000):

Oy = o [6.20]
po - esO
With,
e, =611-exp Lt [6.21]
R, (273 Ty,

where: @, is the saturation mixing ratio at the dew point
temperature and the pressure at the ground surface; @, is the saturation
mixing ratio at temperature and pressure at the cloud top surface; €, is
saturation vapour pressure at ground surface dew point temperature T,,;

exp is the base of the natural logarithm; L is latent heat of vaporization and
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R

defined previously. The saturation mixing ratio at the cloud top @, is

, is the gas constant for water vapour. The remaining terms are as

estimated using the same form of equations 6.21 — 6.22 by replacing p, and
Ty4o by P, and T,.
The updraft velocity in equation [6.18] is estimated following

Georgakakos and Bras (1984b), French and Krajewski (1994); Bell and
Moore (2000b):

W, =e,(C,AT)" [6.22]
With,
AT =T _-T' [6.23]

where: €, is a parameter for updraft velocity; ¢y is the specific heat of
dry air under constant pressure; Tw is the cloud temperature at pressure p'

in a cloud layer assuming pseudo-adiabatic ascent and T' is the ambient
temperature at pressure P’ in a cloud layer. Following Georgakakos and

Bras (1984b), the pressure pP' and the temperature T' are:

p'=p, —0.25(p, - p,) [6.24]
T
TI: 0.(;86 (pl)0.286 [6.25]

where: p, and P, are the pressure at the cloud bottom and the

cloud top.

At each simulation time step, the temperature Tw at pressure level
p' in a cloud layer is estimated by re-arranging equations 6.15 — 6.16 to

solve for T,,, instead of p;, until p; equals p'. In the procedure, a
constant pressure step of (Ap = p;,; — P;) and start values of temperature
and pressure at the cloud bottom are used.
Rainfall rate

The rainfall rate from a cloud layer is estimated by the assumption

that the rate is governed by the liquid water amount that is vertically
integrated and by the response time of the cloud layer. The equation reads:
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R=> [6.26]
.

where: R is the rainfall rate from a cloud layer; S is the liquid
water amount that is vertically integrated over the layer and 7 is the
response time of the layer, i.e. the time required to drain a unit depth of the
cloud layer. The response time is defined as:

1

T=——"— [6.27]
W; —w,

where: the terms are as defined previously. As discussed in the
work by Bell and Moore (2000b), the response time of a cloud layer is
considered a calibration parameter.

By introducing the parameters, the equation for the one layer model
(equation [6.9]) now reads:

o _ .2 [6.28]

All terms are as defined previously.

PARAMETERIZATION OF THE TWO LAYER MODEL

The parameters of the two layer model are similar to the one layer
model with the extension that the respective terms are substituted. The final
form of the governing equations for a two layer model can be written as:

LSS 629
dt T, T

s, _ 1, _3: [6.30]
dt 7,

where: the subscripts 1 and 2 indicate the lower and the upper layer
of the cloud model, respectively; S is the liquid water amount that is
vertically integrated over a layer; | is the rate of liquid water input to a
layer; 7 is the response time of the cloud layer that is the time required to
drain a unit depth of liquid water of a cloud layer and t is the simulation
time instant.

The rates of liquid water that serves as input to the two layers are
defined as:
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I, = pp - (05, — @) - W, [6.31]
I, = p, (04 — @) - W, [6.32]

where: o, ®; and @, are the saturation mixing ratio at ground

surface, at the interface of the two layers and at the cloud top, respectively.
These terms are estimated using a similar form to equations 6.18 — 6.19 but
using the temperature and the pressure at the respective cloud surface
levels. The remaining terms are defined as previously.

Rain generation time

In this study, the rain generation time that is the time difference
between the cloud initiation and the rain start time is parameterized by
adapting the equation by Sinclair (1994) as follows:

t = a(O.S + larctan - (p’”S—;p)B + Tovent [6.33]

T

where: t, is the rain generation time in a cloud layer, P, (hPa)is the

pressure level below which the saturation water vapour is assumed to
condense immediately after entering the cloud system and « is a constant.

The correction t is introduced to account for mismatches in rain

event
generation time due to effects of unknown initial conditions and the
deficiency of the model to simulate microphysical processes such as water
vapour condensation. Both effects may introduce time shifts between the
start of the simulated and the observed rainfall events. It is noted that
equation [6.33] also allows to extend the model equations to a larger
number of cloud layers since the rain generation time is estimated based on
pressure levels within a layer.

Figure 6.2 shows the formation time for three P, values that are
500 hPa, 600 hPa and 700 hPa at different pressure levels p and o = 7000
and feent = 0. The figure shows that the water vapour at high pressure levels
condenses faster than the water vapour at low pressure levels. Such a
difference in formation time cannot be well simulated by a single layer
model and constitutes the rationale for the proposed two layer model
approach in this work.
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Figure 6.2: Rain generation time at different pressure levels of a cloud layer.

In this study, the interest is on the time instant at which rain starts
to fall off the lower layer. Therefore to arrive at a single response time, the
rain generation time is estimated for a single pressure level and therefore

P, — P is replaced by a single parameterdp .

The rain generation time for the two layers is estimated using
equation [6.33] by replacing (p,, — P) by dp, and dp, for the lower and
upper layer, respectively.

The set of equations 6.29 — 6.30 has been solved by implicit time
integration based on the backward Euler method. A computer code was

developed in Matlab® for both the one layer and the two layer cloud
models.
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6.3. REGIONAL SENSITIVITY ANALYSIS

The July 22, 2007 rain event was selected for model sensitivity
analysis and calibration. The model inputs were observations from the
Durbet weather station and observations from MSG-2. The distribution of
the rainfall intensities of the selected event shows two peaks that suggests a
time lag between the responses from the lower and the upper part (i.e.
layer) of the cloud. The cloud developed in the vicinity of the weather
station and provided the opportunity to test the model.

The Regional Sensitivity Analysis (RSA) is applied to identify
sensitive model parameters and to define optimal ranges of parameter
values. RSA is a non-parametric method that evaluates large number of
parameter sets in terms of model performance. RSA has many applications
in hydrological modelling (Demaria et al., 2007; Freer et al., 1996; Wagener
et al., 2001) and supports model evaluation by revealing information on
how well parameters are identified but also allows for identifying
deficiencies of the selected model structure (see, Lamb et al., 1997).

The RSA module that is available in the Monte Carlo Analysis
Toolbox (MCAT) is used (see Wagener et al., 2001]). The RSA in MCAT is
based on a procedure provided by Freer et al. (1996) and, in brief, has the
following steps. First, for each parameter, a prior value range is specified
that is commonly based on a uniform distribution. Then a large number of
parameter sets (for instance, 10,000 — 100,000) are randomly generated by a
Monte Carlo sampling procedure. For each parameter set the model is run
and parameter sets are ranked with respect to selected objective functions
that served as a measure of model performance. Commonly, the objective
functions are transformed through normalization where higher values
indicate better performance. In the procedure, it is common to select the
best performing parameter sets for further analysis. In the work by Spear
and Hornberger (1980), these parameter sets are termed behavioural and
usually only the best 10 % to 20 % of all parameter sets are selected. In the
procedure, results are rearranged and spread over ten bins of an equal
number of parameter sets where the first bin includes sets that indicate best
model performance while the tenth bin includes the parameter sets that
perform poorest. Model sensitivity to single parameters is evaluated based
on the cumulative distribution of the objective functions values versus the
range of the parameter values in each bin. A steep gradient in the

132



Remote sensing based conceptual cloud modelling for rainfall simulation

distribution function indicates high sensitivity and suggest that parameter
are well identifiable.

In the present study, the following objective functions are selected:

N
2, (5i(0)-0;)
abias = " [6.34]
2 O
i=1
1N
M4E = g (S (6) - O )4 [6.35]
1 N 2
RMSE = \/ﬁg $;(6)-0;) [6.36]

N _ -
) > (G —6;)(5;(0) -5 (9)
R2_| % [6.37]

N _ 2\ —
igl(oi -05) izl(si (0)-3;(9)

where: Si is the simulated rainfall at the i time step; @is a specific
parameter set; Oi is the observed rainfall at the it time step, and N is the
total number of observations. The objective function abiasis the absolute
bias and measures the relative volumetric error by weighing the errors
equally while RMSE is the root mean square error and indicates overall
performance by weighing the larger errors more than the smaller errors.
The coefficient of determination (R?) is the square of the correlation
coefficient between the observed and the simulated rainfall and also
indicates overall performance. A fourth objective function used is the M4E
that is an indicator of goodness-of-fit for peak values since large errors are
weighted to the power of 4 (see De Vos and Rientjes, 2008).
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6.4. RESULTS

6.4.1. Data analysis

First, statistics of the model inputs which are obtained from the
Durbet ground station and satellite remote sensing are shown. Table 6.1
shows the autocorrelations of the inputs for July 22, 2007 for lag times up to
1 hour. Both the ground stations and the satellite remote sensing
observations were recorded between 12:00 — 18:00 Local Standard Time
(LST). Table 6.1 shows that the model inputs have high autocorrelation. For
instance, the 30 minute lag autocorrelations range from 0.56 — 0.8 which
suggests that current values of the inputs carry high information content
about their values after 30 minutes. The result indicates that the model
inputs can be forecasted with simple techniques. Table 6.1 also shows that
the dew point temperature and TIR show the most rapid decrease in
autocorrelation with lag time.

Table 6.1: Autocorrelation of the model inputs for the July 22, 2007 event. The data
are observed between 12:00-18:00 Local Standard Time. Note: Ground—station
data is available every 30 minutes while remote sensing data is available every 15

minutes.
Ground-station Remote sensing
Time lag Pressure = Temperature Dew point TIR brightness
temperature temperature
15 minute - - - 0.907
30 minute 0.696 0.798 0.56 0.717
45 minute - - - 0.479
1 hour 0.428 0.53 0.099 0.226

Table 6.2 shows the cross-correlations for the inputs of the July 22
event. In the table, the cross-correlation value of 0.268 can be interpreted as
the correlation between the current pressure value and the expected
temperature value after 1-hour. In the same manner, the cross-correlation
value of 0.774 can be interpreted as the correlation between the current
temperature value and the expected pressure value after 1 hour. Table 6.2
also shows that the current value of the ground-station temperature in
general carries high information content about the expected (after 1 hour)
values of the other model inputs. The cross-correlations in table 6.2 are
larger than the autocorrelations in table 6.1 which suggests that any of the
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conceptual cloud model inputs can be predicted based on the current values
of the other model inputs.

Table 6.2: The 1-hour lag cros- correlation of the model inputs for the calibration
period (July, 22, 2007) and the validation period (August 16, 2007). The data are
observed between 12:00-18:00 Local Standard Time.

Pressure  Temperature Dew point TIR
temperature  brightness
temperature

July 22, 2007

Pressure 0.428 0.268! 0.719 0.268
Temperature 0.774 0.53 0.370 0.719
Dew point temp. 0.541 0.495 0.099 0.696
TIR temperature  0.687 -0.189 -0.339 0.226

Note: the cross-correlation value of 0.268 is interpreted as the correlation
between the current pressure and the expected temperature after 1-hour. The
other values are interpreted in a similar manner.

6.4.2. Model sensitivity

In this study, six parameters of the model are evaluated by the RSA.
These parameters are the updraft velocity parameter (€;); the rain
generation parameters of the upper and the lower layers dp, anddp,,
respectively; the response times of the upper and the lower layers that are
7, and 7,, respectively and the parameter fewent that accounts for the change
in rain generation time by changing the onset time of rain formation by
updraft of moisture. A constant value of & = 7000 has been specified for
both layers after a preliminary sensitivity analysis of the rain generation
time in equation [6.33].

For the RSA, at first the number of Monte-Carlo model runs was set
to 10, 000 but was increased to 30,000 until the cumulative distribution of
the normalized values of the objective function for each parameter in the 10
bins showed consistency and stability. Following Freer et al. (1996), the
parameter sets with a coefficient of determination (R?) value greater than 0.5
are considered behavioural. The R? value of 0.5 indicates a moderate
performance and in this study it is noted that the value was arbitrarily
chosen for performance evaluation.

Figure 6.3 shows the distribution of the normalized cumulative
frequency of the abias objective function for 6 model parameters. Each
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curve in a box of the figure represents the cumulative distribution in a
certain bin that where ranked from 1 to 10 based on the likelihood values.
Model sensitivity is indicated by the location of the cumulative distribution
functions in objective function space and by the shape and the gradient of
the respective distributions where a steep gradient indicates high sensitivity
while a flat gradient indicates low sensitivity. The model is said to be
completely insensitive to a certain parameter if the cumulative distributions
of the objective functions for all 10 bins have uniform distribution that as
such then can be overlain. Such could be for a single objective function but,
possibly, also for multiple objective functions (see figures 3 and 4).

From figure 6.3 it can be concluded that the model is most sensitive
to the updraft velocity parameter (€, ) since the plot shows steep gradients
for the cumulative distribution curves for all 10 bins. The parameter
e, controls the rate of liquid water input in the cloud layers. The RSA
indicates the importance to accurately estimate e: to obtain small abias
objective function values which is the absolute value of relative volume
error. In terms of abias, the model is least sensitive to those parameters that
govern the rain generation time and the peak rainfall rates.
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Figure 6.3: Cumulative normalized (Cum. Norm.) distribution of the parameters
forabias. Note: Black lines represent parameter values with high model
performance (bin 1) while brighter lines represent parameter values that give
lower model performance (bin 2 —10).
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Figure 6.4 shows the cumulative distribution for the selected six
parameters in each of the 10 bins that were ranked with respect to M4E
which mainly measures the model ability to reproduce peak rainfall
intensities. Compared to the cumulative distribution functions in terms of
abias, there was no major change in the shape of the distribution function
except some slight changes for the parameters €, and 7, . In terms of M4E,

the model is most sensitive to the updraft velocity parameter €, since the
distribution functions show large differences. The model is also somewhat
sensitive to the event marker (teent) and the response time of the lower layer
(7,) while it is least sensitive to the parameters of the rain generation time
in the upper layer (dp, ) and the response time of the upper layer (7, ). The
RSA also suggests that the model performance is more sensitive to
parameter (7;) than to parameter (7,). This indicates the importance to

accurately estimate the lower layer response time for rainfall simulation.
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Figure 6.4: Cumulative normalized (Cum. Norm.) distribution of the parameters for
MA4E. Note: Dark lines represent parameter values with high model performance
(bin 1) while brighter lines represent parameter values that give low model
performance (bin 2 —10).

6.4.3. Model calibration
The July 22, 2007 rain event has served for calibration of the cloud

model. During calibration, a constant value of & = 7000 has been specified
for both layers after a preliminary sensitivity analysis. The parameter
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governs the time at which the rain starts to fall from the respective layers of
the cloud model. The conceptual model has been manually calibrated. First,
the values of the updraft velocity parameter (€, ) have been optimised since
this parameter controls the volume of rainfall that is considered the most
important. Second, the start time of the rainfall is calibrated by changing the
values of the rain generation parameter of the upper and the lower layers
dp, and dp,, respectively which is followed by the response times of the

upper and the lower layers 7, and 7, respectively. Also, the correction

factor tewent is considered to correct for the change in the rain generation time
as caused by effects of uncertain initial conditions for the four events. As
shown by the RSA, the model performance is most sensitive to € and 7, . It

is noted that the calibrated parameters values of the July 22 event have
served as start values to the remaining rain events that were observed on
June 1, June 8 and August 16 of the year 2007, see table 6.3.

The updraft velocity parameter (€,) affects the rate of saturation
water vapour input to the cloud layers. Overall, the calibrated value of €, is

similar to that reported by Georgakakos and Bras (1984b) who used a value
of 0.002. In the present study, the same initial conditions are specified for all
events. As such, it can be speculated that the small difference in the value of
e, for the events is partly caused by this assumption. The four events have

equal values of dp, but have somewhat different values of dp, .

Table 6.3 also shows that all events have equal response time (i.e.
7,) for the lower layer except for the June 1 event which has smallest
response time. However, 7, shows some changes with a change in the
event property. The calibrated response times 7, and 7, suggest that rain

falls faster from the upper layer than from the lower layer. In terms of rain
generation time, the values for fwen: range between -44 minutes for the June 1
event to +32 minutes for the June 8 event.
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Table 6.3: Model parameter values of the two layer model.

Symbol  Parameter Jun. 1 Jun. 8 Jul. 22 Aug. 16  Unit

e, For updraft velocity 0.041 0.0020 0.0020 0.0040 -

tevent Correction for rain -44 32 0 -33 min.
generation time

dpl Rain generation time 105 105 105 105 hPa
of lower layer

dp ) Rain generation time 150 150 180 180 hPa
of upper layer

7 Lower layer response 210 310 310 310 s
time

7, Upper layer response 3 3 3 3 S
time

Values of objective functions

abias -0.110 -0.041 0.172 0.049 -
MA4E 0.192 0.321 0.024 0.274 mm*
RMSE 0.014 0.232 0.172 0.422 mm

The simulated and the observed rainfall hyetographs of the July 22

event are shown in figure 6.5a. The plot indicates that the cloud model
satisfactorily reproduced both the shape and the volume of the observed
hyetograph. The start and the end time of the simulated event agree to those
of the observed event. Peak intensities are also reproduced satisfactorily
although not all peaks could be simulated with exactness. The simulated
and the observed hyetographs of the rainfall intensities of the June 1, June 8
and August 16 events are shown in figure 6.5b — 6.5d.
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Figure 6.5: Observed and simulated rainfall intensity of four rain events.

Table 6.4 shows accumulated values of the observed and the
simulated event depth for the four events. After calibrating each rain event
independently, the simulated and the observed rainfall depth of the four
events showed a good agreement. Calibrating the rain events using the
parameter values of the July 22 event resulted in some deterioration but
overall in reasonable agreement between the simulated and the observed
rainfall depths for the June 1 and June 8 events. However, the model
underestimated the observed rainfall depth of the August 16 event. Results
of table 6.4 also reveal that the main limitation of using the July 22
parameter values is that the rain start time of the other three events is not
estimated satisfactorily. The calibrated parameters for the July 22 event
cause a time shift between the start time of the simulated and observed
rainfall. The time shift ranges between -46 minutes for the June 1 event
which indicates a delay in model response and 26 minutes for the June 8
event which indicates a model response that is too early.

140



Remote sensing based conceptual cloud modelling for rainfall simulation

It is observed that the maximum updraft velocity increases steeply
during the initial phase of cloud formation but then levels off, see figure 6.6.
This characteristic of the updraft velocity is observed for three events out of
four. In this study, it is noted, however, that June 1 event is exceptional
since rain starts to fall while the updraft is still increasing before it levels off.
As such, for the three events a relation can be established between the time
at which the steep increase of the updraft levels off and the time at which
rain starts to fall.

Table 6.4: Observed and simulated characteristics of the four rain events. A negative
time shift indicates a delay in model response as compared to observations.

Calibrated for each event Using July 22 parameters
Observed Simulate Time  Observed Simulate Time
depth d depth shift depth d depth shift
(mm) (mm) (min.) (mm) (mm) (min.)
June 1 14.4 13.4 -1 14.4 11.3 -46
June 8 21.6 21.8 -8 21.6 14.3 26
July 22 21.6 21.8 -2 21.6 21.8 -2
Aug. 16 36.0 37.8 -1 36.0 19.0 -33
4 T T T T T T 0.2
3T End of steep 1015
H"‘-\ increase of updraft .
g '—,'w
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Figure 6.6: Observed rainfall and estimated updraft velocity for July 22, 2007 event.
Note that at first, the updraft increases rapidly but levels off after some time period.

Table 6.5 shows the difference in the start time of the observed rain
event and the time at which the maximum updraft velocity (W,,,, ) occurs.

In the present study, the time to W, is considered to be the time at which
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the steep increase in the updraft levels off since the time at which the cloud
is formed. For three out of four events, this time difference ranges between
50 — 59 minutes. As such, if the time to reach W, is used as a rain event

marker, then the rain events start 54+ 5 minutes after W, occurred. The

validity of the characteristics of the updraft velocity for the three events
should, however, be evaluated for other events as well since there are some
limited observations of convective rainfall intensity at Durbet station in
June — August of 2007. Table 6.5 shows that there is a very large variation
for the time difference between the start time of the observed rain event and
the time at which the cloud is formed. The time difference for the four
events ranges between 68 — 127 minutes which indicates larger variation
than that indicated by using the W, time.

Table 6.5: The relation between rainfall initiation time and the time to maximum
updraft and cloud formation is observed for the four events.

Jun. 1 Jun. 8 Jul.22  Aug.l6 Unit

1. Time to max. updraft 15:45 17:20 14:42 15:44  h:min.
2. Cloud formation time 14:20 16:05 14:02 15:26 h:min.
3. Start of observed rain 15:15 18:12 15:41 16:34 h:min.

4. Row3-row 1 -30 52 59 50 min.
5.Row 3 —row 2 85 127 929 68 min.

Note: Row 3 — row 1 is the time difference between the time at which the observed
rainfall started and the time at which the maximum updraft is observed. Row 3 — row 2
is the time difference between the time instants at which rainfall started and the time at
which the cloud is formed.

6.5. DISCUSSION AND CONCLUSION

The main impetus for developing the conceptual model is to have a
parsimonious model approach that simulates the various rainfall
characteristics accurately but with relatively low requirement for model
input. The number of inputs should be small but also simply be obtained.
This is following the comments in Georgakakos and Bras (1984a), where it is
stated that model inputs should be readily available but, in case not
available, predictable through simple techniques such as regression. In
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Georgakakos and Bras (1984a), it is described that such is considered crucial
for applications in near real time rain prediction. The conceptual model
proposed in this study meets these requirements since inputs are weather
observations at ground surface and satellite infrared observations that are
readily available from the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT). The model is an extension of that
proposed by Georgakakos and Bras (1984a,b). Bell and Moore (2000b)
described that the model by Georgakakos and Bras (1984a,b) is a simple
mass-balance model of the lower atmosphere while it is discussed that the
model structure has much in common with conceptual water-balance
models as are applied in hydrology.

The structure of the proposed conceptual cloud model in this study
is not comparable to the structure of physically based numerical weather
prediction (NWP) models which generally simulate the complex
interactions and processes of all three water phases in a cloud system. Also,
NWP models have their own limitations and according to Pedder et al.
(2000) an obvious limitation is the model’s inability to represent small-scale
precipitation events explicitly.

As discussed in the Sections on the model equations and the model
parameterization, many assumptions are introduced for model
development. For instance, the horizontal movement of clouds which can
cause moist air advection is not explicitly considered although Pedder et al.
(2000) noted that it is not clear whether it is in fact realistic to neglect
horizontal advection terms. With respect to the model development, French
and Krajewski (1994) suggested that future work in rainfall simulation will
indicate that either remote sensing based formulation is the best way to
proceed or that another, quite different path, leads to a solution of the
rainfall estimation and forecasting problem. This work shows effectiveness
of a remote sensing based approach.

In the present study, (i) a two layer model of rainfall simulation is
developed and evaluated, (ii) weather observations at ground station and
satellite thermal infrared observations at 30 minute and 15 minute
resolution served as model inputs, (iii) a RSA is performed to evaluate the
sensitivity of the model to its parameters for various objective functions and
(iv) model performance is evaluated for selected rain events and a list of
calibrated parameter values is presented.
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A regional sensitivity analysis that considers single evaluation
criteria has been applied to evaluate the sensitivity of the model to six
parameters. The analysis is performed for 4 objective functions and revealed

that the model is sensitive to only few parameters. Model sensitivity

changed from one objective function to another (see table 6.6 and 6.7)

suggesting that multiple sets of optimal parameter values can be established
as subject to the selected objectives. Changes in sensitivity also suggest that
calibration of the cloud model inherently involves a number of criteria but

such complex, multi-criteria, evaluation has been ignored here for reasons

of brevity.

Table 6.6: Best 10 performing parameter sets in terms of M4E

Rank €, tevent pda pd2 T 7T, MA4E

1 0.0025 -0.4 124 249 444 1 0.1084
2 0.0020 2.7 146 284 342 18 0.1152
3 0.0021 1.6 105 164 434 9 0.1298
4 0.0020 -2.5 134 255 346 17 0.1301
5 0.0017 -0.1 104 204 431 15 0.1421
6 0.0016 -0.3 111 216 300 4 0.1481
7 0.0018 12 101 142 360 13 0.1492
8 0.0017 -0.2 108 180 359 19 0.1493
9 0.0022 -4.1 156 276 477 6 0.1493
10 0.0026 -1.8 136 218 386 2 0.1548

Table 6.7: Best 10 performing parameter sets in terms of abias

Rank €, tevent pdi pd> 7y T,  abias

1 0.0021 -6.7 178 247 248 6  0.0000
2 0.0022 -8.8 270 159 282 16 0.0000
3 0.0020 -5.5 133 219 416 11 0.0001
4 0.0020 9.1 268 296 498 4  0.0002
5 0.0021 -1.9 143 129 322 8  0.0002
6 0.0023 -10.0 298 228 212 19  0.0003
7 0.0020 -6.8 293 233 460 12 0.0003
8 0.0022 -1.3 108 261 212 12 0.0003
9 0.0021 -1.6 111 122 376 19  0.0005
10 0.0021 -8.8 270 267 300 7 0.0006

In terms of the abias objective function the model is highly sensitive

to the updraft velocity parameter (€,) and the response time of the lower
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layer (7;) while the model showed low sensitivity to the other four

parameters. The former determines the rate of moist air input to the cloud
layer while the latter determines the rainfall rate. In terms of the M4E
objective function, the model is highly sensitive to the updraft velocity
parameter (€, ) but also it is somewhat sensitive to the event marker (fevent)

and the response time of the lower layer (7,). The result reveals that the

updraft velocity and the response time of the lower layer affect the volume
as well as the peak of the rainfall hyetograph but the rain generation time
largely affects the peak rain rate while it has less effect on rainfall volume.

The two layer model has been successfully calibrated for the July 22
rain event. The model reproduced the shape of the hyetograph well that is
characterized by timing, event duration and peak intensities but also the
volume of the observed rainfall hyetograph is simulated well.

In the calibration, first an agreement between the observed and
simulated rainfall volume is found by changing the value of the updraft
velocity parameter (e1). This is followed by changing the values of the rain
generation time to satisfactorily simulate the onset point rain starts to fall.
Finally, the response time parameters are calibrated to find an agreement
between the observed and simulated peak rainfall intensities. Most of the
parameters did not change significantly when calibration was performed
independently for the four events. The peak intensities and the durations of
all four events have satisfactorily been reproduced by the model. When
using the calibrated parameter values of the July 22 event for the other three
events, the model satisfactorily simulated the accumulated rainfall depth.
The main limitation has been with the rain initiation time where the model
produced rainfall too early for June 8 and where the model showed a delay
for June 1 and August 16 events as compared to the observed hyetograph.
The difference between the simulated and the observed rain initiation time
is in the order of 30 minutes which, in hydrology, is considered small.
Except for the June 1 event the start time of the events can be estimated with
a maximum timing error of 5 minutes that is the difference in the simulated
and observed rain initiation time. However, the procedure to arrive at the
start time of rainfall through the updraft velocity should be further
evaluated for other events.

Results are encouraging considering the many sources of
uncertainty in the modelling that relate to the model assumptions, the
movement of clouds that is not explicitly considered, the observations that
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are only for the cloud top and the ground surface and the fact that
observations for the cloud properties are absent along its profile.

It is noted that in the work by French et al. (1994), the timing of the
simulated rainfall has been adjusted by assimilating radar observations that
indicate the rain water content of the cloud layer. Such observations are
absent for the present study area and a new procedure has been developed.
The present study is a first attempt to simulate convective cloud systems by
two layers of reservoir. It is concluded that results of this study are
encouraging, particularly considering the (very) low model input data
requirement. To be able to generalise on applicability of the cloud model,
tests should be performed on a larger number of watersheds but also on a
larger number of events. Some critical issue is that in this work the focus
was on simulating convective cloud systems that are characterised by two
rainfall peaks as commonly observed in the Gilgel Abbay catchment. The
application of the cloud model to soil erosion and runoff studies that
commonly require accurate estimations of event duration, accumulated
rainfall depth and peak intensity should be tested.
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APPENDIX: LIST OF SYMBOLS

Q, Saturation water vapour concentration [M L73]
Q. Cloud water concentration [M L3
Qs Rain water concentration M L3
Qu Saturation water vapour concentration at a cloud bottom [M L]
Q. Saturation water vapour concentration at interface of two layers
[M L]
Q.. Saturation water vapour concentration at a cloud top [M L3]
u Vector of wind velocities [L T1]
uU,n,w  Wind velocities in x, y and z directions [L T1]
W,  Maximum updraft velocity [L T1]
t Time instant [T]
X,y Distances along a horizontal direction of a Cartesian coordinate
[L]
Z Distance along a vertical direction of a Cartesian coordinate [L]
Z, Cloud bottom level [L]
Z, Cloud top level [L]
W; Terminal velocity of rain water in still air [L T1]
L. Density of dry air M L7]
P Density of moist air M L7]
w Updraft velocity [L T]
W, Vertically-averaged updraft velocity [L T1]
S Vertically integrated liquid water amount in the cloud layer [M]
S, Vertically integrated liquid water amount in the lower cloud layer
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[M]

S, Vertically integrated liquid water amount in the upper cloud layer

[M]

S, Rain water concentration at a cloud bottom [M L73]
S Rain water concentration at the bottom of the lower cloud layer
[M L7]
Sy, Rain water concentration at the bottom of the upper cloud layer
[M L]
| Input mass rate to a cloud layer M T]
I Input mass rate to the lower cloud layer M T1]
I, Input mass rate to the upper cloud layer M T1]
p Pressure [ML1TTT]
P Pressure at a freezing level in a cloud [M LTI
Po Pressure at ground surface [M LTI
Py Pressure at cloud bottom [M LTI
P Pressure at an interface of two layers of a cloud [ML1T]
p' Pressure for updraft velocity estimation M LT
p; Pressure at cloud top [M LT
T Temperature [O]
T, Temperature at ground surface [O]
Tao Dew point temperature at ground surface [O]
T, Temperature at cloud bottom [O]
T, Temperature at an interface of two layers of a cloud [O]
Tm Cloud temperature for updraft velocity estimation [O]
T Ambient temperature for updraft velocity estimation [O]
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@

Aw

a)so

si

st

Saturation mixing ratio [M M)

Change in saturation mixing ratio in a cloud layer M M1]

Saturation mixing ratio at ground surface dew point temperature
[MM]

Saturation mixing ratio at the interface the two cloud layers

MM
Saturation mixing ratio at a cloud top M M1]
A constant parameter [-]
A constant parameter [92]
A constant parameter [O]
Saturation vapour pressure at Tdo [M LTI
The gas constant for water vapour [ML2T2 M1 O™
Parameter for updraft velocity [-]

Specific heat of dry air under constant pressure[M L2 T2 M o™

Rainfall rate M T]
Rain generation time [T]
Correction for rain generation time [T]
Response time [T]
Response time of the lower cloud layer [T]
Response time of the upper cloud layer [T]
A constant parameter [-]
Rain generation parameter [M L1TT1]

Rain generation parameter for the lower cloud layer [M L1 T"]

Rain generation parameter for the upper cloud layer [M L' T"]

Indices [-]
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S, () Simulated rainfall at i time step [M T-]
0, Observed rainfall at ith time step M T1]
R? Coefficient of determination [-]
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Sensitivity of the Representative Elementary Watershed model to rainfall

ABSTRACT!

The Representative Elementary Watershed (REW) model is
evaluated for the Upper Gilgel Abbay watershed, Upper Blue Nile basin in
Ethiopia. The watershed is characterised by mountainous terrain which
receives large amounts of highly variable rainfall in space and time. The
REW model has been calibrated and validated based on 6 years of daily
stream flow and rainfall records from 10 non-recording rain gauges. A
network of 8 recording rain gauges which were installed to supplement the
existing network served as a reference network to evaluate the effect of
hourly rainfall representation in REW modelling. By progressively
decreasing the reference network density and by changing the
configuration, 256 networks are generated. Network performance is
evaluated in terms of the Goodness of Rainfall Estimation (GORE) index
and 72 % of the configurations produced non-representative rainfall
estimates. Results suggest that increasing network density does not
necessarily improve the accuracy of the estimated rainfall, unless the
network configuration is representative. The density and configuration of
the selected rain gauge network is shown to affect flows simulated by the
model. Modified Nash-Sutcliffe model efficiency (NSEx) of 0.343 for 2 rain
gauges and 0.943 for 6 rain gauges with optimal network configuration are
shown. Rainfall input from a single rain gauge has caused extremely poor
performance of the REW model. Understanding the spatio-temporal
variability of the observed rainfall is found essential to decide whether a
rainfall input should be represented by a uniform or non-uniform
distribution. Results of this study also revealed that REW model
performance is affected by the model resolution.

Key words: REW model, rainfall variability, Blue Nile, Gilgel Abbay

1 This chapter is based on: Haile, A. T., Rientjes, T., Reggiani, P., 2009. Model
sensitivity to rainfall representation: the representative elementary
watershed model, Water Resources Research, Revised for re-submission.
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7.1. INTRODUCTION

The accuracy of rainfall-runoff model outputs is affected by
uncertainty in model parameters and meteorological forcing as well as
deficiencies in model structure. Model calibration efforts (e.g. Vrugt et al.,
2006; Wagener and Wheater 2006; de Vos and Rientjes, 2008) commonly
address parameter uncertainty while uncertainty by meteorological forcing
received relatively little research attention. A number of studies showed
that runoff hydrographs can be sensitive to rainfall representation (see,
Dawdy and Bergman, 1969; Wilson et al.,, 1979; Beven and Hornberger,
1982) and consequently affect model parameter estimation (e.g. Chaubey et
al., 1999; Bardossy and Das, 2008; Younger et al., 2009).

Arnaud et al. (2002) discussed that the sensitivity of rainfall-runoff
models to rainfall is very specific depending on the scale of the basin, the
rainfall variability in the area and the mechanisms involved in runoff
generation. A brief summary of how rainfall affects properties of simulated
stream flow hydrographs is provided by Segond et al. (2007). In general, the
response of a rainfall-runoff model to rainfall is affected by rainfall type
(Bell and Moore, 2000a; Ajami et al., 2004; Segond et al. 2007), spatial
location of a rainfall event with respect to a watershed outlet (Bras and
Rodriguez-Tturbe, 1976; Woods and Sivapalan, 1999), watershed scale
(Smith et al., 2004; Andreassian et al., 2001; Obled et al., 1994), geology
(Naden 1992; Dodov and Foufoula-Georgiou, 2005) and soil type (Obled et
al., 1994).

Other studies showed that runoff generation processes are affected
by duration, coverage and spatial location of rainfall. Robinson and
Sivapalan (1997); Menabde and Sivapalan (2001) showed that the stream
flow of watersheds can be affected by the mean duration of rainfall if the
watershed response time is less than the mean rainfall duration. Syed et al.
(2003) found that the area coverage of a storm core, which is defined as an
area with a 10-minute intensity of greater than 25 mm h!, was a better
predictor of runoff volume and peak flow than the area coverage of the
storm. In the same work, it was reported that the location of the storms
became more important as the watershed size increased with storms located
at the centre of the watershed producing more runoff than those located
near the outlet or near the head of the watershed. Also, Morin et al. (2006)
showed that simulated peak flows is affected by rainfall location and may
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increase by a factor of 2 when the storm location is shifted by less than 4 km
towards the watershed outlet.

Analyzing aspects of spatial representation of rainfall to runoff
modelling has been a topic of ongoing research. Rainfall may be
represented by uniform and non-uniform distribution while models may
rely on lumped, semi-distributed and fully distributed model domain. For a
semi-distributed model of 71 km? watershed, Obled et al. (1994) found that
non-uniform rainfall representation did not improve simulation results.
Smith et al. (2004) concluded that for a spatially more uniform rainfall
observations, the use of a distributed model does not always lead to
improved results as compared to the use of a lumped model. In the work of
Brath et al. (2004), a distributed model of a 1050 km? watershed was not
noticeably sensitive to rainfall representation through uniform or non-
uniform distributions. In the work of Bell and Moore (2000a), the
performance of a distributed model over a lumped model was only
marginally better for stratiform rainfall but significantly better for
convective rainfall. It is noted that stratiform rainfall is characterised by
lower spatio-temporal variability as compared to a convective rainfall and
suggests more uniformity in the observed rainfall.

In a number of studies, it is shown that the density of a rain gauge
network affects how well rainfall can be represented and thus how network
density may affect the stream flow response of a rainfall-runoff model.
Obled et al. (1994) suggested that, when comparing a network of 5 or 21
gauges, 5 rain gauges are sufficient for a semi-distributed TOPMODEL of a
71 km? experimental watershed in Southeast France. Andreassian et al.
(2001) suggested an optimally configured network of 8 rain gauges as a
reference network for lumped GR3, TOPMODEL and IHAC rainfall-runoff
model approaches of the 1120 km? Serein watershed in France. For the
event based, semi-distributed RORB model of the rural watersheds of Lee
basin of size 1400 km? in UK, Segond et al. (2007) suggested 16 rain gauges
for a watershed of size 1000 km? and 7 to 8 rain gauges for watersheds of
size 80 — 280 km2 The authors pointed out that the suggested network
density may not be appropriate for representing summer convective events.

Most of the studies described above are undertaken by strictly
following network design criteria. However, results for data scarce regions
in the tropics are barely presented. In addition, it is still not fully clear
whether model sensitivity to rainfall significantly changes with model
resolution. The main objectives in the present study are (i) to evaluate the

154



Sensitivity of the Representative Elementary Watershed model to rainfall

performance of the semi-distributed REW model approach to the Upper
Gilgel Abbay watershed in the Blue Nile basin, (ii) to evaluate the
sensitivity of the REW model to rain gauge density and configuration, (iii)
to evaluate the effect of spatial model resolution on stream flow simulation,
(iv) to assess model sensitivity to spatially uniform vs. non-uniform rainfall
representations. For this study, the existing network of the Gilgel Abbay
watershed is used. Network stations are located close to villages as
constrained by site accessibility. Such is common in developing countries
where the infrastructure is poor and where design criteria are largely
ignored. In Haile et al. (2009a), it is shown that the Gilgel Abbay watershed
has large spatio-temporal variability of rainfall at short inter-station
distances. Results of the study indicated clear differences in the pattern and
magnitude of the rainfall that was recorded in the uplands and in the
lowlands of the watershed. The effect of the rainfall variability and its
representation on runoff is, however, not known and is the motivation for
the present study.

7.2. STUDY AREA

The watershed of the Upper Gilgel Abbay is situated between
latitudes of 10%6'N — 1122" N and longitudes of 36°49" E — 37°24" E. The
watershed covers a surface area of about 1655 km? and is characterized by
mountainous terrain and agricultural land that is dominated by clay to clay-
loam soils. The annual rainfall in the years 2000 — 2005 ranged between 1600
— 2100 mm indicating a large variability between relatively dry and wet
years.

The rainfall records that are used for the present study are obtained
from 2 complementary networks as shown in figure 7.1. The base network
has 10 non-recording rain gauges that provided daily rainfall data for 6
years. The reference network has 8 recording rain gauges that were installed
in May 2007. For model calibration, the REW rainfall input was estimated
using daily observations from the base network. The stations are Abbay
Sheleko, Adet, Bahir Dar, Dangila, Gundil, Injibara, Kidamaja, Sekela, Wotet
Abbay and Zege. The reference network provided the data for evaluating
the effect of rainfall representation on runoff modelling. The network
includes Addis Kidam, Bahir Dar, Dangila, Durbet, Injibara, Jema, Kega and
Sekela. The meteorological data that served as input to the estimation of
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potential evapotranspiration (PET) at daily base is obtained from Dangila,
Adet and Bahir Dar stations which are operated by the National
Meteorological Agency of Ethiopia.

Stations

. Base
2 Reference

{y Both

Kidamaja ¥
L : g i 3 I T
||-I_|| ara & ek ol 2|:| 3[' km

Figure 7.1: The rain gauge network and the delineated representative elementary
watersheds (REWs) of the Upper Gilgel Abbay watershed that drains to Lake Tana.
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7.3. METHODS

7.3.1. The REW model

In the REW approach, a watershed is divided into a series of
irregularly shaped modeling entities that are the REWs. The subdivision is
based on a topographic analysis following a selected Strahler order
topology. The modeling volumes are called “representative” for the
following reasons (Reggiani et al., 1998):

1. The REW is defined in such a way as to encompass all basic
functional components of a watershed (channels, hill slopes) and
constitutes a single functional unit, which is representative of other
sub-entities of the entire watershed due to its repetitive character.

2. The REW is the smallest and therefore the most elementary unit into
which the watershed is discretized for a given scale of interest.

Each REW is divided into six regions or simply flow zones based on
the nature of the flow and the flow domain. The approach includes zones
for simulating i) infiltration excess overland flow, ii) saturation excess
overland flow, iii) channel flow, iv) unsaturated subsurface flow, v)
saturated sub-surface flow (i.e. ground water flow), (vi) shallow subsurface
flow to simulate interflow at shallow depth.

Interaction between neighboring REWs and between flow zones
takes place in terms of mass and momentum exchanges across the
boundary interfaces. The REWs are confined by the atmosphere on the land
surface and by an impermeable layer at the bottom.

The governing equations expressed in terms of ordinary differential
equations (ODE’s) are complemented by a set of constitutive relationships
that are at the core of the REW model formulation. The governing equations
which are solved in the approach have the following general form:

Z—f:ZeKJFRJFG 7.1]

where:  refers to state variables such as soil water saturation and

piezometric heads; €/ refers to exchange of mass or force among various
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phases and sub regions; R refers to external supply of, for instance, mass
while G refers to internal generation. For a complete description of the
REW approach, the reader is referred to Reggiani et al. (1999); Reggiani and
Rientjes (2005).

7.3.2. Model calibration

Model discretization based on a second Strahler order topology
resulted in 33 REWs as shown in figure 7.1. Actual evapotranspiration is
estimated based on the PET and the simulated soil moisture content of the
REWs at each simulation time step. Spatially uniform PET and rainfall were
specified as the model inputs.

After warming, the REW model of the Upper Gilgel Abbay
watershed has been calibrated and validated for the time period covering
2000 — 2005. The model is calibrated against daily stream flows for the
period 2002 — 2003 as recorded at Wotet Abbay that is at the outlet of the
watershed. The performance of the model is validated for the periods 2000 —
2001 and 2004 —2005.

The REW model has few parameters that require estimation.
Rientjes et al. (2003); Zhang et al. (2005); Varado et al. (2006) showed that
acceptable flow predictions can be attained by optimising porosity,
hydraulic conductivity of the unsaturated zone, and hydraulic conductivity
of the saturated zone. After a preliminary sensitivity analysis these
parameters proved to be the most sensitive for the Upper Gilgel Abbay as
well. In addition, the shallow subsurface interflow zone requires specifying
the saturated conductivity of a shallow subsurface flow layer. As such, 4
parameters were manually calibrated first by changing the porosity and
hydraulic conductivity of the saturated zone to simulate the base flow
which is followed by changing the values of hydraulic conductivity of the
unsaturated zone and the shallow subsurface interflow zone to simulate the
high flows. A list of the remaining parameters and their values can be found
in Reggiani and Rientjes (2005) that is adapted here. Similar to Reggiani and
Rientjes (2005), all model parameters are assumed time and space invariant
to exclusively focus on assessing the effects of rainfall representation on
stream flow simulation.

Aim of the model calibration was to assess the capability of the
model to reproduce the integrated response of the watershed in terms of
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stream flow at the outlet of the watershed. It is noted that other state
variables as simulated by the model were not validated since observations
of these variables at the required time and space scales were not available in
the Upper Gilgel Abbay.

The following objective functions are selected:

N S 0
GRS

abias = N [7.2]
0
jZ: Qj
N (s _o
NSE =1 jél(Qj_Qj [7.3]
Yoo oof |
=1 J J

where: Q° is the simulated flow for a specific parameter set, Q°is
the observed flow, and N is the total number of data elements. The over bar
indicates time-averaged quantities, while j is a time index. The parameter
abias is the absolute bias which measures the volumetric error while NSE
is the Nash-Sutcliffe model efficiency that measures overall model
performance. An abias value of zero indicates that there is no volumetric
error while a value larger than zero indicates that there is under- or
overestimation of the observed volume. NSE = 1.0 indicates a perfect
match between the simulated and the observed flows while NSE = 0.0
indicates that model simulations are as accurate as the mean of the observed
flows.

7.3.3. Rainfall representation

The sensitivity of the REW model to rainfall representation was
assessed by using subsets of the reference network for different network
configurations. Subset networks of k gauges from the reference network
resulted in 256 configurations. Here, it is noted that the rainfall as estimated
using subset networks is referred to as the estimated rainfall while the
rainfall that is estimated using the reference network is referred to as the
reference rainfall.
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The relatively sparse network and the highly convective nature of
rainfall in the study area restrict the use of interpolation methods such as
Kriging since it is difficult to construct the semivariograms for convective
events at hourly time interval. As such, the uniform rainfall at hourly time
steps is interpolated using the Thiessen polygon method which is also
applied by Segond et al. (2007):

N
R, =>aR, [7.4]
i=1

where: R is the spatially uniform rainfall estimate, @; is the

1
Thiessen weight for station i, R is the rainfall depth recorded at a specific
station, ] is a time index, and N is the total number of rain gauge stations.

A critical note to the procedure is that some bias is introduced to the
estimation since stations are not well distributed over the area as caused by
site accessibility.

The spatial coefficient of variation (CVS) is used to assess the
spatial variability of the estimated rainfall with respect to the reference
rainfall. The equation for CVS is defined for each time step (j) using a
relation that is given by Arnaud et al. (2002):

N =2

CVs; = — [7.5])
Rj

All terms are defined in the previous paragraph. Equation [7.5]
applies for each time step but is averaged over the simulation period to
arrive at a single CVS value for the simulation period.

In this study, a temporal coefficient of variation (CVt) is proposed
to compare the temporal variation over the wet period of June — August
(JJA) of the estimated rainfall and that of the reference rainfall. The index
reads:

CVt = ;/—Vf 7.6]

where: CV is the coefficient of variation of the estimated rainfall for

a selected network density and configuration while CV " is the coefficient
of variation of the reference rainfall. is defined as the standard deviation of
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the JJA hourly rainfall divided by the mean of the hourly rainfall. CVt=1
indicates that both the estimated rainfall of a selected network and that of
the reference network have equal temporal variability. CVt >1 indicates that
the estimated rainfall has a larger temporal variability than the reference
rainfall while CVt<1 indicates that the estimated rainfall has a smaller
temporal variability than the reference rainfall.

Andréassian et al. (2001) proposed Goodness of Rainfall Estimation
(GORE) and Balance indices. The GORE index evaluates the goodness of
rainfall estimates while Balance indicates the volumetric error of the
estimated rainfall.

The GORE index reads:
N 2
(R, - Ry
GORE =1-—1= [7.7]

57 )

=1

where: R is the estimated rainfall, R **f is the reference rainfall, the
over bar indicates averaged values over time in this case JJA, | is a time
index, and N is the total number of time steps. A GORE value of -e°
indicates very poor performance of the configured network while a value of
1.0 indicates the estimated rainfall is as good as the reference rainfall.

The Balance index reads:

Balance = [7.8]

All terms are as defined in the previous paragraph. A Balance value
that is larger than 1.0 indicates that the estimated rainfall overestimates the
reference rainfall while a value smaller than 1.0 indicates that the estimated
rainfall underestimates the reference rainfall.

The root mean square error (RMSE) is used to evaluate the
deviation of the estimated rainfall from the reference rainfall and reads:
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ref 2
i )

N
> (Rj-R
J=1

RMSE = [7.9]

N

All the terms are as defined previously.

7.3.4. Sensitivity to network density and configuration

The model is run for the calibrated parameter set of the watershed
to evaluate the REW model sensitivity to rainfall input. Therefore, in the
following, stream flow as simulated using the rainfall from any of the sub-
set networks is referred to as simulated flow while flow as simulated using
the reference network is referred to as reference flow. To evaluate the
differences in simulated flows by sub-set networks, a modified Nash-
Sutcliffe Efficiency ( NSE,,) coefficient that is similar to that by Segond et al.

(2007) is applied which reads:

N s _ref.2
jél(Qj —Qj )
NSE =1- - S [7.10]

ref ref 2
PG

where: Q° is the simulated flow for a specific rainfall input from a

ref

subset of the reference network, Q™ is the reference flow, j is an index of

time step, and N is the total number of time steps.

The differences in the quantiles of the simulated and the reference
flows of the same rank is also compared to evaluate if some flow ranges are
under- or overestimated. Similar to Arnaud et al. (2002), the Hazen plotting
position formula is applied to estimate the cumulative frequencies. The
relative difference ( Eq ) between the quantiles of the same rank that

indicates equal probabilities of exceedance can be computed as follows:

ref
Qq ~Qq
Eq=——r— [7.11]
ref
Qq
where: Q, is the q" quantile of the simulated flow, Q(;ef is the q"

quantile of the reference flow.
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Assessments on the effect of rainfall representation on the simulated
stream flows are through the use of spatially uniform and spatially non-
uniform rainfall inputs. The analysis is performed for the model that is
based on the second Strahler order discertization (33 REWs). The spatially
non-uniform rainfall is estimated for the centroid of the REWs by the
Inverse Distance Weighting (IDW) method of interpolation using distance
weighting power of 2. For objective comparison, the volume of the uniform
rainfall (UR) is constrained by conserving the volume of the non-uniform
rainfall (NUR) at hourly time steps. By this conservation principle, the
effects of only spatial rainfall variability can be studied (see, Younger et al.,
2009).

The effect of rainfall interpolation is assessed for three interpolation
methods. These are (i) the Thiessen polygon method, (ii) inverse distance
method and (iii) nearest rain gauge to the REWs. The methods are applied
to estimate the rainfall of each REW. In this study, the effect of model
resolution is also assessed for discretizations that are based on a second and
third Strahler order topology.

7.4. RESULTS

7.4.1. REW model calibration

The REW model is calibrated against daily stream flows that were
observed for the period 2002 — 2003. After a preliminary sensitivity analysis,
the optimised parameters are soil porosity (¢ = 0.44), saturated hydraulic
conductivities of the unsaturated zone (Ksu = 10° m s), the saturated zone
(Kss = 10* m s), and the shallow subsurface flow zone (Ksi = 104 m s™).

Figure 7.2 shows the observed and the simulated flows at the
watershed outlet and the spatially averaged rainfall for the calibration
period for days that range between 732 1431, for the first validation period
for days that range between 1 — 731 and for the second validation period for
days that range between 1432 - 2192. In general, the REW model
satisfactorily reproduced the observed flows. Some small peaks are
simulated prior to the wet season that are absent in the stream flow records
although heavy rainfall events were reported in the rainfall records. In
terms of peak flows, the model reproduced most of the peaks except for
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some overestimation on days 1684, 2034 and 2035 for instance. The rainfall
records showed that heavy events were observed on these days and it is
speculate that the overestimation is caused by poor observation of the
spatial distribution of high intensity rainfall by the rain gauge network.

Table 7.1 shows the values of the performance measures for the
calibration and the two validation periods. The Nash-Sutcliffe efficiency for
the calibration period is 0.75 with an abias of 6.65 %. The performance
measures for the validation periods are a Nash-Sutcliffe efficiency of 0.60 —
0.64 and an abias of 5.60 — 9.05 % which are comparable to those reported for
REW modelling results of other watersheds (see Zhang et al., 2005; Varado
et al. 2006).

700
600
500
Observed flow
ﬁw 2001+ — — — Simulated flow

Rainfall (mm)

500 1000
Time (01/01/2000-31/12/2005)- (days)

Figure 7.2: Observed and simulated flow at the watershed outlet. The watershed
average rainfall is shown at the top. Note: the calibration period range between 732
—1431, the first evaluation period ranges between 1 — 731 and the second
evaluation period ranges between 1432 — 2192.
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Table 7.1: Model efficiency for the calibration and validation data sets.
Nash-Sutcliffe

Data set Period efficiency abias (%)
Calibration 2002-2003 0.75 6.65
Evaluation 1 2000-2001 0.60 5.60
Evaluation 2 2004-2005 0.64 9.05

7.4.2. Effects of the gauge network configuration and density

on rainfall and runoff estimation

First, the effect of network density on the estimated rainfall is
evaluated. Rainfall estimates are obtained for fixed densities of subsets of
the reference network by changing the network configuration. Figure 7.3
shows the differences in the estimated rainfall by selected indices.

Figure 7.3a shows the GORE index which indicates that the
goodness of the rainfall estimation as compared to the reference rainfall
decreases with decreasing network density. Maximum value of the GORE
can reach up to 1.0 which indicates perfect performance for network sizes
larger than 6 rain gauges. The maximum values for networks of 1 or 2 rain
gauges are in the order of 0.3 and 0.7, respectively. The maximum value of
the GORE index indicates the best configuration. A minimum value of -0.98
was obtained for network configurations of less than 3 rain gauges
indicating very poor performance. The result suggests that the overall
performance of rainfall estimation using any subset of the reference
network can range between extremely poor and perfect with respect to the
reference rainfall. For instance, if rainfall estimates with GORE > 0.8 are
considered to be representative, i.e. with acceptable accuracy, then about 72
% of all the possible ensemble networks produced non-representative
rainfall estimates.

Figure 7.3b shows that decreasing the network density leads to a
large deviation of the Balance index with reference to the optimal value of
1.0. The middle-fifty percent of the Balance index (the 75 % quartile minus
the 25 % quartile) increases with a decrease in network density indicating
that variability increases when the density of networks decreases. Overall,
any two configurations of networks with equal but few rain gauges can
have large difference in terms of the estimated rainfall. For instance, one of
the configurations can overestimate while the other configuration can
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underestimate the reference rainfall. The result suggests that careful
selection of network configuration is more important for low density
networks than it is for high density networks. This analysis is undertaken
for the ensembles of sub-set networks and thus the site specific
characteristics of the stations are not considered.

Figure 7.3c shows that the RMSE increased with a decrease in
network density. The RMSE varies between 0.0 mm h! for network size of 7
rain gauges and 2.3 mm h! for network size of 1 rain gauge. This shows that
a decrease in network density leads to a large deviation between the
estimated and the reference rainfall. Figure 7.3d shows that the temporal
coefficient of variation (CVt) increases rapidly with a decrease in network
density. For all cases, the CVt values are larger than 1.0 indicating that the
rainfall estimates have larger temporal variability than the reference
rainfall.

Values of the selected performance measures suggest that the
accuracy of the estimated rainfall deteriorates with a decrease in network
density. A reason for this could be the convective nature of the rainfall.
Haile et al. (2009a) showed that localized events are very frequent and that
rainfall in the watershed is highly variable with maximum rainfall intensity
at one station while the remaining stations recorded very low to zero
rainfall intensity.

A multivariate regression analysis is performed to relate the GORE
index as estimated for networks of only 4 specified stations which are
considered categorical variables. The regression equation, which is fitted
with an R? value of 0.87 and a standard error of 0.07, reads:

GORE, =1.075—0.126A—0.238B — 0.181D — 0.196DU — 0.0501 — 0.044J — 0.212K +0.158S
[7.12]

where: The subscript 4s shows that only 4 gauges are considered; A
is for Addis Kidam, B is for Bahir Dar, D is for Dangila, DU is for Durbet; I
is for injibara; | is for Jemma; K is for Koga and S is for Sekela. In equation
[7.12], A = 0 when Addis Kidam is ‘not in network” and A = 1 when Addis
Kidam is “in network’. This applies for the remaining stations as well. As
such, the GORE index can be estimated for any other combination of 4 ‘in-
network’ stations.
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Figure 7.3: Performance of spatial rainfall estimation using specific number of rain
gauge stations with respect to the reference area-average rainfall. The lower and the
upper bars indicate the 25 % quartile minus 1.5 IQR and the 75 % quartile plus
1.5 IQR, respectively where IQR is the interquartile range which is the height of
the box. The middle bar of the boxes shows the median while the upper and lower
bars of the boxes show the 75 % and the 25 % quartiles.

In the previous paragraphs, the variation of the estimated rainfall
which is estimated using different network densities is discussed without
considering the intensities of the rainfall events. To differentiate between
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light to medium and high intensity events, an arbitrarily selected threshold
of 5 mm h'is applied for which the performance of the network for rainfall
estimation is assessed. The records of the reference rainfall contain 23 events
with intensities higher than the selected threshold.

In table 7.2, the statistics of the GORE index for all possible network
configurations are shown for events with intensities higher than 5 mm h-'.
The same table shows that the value of the minimum and 25 % quartile of
the GORE index for all of the selected network densities are negative. This
suggests that certain configurations of the network may poorly estimate the
spatial rainfall. Table 7.2 also shows that in terms of the 75 % quartile, the
configurations of network densities of smaller than 5 rain gauges resulted in
a negative value of GORE index. In terms of the median, only a network
size of 7 rain gauges resulted in a satisfactorily estimates while results of the
rainfall estimation deteriorated when smaller than 7 rain gauges are used.
In terms of the maximum values, the GORE index is larger than 0.7 when
more than 3 gauges of the best performing network configurations are used
to estimate the spatial rainfall. This suggests that the best performing
configurations of networks of 4 rain gauges are adequate to satisfactorily
estimate rainfall events of intensity higher than 5 mm hl. Overall, most of
the configurations of the networks of specific densities are not adequate to
accurately estimate rainfall of such intensities.

Table 7.2: Statistics of the GORE index for estimation of the spatial rainfall for events
with intensity of higher than 5 mm h'l.
Number of stations

Statistics 7 6 5 4 3 2 1

Minimum -85  -129 -17.6 -21.4 249  -28.1 -32.1
25 % quartile -0.8 -0.4 -9.3 -12.0 -148 -194 -26.4
Median 0.9 -0.4 -3.7 -7.7 -119 -152 -19.8
75 % quartile 1.0 0.8 -0.1 -3.4 -6.5 -124 -18.7
Maximum 1.0 1.0 0.9 0.8 0.6 -1.9 -14.5

7.4.3. REW model sensitivity to network configuration and

density
The sensitivity of the REW model for specific configurations of the

rain gauge network is shown in table 7.3 with network performance for
selected indices. For each network density, the configuration that produced
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the maximum GORE index is selected since this shows the best
configuration for representing rainfall with reference to the entire network.

Table 7.3 shows that the rain gauges at Sekela and Jema are part of
the best performing configurations of any of the network densities. Sekela is
located high on a mountain which is the head source of Gilgel Abbay river
while Jema is located at relatively low elevation and east of the main stream
of Gilgel Abbay river. Haile et al. (2009a) showed that the rainfall at Sekela
is light to medium while that at Jema is heavy with intensities as high as 39
mm hl.

Table 7.3 shows that similar to the value of the GORE index, the
NSEn for stream flow simulation decreases with decreasing network
density. The coefficient of determination R? between the NSEx and the
GORE index is 98 % and indicates that NSEw is strongly related to the GORE
index. The NSEx changed from 0.943 when 6 rain gauges were used to 0.344
when 2 rain gauges were used while extremely poor performance is
indicated when a single rain gauge was used.

Table 7.3: Sensitivity for spatially averaged rainfall that is estimated by a specific
number of stations. Note: the stations with maximum GORE were selected.

Number of stations

6 5 4 3 2 1
Rain gauges Dur, Sek, Dur, Sek, Sek, Sek, Sekela
for best A.Kj, Sek, A. K], Jema, Jema
configuration Jema, Dan, AKim, Jema, Inji

Inji Jema, Inji

Inji

Indices for estimated rainfall
GORE index 1.000 0.992 0.977 0.899 0.740 0.284
Balance 1.002 0.994 1.017 1.073 1.063 0.996
CVt 1.004 1.019 1.080 1.165 1.407 1.699
Performance measures for simulated flow
NSEn 0.943 0.813 0.810 0.597 0.344 -0.365
bias (%) 2.100 -2.468 -1.109 5.481 -1.140 6.771

The bias is estimated using equation [7.2] by ignoring the absolute
value. It must be noted that the bias values of the simulated flow are not
uniquely related to the errors in the rainfall input since underestimation of
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the rainfall does not necessarily cause an underestimation of the simulated
flows with respect to the reference flow.

Figure 7.4 shows the relative difference between the simulated flow
quantiles and the reference flow quantiles of the same rank (see, equation
[7.11]. The simulated flows are based on rainfall input which is estimated
using the best performing configuration of networks with 1, 3 and 5 rain
gauges, see table 7.3 for selected stations. The relative difference is largest
for high and low flows. The relative difference for high flows is up to 40 %
for a configuration of 3 rain gauges while the difference for high as well as
for low flows is up to 15 % for 5 rain gauges. The relative difference for 3
and 5 stations is smaller than 5 % for middle ranged flows indicating that
rainfall representation is particularly poor for these flows. Rainfall input as
estimated from only the mountain rain gauge Sekela resulted in extremely
large relative differences of up to 100 % for almost all ranges of the
simulated flow.
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Figure 7.4: Relative difference (see equation 12) between the simulated stream flow and
the reference stream flow for a specific number of rain gauge stations. Note: The
rain gauge configuration for respective rain gauge numbers that produced the
maximum GORE index is selected.

The effect of the configuration of the rain gauge network on the
accuracy of the simulated flows is evaluated. Rainfall is estimated using
data from 7 rain gauges by removing 1 rain gauge at a time from the
reference network of 8. Removing Bahir Dar station did not affect the
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performance of the network in estimating rainfall, presumably, since the
station is located somewhat far from the watershed. As such this station
was not considered for evaluating the sensitivity of the model and the REW
model was run for the 7 subsets of the reference network.

Table 7.4: Effect of removing a specific station on the performances of the REW model:
The name of the removed station and its elevation are shown on the top of each

column.

A.Ki Inji Sek Dan Jema Dur Koga
Elev.(m ) 2370 2592 2715 2127 1970 1984 2011
Indices for estimated rainfall

GORE 0.945 0916  0.712 0.993 0.885 0.990 1.000

Balance 1.038 0.965 1.043 0.993 0.924 1.017 1.002

Cvt 1.020 1.099 1.299 1.016 0.950 1.031 1.004

CVs 1.114 1.091 1.091 1.113 1.141 1.116 1.136
Performance measures for simulated flow

NSEn 0.825 0.641 0.504 0.780 0.853 0.928 0.816

bias (%) -6.244  -14.656 -7.441 -3201 -8.013 -3.758 -6.433

Table 7.4 shows that the GORE index of the rainfall and the NSE of
the flow are related where higher GORE values result in higher NSEn
values. The NSEx ranged between 0.504 and 0.928 when the mountain rain
gauge Sekela and the lowland rain gauge Durbet were removed,
respectively. In terms of bias, removing any of the rain gauges causes
underestimation of the flow. The bias is largest when the mountain station
Injibara was removed. In Haile et al., 2009a, it is shown that the mountains
of Gilgel Abbay watershed have large seasonal rainfall and are dominated
by light to medium but frequent rainfall events when compared to the
rainfall in the lowlands which are relatively heavy but infrequent. As such,
removing a mountain station may result in a large rainfall error which
consequently may cause underestimation of simulated flows.

Figure 7.5 shows the sensitivity of the model when Sekela and
Durbet stations are removed from the reference network. Figure 7.5a shows
that the difference is very small when Durbet is removed but that the
difference becomes large when Sekela is removed. Figure 7.5b shows that
removing Sekela results in a systematic underestimation of low flows at the
beginning of the wet season (e.g. on hours 500, 750, 1000 since start of
simulation) while it also results in underestimation of the peaks in the
beginning of the wet season (i.e. until simulation hour 850) and
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overestimation of some of the peak flows towards the end of the wet season
(i.e. on hours 1853 and 2032).
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Figure 7.5: Effect of removing Durbet station (a) and Sekela station (b) on the
simulated flow as compared to the reference flow. Durbet is located in a valley while
Sekela is located on a mountain.

7.4.4. Effect of model resolution

The effect of model resolution on the sensitivity of the REW model
to rainfall is evaluated by applying a second and a third Strahler order
descretization that resulted in 33 REWs and 9 REWs, respectively. The
comparison is made for the time period that spans from June 1, 2007 to June
9, 2007 at the beginning of the wet season while NSEwu, bias and peak flow
indices are used.

Table 7.5 reveals that model performance for the third order
discretization is less sensitive to rain gauge density as compared to the
second order discretization since the former resulted in higher values of
NSEn with relatively smaller range of values. In terms of bias, there is no
clear pattern in the sensitivity by the two model resolutions. The differences
in the simulated peak flows are generally much smaller for the third order
than the second order discretization which again suggests that the coarser
resolution model is less sensitive to rainfall.

172



Sensitivity of the Representative Elementary Watershed model to rainfall

7.4.5. Model sensitivity to rainfall variability

Stream flow volumes and the peak flows as simulated for uniform
rainfall (UR) and non-uniform rainfall (NUR) representations are compared.
For the comparison, 11 events in JJA, 2007 are selected and performance is
evaluated through the NSEw coefficient, see table 7. 5. For the events, NSEn
ranged between 0.66 and 0.99 which shows that the REW model response to
rainfall representations largely varies subject to the rain events. The bias
ranged between -13.8 % and 18.7 % while the difference in the simulated
peak flow ranged between -16.9 % and 25.0 %. This again suggests that the
sensitivity of the model to rainfall representation varies from event to event.
As such, the spatial coefficient of variation (CVs), the temporal coefficient of
variation (CVt) and the antecedent rainfall are estimated for the selected
events to reveal if these can be related to the model sensitivity to rainfall
representation.

Table 7.5: Comparison of sensitivity to rainfall of the REW model using a second and
third Strahler order descritization for the time period June 1 to June 9, 2007.

Six Five Four Three

stations stations station stations

Second Strahler order (33 REWs)
NSEn 0.990 0.962 0.877 0.858
bias 0.119 -1.073 6.383 6.103
Error in peak flow 3.5 13.2 222 21.4
(%)

Third Strahler order (9 REWs)

NSEw 0.994 0.995 0.988 0.986
bias 2.3 2.7 -7.7 -4.6
Error in peak flow 9.5 4.0 1.6 7.1
(%)

Table 7.6 shows the correlation between these rainfall indices and
the performance measures as estimated for stream flow using UR and NUR
representation. The correlation values are estimated using the data for 11
events in JJA of 2007. The CVs is estimated for the event rainfall while the
antecedent rainfall is estimated as the accumulated rainfall that is observed
during a 5 days period preceding the specific events.
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Table 7.6: Correlation matrix for rainfall characteristics and model performance
measures for simulated stream flow with a uniform rainfall input with the non-
uniform rainfall input for a reference flow.

Performance measured Difference in peak
Rainfall characteristics NSEm (-) bias (%) flow (%)
CVs (-) -0.533 -0.3 -0.1
CVt (-) -0.318 -0.1 0.7
Antecedent rainfall 0.299 -0.5 -0.4

(mm)

The correlation value in table 7.6 shows that there is an inverse
relation between CVs and NSE» which indicates that a larger value of CVs
results in a smaller value of NSEu. Therefore, the simulated stream flow for
the UR representation becomes significantly different from that is simulated
for the NUR representation when the rainfall largely varies in space, i.e. for
high CVs values. In terms of correlation, rainfall temporal variability (CVt)
and antecedent rainfall have moderate effect on the NSEn.

The correlation values indicate that the bias is moderately related to
CVs and the antecedent rainfall while it is weakly related to CVt. The result
indicates that a smaller CVs value results in a larger bias value. For small
antecedent rainfall, UR resulted in a larger volume in the simulated stream
flows compared to NUR. Such suggests that differences in model output by
UR and NUR become larger for dry antecedent conditions as compared to
wet conditions.

The effect of rainfall characteristics on the difference in peak flow as
a result of UR as compared to NUR is also analyzed. Correlation values in
table 7.6 are estimated using the absolute value of the difference in peak
flow. The correlation values indicate that the difference in the peak flow by
UR and NUR is significantly affected by CVt and moderately affected by the
antecedent rainfall while it is weakly affected by the CVs. This suggests that
the difference in peak flow as a result of the spatial rainfall representations
becomes larger for rainfall with larger temporal variability.
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(a) Max. rainfall at Durbet (b) Max. rainfall at Sekela
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Figure 7.6: Simulated flow for (a) rainfall with maximum depth near the watershed
outlet (at Durbet) and (b) on the mountain (at Sekela). Note: The time is measured
since the start of simulation of the event.

In this study, the effect of the location of the maximum rainfall
depth on the response of the runoff model is evaluated. Figure 7.6a shows
the simulated stream flows using UR and NUR representations for
maximum rainfall depth that is observed at Durbet which is located in a
lowland area near the watershed outlet. The figure shows that the UR
resulted in a peak flow which is 11.4 % higher than that by the NUR. Such
presumably can be explained since the maximum rainfall depth that falls
near the watershed outlet has a short flow path that is ignored by specifying
a UR. Figure 7.6b shows the simulated flow for the event for which the
maximum rainfall was recorded by the mountain gauges at Sekela. The
figure shows that the UR and the NUR resulted in somewhat similar
hydrographs with a peak flow of UR that is 2.8 % lower than by the NUR.
Overall, the results show the effect of maximum rainfall location in the
watershed in assessing effects of rainfall representation.

7.4.6. Effects of rainfall interpolation

In this study, 3 interpolation methods are compared which are the
Thiessen polygon, the inverse distance Weighting (DW) methods and a
nearest neighbour approach where rainfall of the nearest gauge is assigned
to the REWs. The comparison is performed for the third order
discretization. Results for 3 events are summarized in table 7.7 in terms of
the volume and the peak of the simulated stream flow.

Table 7.7 shows that the IDW method results in smallest volume
error of simulated stream flows. In terms of percentage, the volume of the
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simulated flow using the IDW method is 12.8 %, 1.1 % and 0.6 % smaller
than the Thiessen method. The comparison of the peak flows also shows
similar results where the IDW method resulted in lower peaks than the
other methods. In terms of percentage, the volume of the simulated peak
flow using the IDW method is 13.0 %, 11.4 % and 3.3 % smaller than the
simulated peak by the Thiessen method. Overall, the use of the different
interpolation methods resulted in larger percentage differences in the peak
than in the volume of the simulated flow. Such large difference in the
characteristics of the stream flows suggests that the selected interpolation
method has large effect on the result of model simulations and may
contribute to uncertainty of model results.

Table 7.7: Effects of interpolation on REW model outputs. Note: the volume of the
simulated stream flow is divided by the size of the watershed area.

Interpolation

method Event 1 Event2 Event3
Volume of IDW 18.3 14.7 30.9
simulated Thiessen 20.9 14.9 31.1
stream flow Nearest gauge 22.2 14.1 33.5
(mm)
Peak stream IDW 96.0 109.9 189.0
flow (m3 s7) Thiessen 110.4 124.1 195.5

Nearest gauge 107.3 115.2 220.2

7.5. DISCUSSION AND CONCLUSION

In this study, the REW model is evaluated for the 1655 km?
watershed of the Upper Gilgel Abbay with specific focus on evaluating
effects rainfall representation. All model parameters are assumed spatially
uniform and time invariant to exclusively focus on rainfall representation.
Previous studies that applied the REW model also assumed uniformity of
parameters, e.g. Reggiani and Rientjes (2005); Zhang et al. (2005); Varado et
al. (2006). and focussed on assessing the models ability to simulate the
integrated watershed response in terms of stream flow.

The base network of 10 rain gauges provided the rainfall data for
model calibration. The REW model is calibrated for daily stream flow
observations with a Nash-Sutcliffe coefficient of 0.75 and an absolute bias
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(abias) of 6.6 %. Such values indicate good model performance and did not
change much when the model was applied to validation periods.

Effect of rain gauge network on rainfall estimation: The variation of the
estimated spatially uniform rainfall with a change in the density and
configuration of a rain gauge network is evaluated. In the work of Haile et
al. (2009a), the observations by the reference network revealed the presence
of large rainfall variability in the study area. Stations, however, are installed
close to small towns which may result in some bias in the analysis since
stations are very weakly distributed. The uneven distribution leads, for
instance, to unknown extrapolation errors of rainfall to some parts of the
watershed that as such may affect UR and NU representation. To be able to
quantify on these effects, rain gauges should also be available on the central
and northeastern parts of the watershed as well.

In the present study, the Thiessen polygon method is applied to
estimate spatially uniform rainfall for each of the sub-set networks. The
interpolation method is simple and does not require optimizations of any
parameters. To analyse how network density and configuration affects
rainfall estimation, 256 sub-networks are established from a network of 8
recording rain gauges. Based on the GORE value of lower than 0.8, about 72
% of the generated networks produced non-representative rainfall
estimates. The values of both RMSE and temporal coefficient of variation
(CV,) rapidly decrease with a decrease in network density. Although the

GORE index for denser networks is mostly high (i.e. up to 1.0) it is shown
that some configurations of denser networks can result in a low value. Such
indicates poor representation and the analysis indicates that is particular for
heavy rainfall events. The result suggests that an increase in network
density does not necessarily improve the accuracy of the estimated rainfall
unless the network configuration is representative.

Model sensitivity to rain gauge network: The REW model of the Upper
Gilgel Abbay is found to be sensitive to both the density as well as to the
configuration in terms of location of the rain gauges. The relative difference
between the simulated high and low stream flows of the same rank as
explained by the exceedance probability becomes as large as 15 — 40 % when
3 and 5 rain gauges are used while it becomes as large as 100 % when 1 rain
gauge is used. The use of 1 rain gauge resulted in larger differences over the
whole range of the simulated flows.
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It is shown that model sensitivity to rainfall depends on whether a
lowland or a mountain rain gauge is considered. Removing the lowland
rain gauge Durbet from the reference network resulted in a NSE value of

0.93 while removing the mountain rain gauge Sekela resulted in a NSE

value of 0.50. Removing Sekela station caused underestimation of the
simulated low flows at the beginning of the wet season while it caused
overestimation of some of the peak flows during the wet season.

For a satisfactory performance of the REW model, the rain gauge at
Sekela located at the head source of the watershed and the rain gauge
located at Jema that is east of the main river at low elevation should always
be part of any selected rain gauge network. These stations become
important since: (i) there are no other stations east of Jema and north of
Sekela and therefore removing the two stations affects the interpolation
weights to the stations that are south of the main river of the watershed, (ii)
Sekela and Jema have different rainfall properties as compared to the
remaining stations in the study area.

Effects by (i) can be evaluated by installing additional rain gauges
on the areas north of the main river of the watershed. With regard to (ii),
Haile et al. (2009a) showed that both Sekela and Jema have large seasonal
rainfall but Jema receives more frequent and high intensity rain events
while Sekela receives clustered hourly rainfall with mostly light to
moderate rainfall intensities. Haile et al. (2009c) showed that rainfall ii the
lowland areas of Gilgel Abbay can be characterized by large depth, high
intensity, short duration and long inter-event time as compared to the
mountain areas. As a result of the differences in rainfall properties,
removing Jema and Sekela from the network can result in larger differences
in the estimated spatial rainfall as compared to removing any of the other
stations. In the present study, such differences are found to significantly
affect the simulations of the REW model.

Effect of model resolution: The sensitivity of the REW model to spatial
rainfall representation is analyzed by using model discretization scheme
that is based on second and third Strahler order topology which resulted in
33 and 9 REWs, respectively. The second order discretization showed a
higher sensitivity to rainfall representation suggesting as compared to the
third order discretization. Zhang et al. (2005) stated that higher order
discretization results in a lower number of REWs but a larger subsurface
volume for each REW which causes delayed responses from the subsurface
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storage while peak flow at the outlet are suppressed. This was also
observed by comparison of results of third and second order discretization
with the latter resulting in larger overestimation of peak flows. Based on
the results, it may be concluded that the increase in runoff dynamics by the
finer resolution model may increase the sensitivity of the model to the
errors in the rainfall input.

Effect of rainfall variability: Arnaud et al. (2009) showed for fictious basins
that UR results in a significantly different runoff volume and peak flow as
compared to a NUR representation. A similar conclusion can be drawn
from the results of the present study. It is shown that the response of the
REW model to rainfall varies subject to the rain events. In terms of NSEu,
the model becomes more sensitive to rainfall representation when the
rainfall is more variable in space. The difference in peak flow for UR and
NUR becomes larger when rainfall is characterized by larger variability
over time and for small volumes of antecedent rainfall. For a maximum
rainfall depth near the watershed outlet, the UR resulted in a peak flow
which is 11.4 % higher than the peak flow by NUR. However, for a
maximum rainfall depth on the mountain, the UR resulted in a peak flow
which is 2.8 % lower than by the NUR. It is noted that the observation time
series in this study may not cover the entire ranges of rainfall variability in
the watershed. Such requires increasing the density of the rain gauge
network.

The effect of rainfall interpolation on simulated stream flows is
evaluated in this study. The IDW method resulted in a smaller stream flow
volume as well as peak flow than by the Theissen polygon method and the
nearest neighbour approach where the rainfall of nearest rain gauge is
assigned to the REWs. Based on the results of the analysis, it is concluded
that the use of different interpolation methods results in relatively larger
difference in the peak flow than the stream flow volume.
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Summary, conclusions and recommendations

8.1. SUMMARY AND CONCLUSIONS

The analysis of ground based observations in the Lake Tana basin
shows that the rainfall is largely variable and is affected by orographic
factors and the presence of Lake Tana. The inter-station distance between
the rain gauges is larger than the scales of the rainfall and as such the
network does not satisfactorily capture the rainfall variability that has a
strong effect on the hydrology of the basin. The spatial variability of the
rainfall is so large that a few rain gauges are not sufficient to simulate
discharges adequately. Simulated discharges are found to be affected by not
only network density but also network configuration.

A network of 8 recording rain gauges is used to capture the rainfall
variability of the basin in space and time. The temporal analysis shows a
diurnal pattern that is location specific suggesting different mechanisms of
rainfall generation in the lowlands, around the lake and in the uplands. The
network of the recording rain gauges does not cover the entire basin.
Remote sensing images can help as an additional source of data, but not
directly, since the remote sensing signals come from cloud top surfaces not
from the surface rainfall. Conclusions that are drawn from the work in this
thesis and recommendations for future work are presented in this Chapter.

8.1.1.  Rainfall variability

The spatial pattern of the rainfall variability in the Lake Tana basin
is evaluated using a set of statistical methods applied to a network of 8
recording rain gauges and supporting satellite data. The rain gauges
recorded the rainfall of the full wet season from June — August of 2007. For
the areas that are not covered by the rain gauge network, the diurnal cycle
of the rainfall was inferred using cloud-top observation at the 10.8 um
channel of the Meteosat Second Generation (MSG-2) geostationary satellite,
see Chapter 3.

SPATIAL PATTERN OF HOURLY RAINFALL

Statistics of the rainfall observations suggest that the upland areas of
Gilgel Abbay watershed in the Lake Tana basin receive rainfall more
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frequently as compared to the lowland areas. For hourly rainfall lower than
10 mm, a direct relation has been found between the number of rainfall
occurrences and terrain elevation. However, for hourly rainfall higher than
10 mm, an inverse relation has been found between the number of rainfall
occurrences and terrain elevation. As such, it can be concluded that
relatively smaller hourly rainfall mostly occurs on mountainous areas of
Gilgel Abbay while relatively larger hourly rainfall mostly occurs on the
lowland areas of the watershed.

The spatial structure of the rainfall is studied through the Pearson’s
product-moment correlation that is first estimated for the rainfall
observations at a pair of stations. In the procedure, this is followed by fitting
a correlation model, which is in the form of an exponential equation, to the
correlation values and the inter-station distances. To summarize the results,
the correlation distance of the hourly and the daily rainfall is 8 — 10 km and
18 km, respectively which indicates that stations that are separated by
distances that are larger than the correlation distance have statistically
insignificant relation. As such, the inter-station distance in the watershed
should not exceed 8 — 10 km or 18 km if the spatial structure of the hourly
and daily rainfall needs to be satisfactorily observed by the network. In
some cases, the £ 1 hour lag cross-correlation has been found higher than
the 0 hour lag correlation which can be caused by the movement of
convective clouds. If two consecutive hours are considered, the rainfall
depth of station 1 in the first hour is consistently larger or smaller than
the rainfall depth of station 2 in the second hour. Two conclusions can be
drawn from the correlation analysis in this study: (ii) on average, the inter-
station distance of the rain gauges in the study area is much smaller than
the spatial scale at which there is significant correlation of the rainfall and
(ii) the hourly and daily rainfall of the study area is largely variable and
erratic.

TEMPORAL PATTERNS: DIURNAL CYCLE

In this thesis, the analysis of the diurnal cycle of the rainfall
observations indicated the following: (i) in the Lake Tana basin, rainfall
rarely occurs in the morning, i.e. between 0900 — 1200 Local Standard Time
(LST), (ii) in the upland areas of Gilgel Abbay, rainfall occurs mostly
between 1600 and 1700 LST while the rainfall of Bahir Dar which is situated
at the south shore of Lake Tana occurs mostly around 2300 LST, (iii) only 24
% of the seasonal rainfall of Injibara which is situated on a mountain area is
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nocturnal rainfall that occurs between 2100 — 0900 LST while 73 % of the
seasonal rainfall of the south shore is nocturnal rainfall, see figure 3.1 for a
map of the area and locations of the station. The result suggests a difference
in the mechanisms that cause the rainfall in the mountain areas and that in
the lowland areas. In the mountain areas, rainfall occurrence is affected
mostly by orographic factors while in the lowland areas, rainfall is affected
mostly by the presence of Lake Tana.

The spatial pattern in the rainfall diurnal cycle of the Lake Tana
basin is inferred using a convective index (CI) that is derived from
observations at the 10.8 pm channel of MSG-2. A CI value of 1 at a
particular LST indicates that a rain producing cloud occurred every day at
that LST while a CI value of 0 at a particular LST indicates that a rain
producing cloud did not occur at that LST throughout the time period of the
study. The CI values of Gilgel Abbay show a diurnal cycle which is similar
to the diurnal cycle that is estimated using the rain gauge observations.
Therefore, it is concluded in this thesis that remote sensing observations can
be used to study the rainfall diurnal cycle of the areas which are not covered
by the recording rain gauges.

The CI values suggest that the LST at which intense rainfall occurs
show a spatial trend that stretches from the upland areas of the watersheds
of the basin towards the lowland areas near the lake. At 1500 and 1800 LST,
the frequency of rainfall occurrence could directly be related to terrain
elevation while the two are inversely related in the early night hours. In this
study, it is noted that such difference in the direction of the relation between
rainfall occurrence and terrain elevation can be caused by the relatively
strong effects of orography on the afternoon rainfall and the presence of
Lake Tana on the nocturnal rainfall. The CI values suggest that in Gilgel
Abbay, Gumara, and Ribb watershed, rainfall occurs mostly between 1600
LST and 1700 LST while in Megech watershed and Lake Tana, rainfall
occurs mostly between 2200 and 2300 LST. As such, it can be concluded that
the rainfall of Lake Tana and Megech mostly occur in the same LST of a day
on average while that of the rainfall of the remaining three watersheds also
occur on the same LST.

A harmonic analysis showed that the characteristics of the rainfall
diurnal cycle in the basin have a significant spatial variation which suggests
spatial differences in the mechanisms that affect rainfall occurrence. The
analysis also revealed that the first and second harmonics explain most of
the variance in the rainfall diurnal cycle in Gilgel Abbay, Ribb and Gumara.
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However, only the first harmonic explains most of the variance in the
diurnal cycle at the south shore of the lake, Megech watershed and Lake
Tana.Therefore, it is concluded in this thesis that the semidiurnal cycle of
the rainfall in Gilgel Abbay, Ribb and Gumara are significant and should be
considered in the harmonic analysis while the semidiurnal cycle of the
rainfall in Lake Tana and Megech is too small to be considered.

SCALING ISSUES

The box-counting method has been applied to study the temporal
rainfall intermittency in the study area. The results suggest that the rainfall
intermittency of Gilgel Abbay watershed has two scaling regimes. The first
scaling regime extends from 2 hour to 8 hour while the second scaling
regime extends from 2.7 days onwards. The fractal dimension of the second
scaling regime is 1.0 which indicates saturation and as such rainfall has
been observed at least once in 2.7 days. As explained by the Pearson’s
correlation coefficient of 0.69, there is a direct relation between the fractal
dimension of the first scaling regime and terrain elevation in the watershed.
Therefore, it is concluded that the hourly rainfall of the upland areas of
Gilgel Abbay watershed is closely clustered than that of the lowland areas.

8.1.2. Rain event properties

To characterize the rainfall better, the spatial and temporal patterns
of the rain event properties in the Lake Tana basin are analysed (see
Chapter 4). These event properties are rain event depth, event duration,
mean event intensity, peak intensity and the length of dry time period
between two consecutive rain events which is also termed as inter-event
time (IET).

Results indicate that an increase in rain event depth can be related
to an increase in event duration, mean event intensity, and peak intensity.
Based on correlation analysis, it is concluded in this thesis that rain event
depth in the study area is more related to peak intensity than event
duration. However, IET has a weak relation with all of the remaining rain
event properties. For instance, an event that is preceded by a short dry
period does not necessarily have large event depth or high event intensity.
Results also showed that the rain events at the start and towards the end of
the wet season have relatively large depth, long duration and are separated
by long dry time periods as compared to the events in the mid-season. It can
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be concluded that the rain events at the start and towards the end of the wet
season of the study area are mostly convective events.

The spatial variation of rain event properties shows that there is a
weak relation between terrain elevation and small values, i.e. the 10 %
quantile, of event depth, event duration, peak intensity, and IET. In terms of
the median value, rain event depth, mean event intensity and IET in the
study area decrease with an increase in terrain elevation while event
duration increases with an increase in terrain elevation. It is conclude that
the large seasonal rainfall depth in the mountain areas of the study area is
mainly due to relatively frequent events that have long duration.

A dimensionless event hyetograph is developed for the rain events of
the study area since there is a relatively simple model approach that is
based on such hyetographs. The beta probability distribution model is fitted
to the dimensionless hyetographs of the observed rain events. Overall, the
model satisfactorily reproduced the shape of the dimensionless hyetographs
with small errors. This suggests that such models can be used to
synthetically generate rainfall intensity but rainfall records of several years
are required to become conclusive.

Subsequently, the conditional probability of rainfall occurrences at any
two stations is estimated. Such analysis provides information on the spatial
structure of rainfall intermittence. The conditional probability of rainfall
occurrences at two stations is shown to increase when the rainfall
aggregation time is increased from 1 hour to 6 hour and then to 1 day. In
this thesis, it is suggested that this is caused either by the presence of events
with duration longer than 1 hour or by the presence of multiple events in 6
hour or a day.

An exponential model is fitted to define the conditional probability in
terms of inter-station distance. The model performed satisfactorily for the 1
hour and the 6 hour rainfall, respectively. However, the model performed
poor when it is fitted to the conditional probability of the daily rainfall
occurrences. It can be concluded that for short time scales, the exponential
model can be used to estimate conditional probability of rainfall occurrence
in terms of inter-station distance but for larger than daily time scales, the
probabilities have approximately equal values with some scattering and as
such the exponential model cannot be used.

Based on the results, it can be speculated that (i) the difference in rain
event properties in the study area is caused by a combination of orographic
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factors and the presence of Lake Tana, and (ii) the use of terrain elevation as
a covariate of the interpolation of large rain event depths may improve the
accuracy of the estimated rainfall but this requires further study.

8.1.3. Remote sensing for rainfall detection and estimation

The next logical step is to evaluate the effectiveness of remote
sensing based indices for rainfall detection and estimation. The indices are
established based on the observations at selected channels that are the 6.2
um water vapor (WV) channel and the 10.8 pm and the 12.0 um thermal
infrared (TIR) channels of MSG-2. Rainfall rates from the Precipitation
Radar (PR) of Tropical Rainfall Measuring Mission (TRMM) satellite served
as the ground-truth in the evaluation of the indices, see Chapter 5.

The following indices are applied to detect rainfall: (i) the brightness
temperature that is recorded at the 10.8 um channel (T10.s) which provides
information cloud thickness, (ii) the rate of change of T10.s (AT10.s) which is
used to infer the rate of vertical development of a cloud top surface, (iii) the
space gradient of Tw.s (V Tws) that provides information about the texture
of a cloud top surface, (iv) the brightness temperature difference (BTD)
between the 10.8 pm and the 6.2 pm channel (T10.s — Te2) which is used to
infer cloud thickness and top height with respect to the tropopause, and (v)
the BTD between the 10.8 um and the 12.0 um channels (T10.s — T120) which
is applied to differentiate between thick clouds and thin clouds with high
top surface. The performances of these indices for rainfall detection are
evaluated through a set of categorical statistics that are: bias, Probability of
Detection (POD), False Alarm Ratio (FAR) and Heidke Skill Score (HSS).

The result using the AT index revealed that rainfall is produced
not only during the cloud growing and mature stages but also during the
dissipation stage. This is in contrary to the assumption by some TIR based
rainfall estimation algorithms where rainfall is assumed to occur during the
growth stage only.

For detecting low rainfall rates, the Tws and the ATis indices
performed better than the other indices while for detecting high rainfall
rates, the T1s and the BTD (T10s — Te2) indices performed better than the
other indices. It has been shown that the commonly applied Ti0s thresholds
such as 235 or 253 K overestimated the number of rainfall occurrences. As
such, it is concluded in this thesis that the rainfall of the Lake Tana basin is
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caused mostly by thick clouds that have high top surfaces. Also, it is
concluded that T10.s and AT1os are the preferred indices for rainfall detection
while the BTD (Tws — Te2) index can provide additional information to
detect high rainfall rates. However, it is concluded that BTD (T10.s — T120) is
the least preferred index for rainfall detection.

Results in Chapter 5 suggest that rainfall rate in the Lake Tana basin
decreases exponentially with an increase in brightness temperature of cloud
top surface. Therefore an exponential model has been developed for TIR
based rainfall estimation. The model parameters have been fitted by the
method of least squares with a standard error of 0.84 mm h-'. It is concluded
that accurate evaluation of the model requires increasing the existing rain
gauge network density.

8.1.4. Remote sensing based conceptual cloud modeling for

rainfall estimation

One of the major sources of uncertainty in remote sensing based
rainfall estimation is that the observations are indirect, see Chapter 1 of this
thesis. For instance, thermal infrared (TIR) based rainfall estimation
methods rely on cloud top surface temperature to estimate surface rainfall
rates. However, the TIR observations do not provide any information on the
dynamics of the physical properties below the cloud top surface. As such,
TIR based methods are indirect and do not simulate the processes that cause
rainfall and such limitation introduces uncertainties in the estimated
rainfall. To overcome such limitations, a conceptual cloud-rainfall model for
rainfall simulation has been developed in Chapter 5 of this thesis. The
model inputs are weather observations at ground surface and satellite
infrared observations which are readily available. In this thesis, these inputs
are TIR observations from MSG-2 at 15 minute interval and ground surface
pressure (Po), temperature (To) and dew-point temperature (Tw) that are
recorded at 30 minute interval.

For the cloud model development, the mass balance equations for
saturated water vapour, cloud water, rain water and air density have been
simplified based on a set of plausible assumptions. The simplified equation
defines the rate of change in the liquid water amount of a cloud layer in
terms of the difference between the net saturation water vapour input and a
rainfall rate as model output. In this thesis, it is concluded that the cloud
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model is a parsimonious model that has a similar structure as that of
hydrological conceptual models and is not data demanding.

Model sensitivity has been evaluated through Regional Sensitivity
Analysis (RSA) which is implemented in the Monte Carlo Simulation
Toolbox (MCST). Based on the RSA, it is concluded that the cloud model is
most sensitive to the updraft velocity and the response time parameter. The
model has been calibrated by mainly changing the values of the sensitive
parameters. The model performed satisfactorily when evaluated for four
events except that there is some time shift between the start of the simulated
and the observed rainfall which is in the order of 30 minute that is
considered small in hydrology.

It is also shown that the start time of the rainfall is related to the
steep increase and then leveling-off the updraft velocity. It is concluded in
this study that the use of such characteristics of the updraft velocity for
simulating the rain start time is more promising than the use of the time
elapsed since cloud initiation time. The latter is characterized by uncertain
initial conditions.

Overall, simulations by the conceptual cloud model are satisfactory,
and integrating ground based and remote sensing observations through
cloud modeling is a feasible option for rainfall estimation.

8.1.5. Sensitivity of the REW model to rainfall

In hydrological modelling, much emphasis has been given to the
study of parameter uncertainty. However, input uncertainty such as rainfall
received less attention although such uncertainty can largely propagate to
runoff model simulations. In Chapter 7 of this thesis, the sensitivity of the
Representative Elementary Watershed (REW) model to rain gauge network
density and configuration and to rainfall variability is evaluated and the
results are summarized in this section.

First, 256 subset networks are generated from a reference network of
8 rain gauges by changing the network density and configuration. The
accuracy of the estimated rainfall using the subset networks is evaluated
through a set of performance measures which reflect to what extent the
characteristics of the simulated rainfall match to those of the reference
rainfall. Only 72 % of the networks produced a representative rainfall
estimate as indicated by a Goodness of Rainfall Estimation (GORE) index of
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larger than 0.8. The accuracy of the estimated rainfall decreased with a
decrease in network density. It is also observed that different accuracy
levels are obtained for the same network density but different rain gauge
configurations. Sekela and Jema are part of the best performing
configurations of any network density. Therefore it is concluded that these
stations should always be considered for accurate rainfall estimation.

In this thesis, the performance of the REW model is evaluated for
the Upper Gilgel Abbay watershed. The performance of the model was
found satisfactorily in reproducing the stream flows of the watershed with
the values of the performance measures that are similar to those reported
for watersheds in other geographic regions. To evaluate model sensitivity to
rain gauge network density and configuration, the REW model is run for
the rainfall input that is estimated using the best configured networks of 1 —
8 rain gauges. A network of 1 rain gauge resulted in a modified Nash-
sutcliffe model Efficiency (NSEw) of -0.368 indicating a very poor
performance while the best configured network of 6 rain gauges resulted in
NSEwn of 0.943. As such, it is concluded in this thesis that REW model
simulations are significantly affected by the density and configuration of the
rain gauge network.

The difference between the simulated flow quantiles and the
observed flow quantiles of the same rank are compared for the best
performing configurations of 1, 3 and 5 rain gauges. The relative difference
is up to 15 — 40 % for high and low flows while it is within 5 % for middle
ranged flows. The results indicate that the effect of rainfall representation is
large when high and low flows are simulated. It is found that a coarse
resolution model, which is discretized based on large Strahler order
topology, of the study area is less sensitive to rain gauge network density
than fine resolution model.

In Chapter 5 of this thesis, the difference in simulated stream flows
as a result of uniform rainfall (UR) input as compared to a non-uniform
rainfall (NUR) input is analysed. It is found that the extent of the difference
is affected by the spatial and temporal variability of rainfall as well as the
antecedent rainfall amount. It is concluded that large temporal and spatial
variation and low antecedent rainfall could lead to large model sensitivity
to rainfall variability. Such sensitivity is found to be affected by the location
of the maximum rainfall with respect to the watershed outlet.
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8.2. RECOMMENDATIONS

It is shown that the rainfall of the Gilgel Abbay watershed in the
Lake Tana basin varies largely across space and over time. The diurnal cycle
of the rainfall in the remaining watersheds of the basin and Lake Tana were
inferred from an index that is derived using remote sensing observations.
However, the rain event properties in these watersheds and the lake must
be evaluated in the future by establishing a network of recording rain
gauges similar to that established for the Gilgel Abbay as part of this study.

Rain event properties are important in land degradation studies,
notably in soil erosion modelling where rainfall intensity and energy are
driving forces. Based on the result of the analysis of the rain event
properties, it can be speculated that the rain events of mountain areas have
less soil erosive power than the rain events of the lowland areas. However,
further work is recommended to evaluate soil erosion in the watershed
since severe erosion has been observed in the watershed during the field
campaign of this study.

The results of this thesis showed that the existing rain gauge
network of the study area is too sparse to reasonably capture the space-time
pattern of the rainfall field. The results suggest that the basin rainfall vary at
scales that are much smaller than the scale of most remote sensing based
rainfall estimates. Such can affect the performance of remote sensing based
rainfall estimation method.

In remote sensing based rainfall estimation, one of the major
problems is the ‘beam-filling” effect. By this effect, the radiance recorded for
an image pixel element comes not only from a rain producing cloud but also
from other surfaces such as land and water surface. The beam-filling effect
can be pronounced in regions where the rainfall has a very small correlation
distance which is the case in the Lake Tana basin. Based on the results in
this thesis, it is recommended that future work should analyze the pattern
of the basin rainfall at scales that are compatible to the spatial resolution of
remote sensing observations that is commonly in the order of 5 km. Such
analysis is important in the calibration and evaluation of remote sensing
based rainfall estimates.

In this thesis, two approaches are evaluated for rainfall estimation
using remote sensing observations: (i) a multi-spectral remote sensing
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approach to detect and estimate rainfall, (ii) a conceptual cloud modeling to
simulate rainfall. In particular, the results revealed that the second
approach is promising but it must be further evaluated for larger number of
rain events. Emphasis must be given to install additional weather stations to
provide sufficient spatial coverage. Also, the simulated rainfall must be
evaluated for its effectiveness to serve as an input to rainfall-runoff and soil
erosion modeling.

In hydrological modeling, much research attention has been given
to the issue of model parameter uncertainty while less attention is given to
input uncertainty. However, the effect of rainfall representation in rainfall-
runoff modeling is still not fully known because conclusions of studies are
usually model and watershed specific. In this thesis, such analysis is
performed for the Gilgel Abbay watershed but should be repeated to the
remaining watersheds of the Lake Tana basin to capture the full temporal
and spatial rainfall variability in the area. It is recommended that such
studies should also analyze the effect of rainfall input uncertainty on model
parameter uncertainty.
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