

ESA-MOST Dragon 4 Cooperation

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

"龙计划4"高级陆地遥感国际培训班

20–25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China 2017年11月20日——11月25日 云南师范大学,中国, 昆明

Advanced Thermal Applications Using SNAP and Sentinel-3A SLSTR Data

Prepared by Daniel Odermatt¹, Ana B. Ruescas^{2,3} and Juan C. Jimenez-Muñoz³

1 Odermatt & Brockmann (Germany) 2 Brockmann Consult (Germany)

3 Image Processing Laboratory (UV, Spain)

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Sea and Land Surface Temperature Radiometer (SLSTR)

《南纤彩大掌

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Sea and Land Surface Temperature Radiometer (SLSTR)

对南印彩大学

Backward inclined (left) and near nadir (right) views of the scanning mirror geometry

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20–25 November 2017 I Yunnan Normal University Kunming, Yunnan Province, P.R. China

Data and Physical Units in SLSTR Products

Performance	Parameters	SLSTR	AATSR & ATSR-1/2
Swaths	Nadir view	1 400 km	500 km
	Dual view	740 km	500 km
Global coverage revisit time	1 S/C (dual view)	1.9 days	7-14 days
		0.9 days	-
		1 day	7-14 days
		0.5 days	-
SSI at SSP (km)		0.5 km VIS-SWIR 1 km IR-fire	1 km
Spectral channels centre λ (μm)	VIS (not ATSR-1): SWIR: MWIR/TIR: Fire-1/2:	0.555; 0.659; 0.865; 1.375; 1.610; 2.25; 3.74; 10.85; 12; 3.74; 10.85	0.555; 0.659; 0.865; 1.610; 3.74; 10.85; 12;
Radiometric resolution	VIS (a=0.5%): SWIR (a=0.5%):	SNR > 20 SNR > 20	SNR > 20 SNR > 20
	MWIR (T=270K): TIR (T=270K): Fire-1 (<500 K): Fire-2 (<400 K):	Ne∆T < 80 mK Ne∆T < 50 mK Ne∆T < 1K Ne∆T < 0.5 K	Ne∆T < 80 mK Ne∆T < 50 mK
Radiometric accuracy	VIS-SWIR: (a=2-100%)	< 2% (BOL) < 5% (EOL)	< 5%
	MWIR-TIR (265-310K): Fire (<500k):	< 0.1 k (goal) < 3 K	< 0.1 K
Life time (in orbit)		7.5 years	AATSR: 5 year design, operative since 2002; ATSR-2: 3 year design, operating from 1995 to 2008; ATSR-1: 3 year design, operating from 1991 to 2000

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

"龙计划4"高级陆地遥感国际培训班

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

2017年11月20日——11月25日 云南师范大学,中国,昆明

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Sentinel-3 Data Processing Chains

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Exercise Overview:

- Goal: To calculate Land Surface Temperatures using the thermal emissivity factors calculated in D2OT-P1
- Source: Sobrino et al. (2008, 2016)
- Procedure:
 - Basic image visualization and manipulation tasks
 - OLCI L1 TOA radiance to reflectance conversion
 - OLCI L1/L2 product collocation
 - Band maths operations
 - Graph builder and batch processing
- Sentinel-3 user guide: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-olci

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Land surface temperature using a splitwindow algorithm

 $T_{S} = T_{i} + c_{1} \left(T_{i} - T_{j} \right) + c_{2} \left(T_{i} - T_{j} \right)^{2} + c_{0}$

$$+ (c_3 + c_4 W) (1 - \varepsilon) + (c_5 + c_6 W) \Delta \varepsilon$$
⁽¹⁾

where Ts is the LST (in K), $T_{i,j}$ are at-sensor brightness temperatures (in K), W is the atmospheric water vapor content (in $g \cdot cm^{-2}$ or cm), ε is the mean LSE $0.5 \cdot (\varepsilon_i + \varepsilon_j)$, and $\Delta \varepsilon$ is the LSE difference $(\varepsilon_i - \varepsilon_j)$. Subindices 'i' and 'j' refer to two different TIR bands, thus leading to the SW algorithm, or to one TIR band but two different view angles (e.g. nadir 'n' and oblique 'o' views), thus leading to the DA algorithm. Coefficients c_0 to c_6 are obtained from statistical regressions performed over simulated data.

Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data; Sobrino et al., 2016, RSE, http://dx.doi.org/10.1016/j.rse.2016.03.035

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

1. SLSTR-OLCI COLLOCATION

日南印彩大学

- Use the collocation tool to group the SLSTR and OLCI bands in one product with the same spatial resolution (1 km) and geo-location:
- Raster/Geometric Operations/Collocation
- Master file:

subset_0_of_S3A_SL_1_RBT____20170729T030116_20170729T030416_2 0170730T090755_0180_020_246_2519_LN2_0_NT_002.dim

• Slave file:

emissivity_collocate_subset_0_of_S3A_OL_1_EFR____20170729T030116_ 20170729T030416_20170730T064809_0180_020_246_2519_LN1_0_NT_ 002_radrefl.dim

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

2. LST Algorithm in Band Maths

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

3. FLAGS AND MASKS

Il not clouds - [collocate_subset_0_of_S3A_SL-OL___20170729T030116_20170729T030416_20170730T090755_0180_020_246_2519_LN2_0_NT_002] - [/Users/Daniel/Dropbox/Upload_20171120_Dragon/D20... A GCP 9 Q +?+ 0 +7 Qr Search (#+I) 🔞 Use the Mask Manager Product Explorer Pixel Info Mask Manager [1] LST to visualize, change Name LQSF_UGVI_CLASS_WS_S_S LQSF_OGVI_CLASS_CSI_S_S and created new masks LQSF_OGVI_CLASS_BRIGHT_S_S LQSF_OGVI_CLASS_INVAL_REC_S_S from flags or bands LQSF_OTCI_BAD_IN_S_S LQSF_OTCI_CLASS_ANG_S_S LQSF_OTCI_CLASS_CLSN_S_S OTCl_quality_flags_Soil_flag_1_S_S OTCl_quality_flags_Soil_flag_2_S_S OTCI quality flags Angle flag 1 S S OTCI quality flags Angle flag 2 S S OTCI quality flags Radiometry flag S S OTCI_quality_flags_TCI_flag_S_S clouds Edit Band Maths Mask not clouds Expression: Data sources: Colour Manipulation - [1] LST 💿 cloud_in_gross_cloud_M or LQSF S S.LAND @ and @ 26 cloud_in_thin_cirrus_M or Basic

Sliders Table Editor: LQSF S S.CLOUD cloud in medium high M or LQSF_S_S.CLOUD_AMBIGUOUS @ or @ cloud in fog low stratus M or Name: LST 9596 1009 LQSF 5 S.CLOUD or Unit: LQSF S S.CLOUD MARGIN Min: 250.26 LQSF S S.CLOUD AMBIGUOUS or LQSF S S.SNOW ICE not @ e:e Max: 291,168 LQSF S S.CLOUD MARGIN LQSF S S.INLAND WATER Rough statistics 9,9 (@) LOSF S S.TIDAL Log10 442 LQSF S S.COSMETIC 0 Constants... Show bands 0 Operators... Show masks Show tie-point grids Functions... 0 AULT Ok, no errors. Show single flags More Options OK Cancel Help

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

4. Scatter Plot Split Window LST vs. L2

• Compare the split window calculated LST with other thermal bands (Analysis/Scatter Plot)

• [Product error?]

Try to collocate the split window calculated LST with the SLSTR L2 product for comparison (*S3A_SL_2_LST____20170729T030116_201707 29T030416_20170729T050111_0180_020_246 _2519_SVL_0_NR_002.SEN3*)

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

5. Import a Shapefile with in situ data

日南印彩大学

- Use the dialogue File/Import/Vector data/ESRI shapefile to open the shapefile text/in situ.shp with in situ data
- Check the Vector Data list in the Layer Manager
- Select Analysis/Correlative Plot

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

6. Make a Correlation Plot

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

7. [cont.] Batch Processing

Specify Product Subset			
Band Subset Tie-Point Grid Subset Metadata Subse	t		
Pixel Coordinates Ceo Coordinates			
North latitude bound: 27.014	•		
West longitude bound: 102.724	0		
South latitude bound: 19.585	0		
East longitude bound: 107.51			
	Source		
Scene step X: 1	0		
Scene step Y: 1	0		
Subset scene width:240Subset scene height:240	0.0		
Source scene width:44Source scene height:44	365 or 091 S		
Use Preview Fix full width	-		
	Band Subset Tie-Point Grid Subset Metadata Subset Pixel Coordinates Ceo Coordinates North latitude bound: 27.014 West longitude bound: 102.724 South latitude bound: 19.585 East longitude bound: 107.51 Scene step X: 1 Scene step Y: 1 Subset scene width: 240 Source scene width: 440 Source scene width: 440 Source scene height: 440 Source scene height: 440 Source scene height: 440		

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China