

ESA SNAP – Sentinel-1 Toolbox Differential SAR Interferometry using Sentinel-1 TOPS for Ground Displacement Measurements: The Philippines M6.9 Earthquake (Jul 6, 2017)

by Michael Foumelis, French Geological Survey (BRGM)

Exercise objectives

- Familiarize with open source ESA SNAP Toolbox.
- Familiarize with Copernicus Sentinel-1 SAR products.
- Training on measurement and analysis ground displacements from Sentinel-1 TOPS Level-1 SLC products
- Inspection of manual as well as batch processing options of ESA SNAP Toolbox
- End-to-end showcase for the Jul 6, 2017 Philippines M6.9 earthquake.

Useful Links

Information regarding Sentinel missions <u>https://sentinel.esa.int</u>

Science Toolbox Exploitation Platform (STEP) http://step.esa.int

Copernicus Open Access Hub (previously known as Sentinels Scientific Data Hub) <u>https://scihub.copernicus.eu</u>

French Access to the Sentinel Products (PEPS) https://peps.cnes.fr

Alaska Satellite Facility https://www.asf.alaska.edu

Sentinel-1 Quality Control Subsystem https://qc.sentinel1.eo.esa.int

Datasets

Copernicus Sentinel-1 IW Single Look Complex (SLC) core products acquired in TOPS mode:

S1A_IW_SLC__1SDV_20170701T213111_20170701T213138_017283_01CD96_67F3 S1B_IW_SLC__1SDV_20170707T213027_20170707T213054_006387_00B3A3_F81D

Data Processing Steps

Processing PART A

Data preparation by extraction of Sentinel-1 TOPS bursts over the region of interest per acquisition and sub-swath.

You do not need to run this part.

A1. **Split S1 SLC** (step applied to both scenes separately for each sub-swath) GUI path: Radar \rightarrow Sentinel-1 TOPS \rightarrow S-1 TOPS Split

Input: S1A_IW_SLC__1SDV_20170701T213111_*_67F3 Output: S1A_20170701_IW1_VV_b1-3_Split Parameters: Subswath: IW1 Polarisations: VV Bursts: 1 to 3

Input: S1B_IW_SLC__1SDV_20170707T213027_*_F81D Output: S1B_20170707_IW1_VV_b2-4_Split Processing parameters: Subswath: IW1 Polarisations: VV Bursts: 2 to 4

Input: S1A_IW_SLC__1SDV_20170701T213111_*_67F3 Output: S1A_20170701_IW2_VV_b1-4_Split Parameters: Subswath: IW2 Polarisations: VV

Bursts: 1 to 4

Input: S1B_IW_SLC__1SDV_20170707T213027_*_ F81D Output: S1B_20170707_IW2_VV_b2-5_Split

Processing parameters: Subswath: IW2 Polarisations: VV Bursts: 2 to 5

Processing PART B

Apply Sentinel-1 TOPS SLC co-registration to estimate Enhanced Spectral Diversity (ESD) correction (range and azimuth offsets) for a sub-swath not affected by the earthquake.

You do not need to run this part.

Manual step-by-step processing

B1. Apply Orbit File (step applied separately to each scene) GUI path: Radar → Apply Orbit File Input: S1A_20170701_IW3_VV Output: S1A_201707071_IW3_VV_Orb Processing parameters: Orbit State Vectors: Sentinel Precise (Auto Downlaod) Check "Do not fail if new orbit file is not found" Input: S1B_20170707_IW3_VV Output: S1B_20170707_IW3_VV_Orb Processing parameters: Orbit State Vectors: Sentinel Precise (Auto Downlaod) Check "Do not fail if new orbit file is not found"

B2. Back-Geocoding

GUI path: Radar → Coregistration → S1 TOPS Coregistration → S-1 Back Geocoding Inputs: S1A_201700701_IW3_VV_Orb (first in order) S1B_201700707_IW3_VV_Orb (second in order) Output: S1A_20170701_S1B_20170707_IW3_VV_Orb_Stack Processing parameters: Check "Output Deramp and Demod Phase"

B3. Enhanced Spectral Diversity

GUI path: Radar \rightarrow Coregistration \rightarrow S1 TOPS Coregistration \rightarrow S-1 Enhanced Spectral Diversity Input: S1A_20170701_S1B_20170707_IW3_VV_Orb_Stack

Output: S1A_20170701_S1B_20170707_IW3_VV_Orb_Stack_ESD Processing parameters: Defaults

B4. Overview and extract estimated ESD offset values GUI path: View → Tool Windows → Radar → InSAR Stack → Stack Information (tab) Estimated ESD offsets:

> ESD Range Shift: -0.03125 ESD Azimuth Shift: 9.865635074675083 E-4

Automatic processing using Graph Builder

B5. Build and Apply TOPS Co-registration Processing Chain

GUI path: Tools → Graph Builder Input: S1A_20170701_IW3_VV (Read) Input: S1A_20170707_IW3_VV (Read) Output: S1A_20170701_S1B_20170707_IW3_VV_Orb_Stack_ESD (Write) Processing parameters:

- Add operators by order as defined in manual step-by-step processing
- Specify processing parameters accordingly
- Do NOT create intermediate products
- Save processing graph (*.xml file)
- Run processing graph

B6. Overview and extract estimated ESD offset values

GUI path: View \rightarrow Tool Windows \rightarrow Radar \rightarrow InSAR Stack \rightarrow Stack Information (tab) Estimated ESD offsets:

ESD Range Shift: -0.03125 ESD Azimuth Shift: 9.865635074675083 E-4

Processing PART C

Interferometric processing of selected Sentinel-1 TOPS sub-swaths combining geometric coregistration approach and ESD refinement using pre-estimated offset values.

C1. Build InSAR Processing Chain

GUI path: Tools → Graph Builder Input S1A_20170701_IW1_b1-3_VV (Read) Input: S1B_20170707_IW1_b2-4_VV (Read)

Output: S1A_20170701_S1B_20170707_IW1_VV_Orb_Stack_ESD_Ifg_Deb (Write) Processing parameters:

- Add and connect operators by order as shown in the figure below
- Apply Orbit File operator:

Orbit State Vectors > Sentinel Precise (Auto Downlaod) & Check "Do not fail if new orbit file is not found"

- Back Geocoding operator:
 Check "Output Deramp and Demod Phase"
- Enhanced Spectral Diversity operator:
 Select "Use user supplied shifts" and input manually pre-estimated range and azimuth offsets
- Interferogram operator:
 Coherence Range Window Size: 20
 Coherence Range Window Size: 5
- Save processing graph (*.xml file)

C2. Applying TOPS Co-registration Processing Chain (Sub-Swath IW1) GUI path: Tools → Graph Builder Input: S1A_20170701_IW1_b1-3_VV (Read) Input: S1B_20170707_IW1_b2-4_VV (Read) Output: S1A_20170701_S1B_20170707_IW1_VV_Orb_Stack_ESD_Ifg_Deb (Write)

Processing parameters:

- Load pre-defined processing graph (*.xml file)
- Define output file name accordingly
- Run processing graph

C3. Applying TOPS Co-registration Processing Chain (Sub-Swath IW2)

GUI path: Tools → Graph Builder Input: S1A_20170701_IW2_b1-4_VV (Read) Input: S1B_20170707_IW2_b2-5_VV (Read) Output: S1A_20170701_S1B_20170707_IW2_VV_Orb_Stack_ESD_Ifg_Deb (Write) Processing parameters:

- Add operators by order as defined in manual step-by-step processing
- Do NOT create intermediate products
- Save processing graph (*.xml file)
- Run processing graph

Processing PART D

Merge interferometric results from different sub-swaths and proceed with Differential SAR Interferometry (DInSAR) processing

D1. Merge Sub-Swaths (same acquisition date)

GUI path: Radar → Sentinel-1 TOPS → S1 TOPS Merge Input: S1A_20170701_S1B_20170707_IW1_VV_Orb_Stack_ESD_Ifg_Deb Input: S1A_20170701_S1B_20170707_IW2_VV_Orb_Stack_ESD_Ifg_Deb Output: S1A_20170701_S1B_20170707_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg Processing parameters:

Default parameters

D2. Removal of topographic phase

GUI path: Radar → Interferometric → Products → Topographic Phase Removal Input: S1A_20170701_S1B_20170707_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg Output:

S1A_20170701_S1B_20170707_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR Processing parameters:

Select option "Output topographic phase band"

D3. Multi-looking

GUI path: Radar → Multilooking Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR Output: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204 Processing parameters: Number of Range Looks: 20 Number of Azimuth Looks: 4

D4. Phase Filtering

GUI path: Radar → Interferometric → Filtering → Goldstein Phase Filtering Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204 Output: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt Processing parameters: Adaptive Filter Exponent in (0,1]: 0.8

FFT Size: 64

D5. Spatial Subset

GUI path: Raster \rightarrow Subset

Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt Output: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub Processing parameters:

Geo Coordinates Menu:

North latitude bound: 11.22 West longitude bound: 125.11 South latitude bound: 10.98 East longitude bound: 124.285

D6. Geocoding

GUI path: Radar \rightarrow Geocoding \rightarrow Terrain Correction \rightarrow Range-Doppler Terrain Correction

Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub Output: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_TC80 Processing parameters:

Select option "Output Complex Data" Pixel Spacing (m): 80 Map Projection: WGS84(DD)

D7. Re-calculate Interferometric Phase (wrapped)

Select File: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_TC80

GUI path: Raster \rightarrow Band Math Processing parameters:

- Name: wphase
- Select option "Virtual (save expression only, don't store data)"
- Band maths expression:
 atan2(q_ifg_VV_01Jul2017_07Jul2017,i_ifg_VV_01Jul2017_07Jul2017)

Processing PART E

Phase unwrapping and conversion to displacements.

E1. Phase Unwrapping (Export to SNAPHU)

GUI path: Radar \rightarrow Interferometric \rightarrow Unwrapping \rightarrow Snaphu Export Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub Output Directory: */SNAPHU_1_1 Processing parameters:

Specify full path to "Target folder"

- Statistical-cost mode: DEFO
- Number of Tile Rows: 1
- Number of Tile Columns: 1

E2. Execute Unwrapping via SNAPHU (Linux OS)

- Navigate to previously specified "Target folder" in Linux Terminal
- Open configuration file (snaphu.conf) in "Target folder"
- Copy command to call snaphu: snaphu -f snaphu.conf Phase_ifg_VV_01Jul2017_07Jul2017.snaphu.img 1081
- Execute command in Terminal

Note: For Windows OS you need to download a pre-configured SNAPHU Virtual Machine (VM) @ <u>http://sourceforge.net/projects/s1tbx/files/snaphu_vm/SAR%20Mint%2064.zip/download</u>

E3. Phase Unwrapping (Import from SNAPHU)

GUI path: Radar → Interferometric → Unwrapping → Snaphu Import Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub (Read) Output: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_unw Processing parameters:

- 2-Read Unwrappined Phase:
 Navigate to file "UnwPhase *.snaphu.hdr" in Target folder
- 3-SnaphuImport:
 Select option "Do NOT save Wrapped Interferogram in the target product"

E4. Convert Phase to Displacement

GUI path: Radar → Interferometric → Products → Phase to Displacement Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_unw

Output:

*_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_unw_dsp Processing parameters:

Default parameters

E5. Terrain Correction Geocoding

GUI path: Radar \rightarrow Geocoding \rightarrow Terrain Correction \rightarrow Range-Doppler Terrain Correction

Input: *_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_unw_dsp Output:

*_IW12_VV_Orb_Stack_ESD_Ifg_Deb_mrg_DInSAR_ML204_flt_sub_unw_dsp_TC80 Processing parameters:

Pixel Spacing (m): 80 Map Projection: WGS84(DD)

