

POLSARPRO & Land retrievals using SAR Polarimetry

(Practical Session)

Eric POTTIER

Erxue Chen

University of Rennes 1

Chinese Academy of forestry

Pol-InSAR Practical Land cover Classification

Supervised Classification Based on GF-3 PolSAR data

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

"龙计划4"高级陆地遥感国际培训班 2017年11月20日——11月25日 云南师范大学,中国,昆明

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

SNASCC

Step-1: Environment Set

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

NRSCC

Step-2: Speckle Filter

[S2] >> [T3]

Number of Looks 1

Run

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

NRSEC

[S2] >> [C4]

Window Size Col

Exit

BOXCAR Speckle Filter

Window Size Row

System Noise Filtering (HV / VH)

(S2) >> [T4]

3

(S2)>> [C3]

Step-2: Speckle Filter

Quit

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

SATIM Map Algebra

Exit

PauliRGB Before Filter

PauliRGB after Filter

"龙计划4"高级陆地遥感国际培训班 2017年11月20日——11月25日 云南师范大学,中国,昆明

Step-3: Features Extraction

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Step-3: Features Extraction

Polarimetric SAR Data Processing and Educational Tool v5.1 - I	Venu					
PolSARpro The Polarimetric SAR Data Processing and Educational Tool						
T3 S Environment V Import Convert V Pr	ocess v bisplay v Calibration v Utilities v Tools v Cor	nfiguration v Help v V				
Matrix Elements	KRO : Krogager Decomposition	Data Processing: Polarimetric Decomposition				
Correlation Coefficients	CAM : Cameron Decomposition	Input Directory				
Elliptical Basis Change 🔸	HAA : H / A / Alpha Decomposition JRH : Huynen Decomposition	- Output Directory				
Polarimetric Speckle Filter 🔹 🕨	RMB1 : Barnes 1 Decomposition RMB2 : Barnes 2 Decomposition	J:/GF3_Data_Directory_B0X				
H / A / Alpha Decomposition Polarimetric Decompositions	SRC : Cloude Decomposition VHDx : Unified Huynen Decomposition WAH1 : Holm 1 Decomposition	Init Row 1 End Row 1892 Init Col 1 End Col 1373 Freeman 3 Components Decomposition T3 Window Size Row 3 Window Size Col 3				
Polarimetric Functionalities - 1 ▸ Polarimetric Functionalities - 2 ▸	WAH2 : Holm 2 Decomposition AN3 : An & Yang 3 Component Decomposition	TgtG TgtG TgtG Via BMP Target Generators (TgtG)				
Polarimetric Segmentation 🔹 🕨	AN4 : An & Yang 4 Component Decomposition BF4 : Bhattacharya & Frery 4 Component Decomposition					
Polarimetric Data Analysis 🔸 Polarimetric Data Clustering 🕨	FRE2 : Freeman 3 Component Decomposition FRE3 : Freeman 3 Component Decomposition NEU : Neuman 9 Composition	Decomposition / Reconstruction Output Format © T3 © C3				
Batch Process	NNED : Arii 3 Component NNED Decomposition ANNED : Arii 3 Component ANNED Decomposition					
	VZ3 : Van Zyl (1992) 3 Component Decomposition SIN4 : Singh 4 Component Decomposition YAM3 : Yamaguchi 3 Component Decomposition YAM4 : Yamaguchi 4 Component Decomposition					
Polarization features:	MCSM5 : L. Zhang 5 Component Decomposition TSVM : Touzi Decomposition					
≻Freeman_Odd.bin ≻Freeman Dbl.bin	Aghababasee Decomposition 2KR : Raney Decomposition CPD : Compact-Pol Decomposition	Run 2 Exit				
≻Freeman_Vol.bin						

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

esa

Step-4: SVM classifier

Confusion Matrix

Polarimetric SAR Data Processing and Educational Tool v5.1 - Menu

Polarimetric Functionalities - 2

Polarimetric Segmentation

Polarimetric Data Analysis

Batch Process

Polarimetric Data Clustering

PolSARpro The Polarimetric SAR Data Processing and Educational Tool T3 S Environment Convert Process Calibration
Utilities ▼ Configuration ▼ Education ▼ Help Quit Import)isplay Tools E X Data Processing: SVM Supervised Classification Matrix Elements Input Directory Correlation Coefficients J:/GF3 Data Directory BOX/T3 H / A / Alpha Classification Elliptical Basis Change Output Directory-H / u / v Classification (Xu & Jin) :/GF3_Data_Directory_BOX / 🛯 🚞 Polarimetric Speckle Filter H / A / Alpha - Wishart Classification 1892 End Row 1373 Scattering Model Based - Wishart Classification Init Row 1 Init Col End Col H / A / Alpha Decomposition Step 1 - Training Areas Unified Huynen Classification Polarimetric Decompositions 🗃 🚰 Graphic Editor Areas File J:/GF3_Data_Directory_B0X/T3/svm_training_areas.txt Fuzzy - H / Alpha Classification Polarimetric Functionalities - 1 Step 2 - Classification Configuration

🔽 BMP

Step 3 - Color Maps

1. Select the training sample data.

Wishart Supervised Classification

G.P.F. Supervised Classification

SVM Supervised Classification

Rule-Based Hierarchical Classification

Basic Scattering Mechanism Identification

- 2. Select the classification features
- 3. Select the Kernel function
- 4. Run Classification

ColorMap 16 C:/Users/Administrator/AppData/Roaming/PolSARpro 5.1.1/ColorMap/Supervised ColorMap11 🛱 Edit E Pauli |S11+S22| |S12+S21| |S11-S22| Coded Colormap Sinclair |S11| |(S12+S21)/2| |S22| Step 4 - SVM Parameter Setting Input Polarimetric Indicators Sampling option Output SVM parameters Τ3 Class Probability E BMP Training sampling 500 Mean Hyperplane Distance E BMP Other Select If important unbalanced training point Useful but time consuming ******** Step 5 - Kernel Parameter BBF C Linear RECOMMANDED Polynomial Cost 100 Optimisation parameters Degree 2 Gamma = 1/sigma Setup, and Bun Exit Step 6 - Run Classification

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

CM Editor

Step-4.1: SVM classifier

I Data Processing: SVM Supervised Classification	1. Select the training sample data.
Input Directory	
J:/GF3_Data_Directory_BOX/T3	WARNING
- Output Directory -	
J:/GF3_Data_Directory_B0X / T3 🔪	
Init Bow 1 End Bow 1892 Init Col 1 End Col 1373	
Step 1 - Training Areas	
Areas File J:/GF3_Data_Directory_B0X/T3/svm_training_areas.txt CGraphic Editor	Yes No Cancel
- Step 2 - Classification Configuration	
🔽 BMP 🔽 Confusion Matrix CM Editor	
Step 3 - Color Maps	
ColorMap 16 C:/Users/Administrator/AppData/Roaming/PolSARpro_5.1.1/ColorMap/Supervised_ColorMap11 😅 Edit	
Pauli IS11+S22 IS12+S21 IS11-S22	GG3_Data_Directory_BOX → T3 v 4 搜索 T3 P
Coded Colormap	组织 ▼ 新建文件夹 副註 ▼ □ 20
Step 4 - SVM Parameter Setting	▲ 名称 日野
In Input Polarimetric Indicators In Sampling option	🔞 🖉 alaba hara 30
C T3	anjpatomp 20.
Other Select	🖳 🔜 entropy.bmp 20:
Useful but time consuming	Ereeman_Dbl_dB.bmp 20:
Step 5 · Kernel Parameter	E Freeman_Odd_dB.bmp 20:
C RBF ECOMMANDED O Polynomial C Linear	E Freeman_Vol_dB.bmp 200
Cost 100 Gamma = 1/sigma Uptimisation parameters Degree 2	Pauli Pixels.bmp 20.
Step 6 - Bun Classification	
	打开(O) 取消

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

"龙计划4"高级陆地遥感国际培训班 2017年11月20日——11月25日 云南师范大学,中国,昆明

sa

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

SNRSEE

1. Select the training sample data.

Basic operation:

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

"龙计划4"高级陆地遥感国际培训班 2017年11月20日—11月25日 云南师范大学,中国,昆明

ENRSCE 作素纤能大掌	Step-4.1: SVM classifier	esa
${\it I}$ Polarimetric SAR Data Processing and Educational Tool v5.1	- Menu	
PolSARpro The Polarimetric SAR Data Proce	essing and Educational Tool	
T3 S Environment V Import Convert V	Process v Display v Calibration v Utilities v Tools v Configuration v Education v Help v	.Quit

1. Select the training sample data.

Basic operation:

- 1. Add a new class 1.
- Select first area for class1;Select second area for class1;....
 - 3. Add a new class 2.
 - 4. Select first area for class2;Select second area for class2;....
 - **10. Save configuration**

. . . .

1. Select the training sample data.

Do it yourself. Prepare the training sample data

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

"龙计划4"高级陆地遥感国际培训班 2017年11月20日—11月25日 云南师范大学,中国,昆明

Step-4.2: SVM classifier

Data Processing: SVM Supervised Classification	C X	2. Select the classification features
- Input Directory-		
J:/GF3_Data_Directory_B0X/T3		Calact Polarimatric Indicators
- Output Directory-		
J:/GF3_Data_Directory_BOX	/ 13	Add or remove polarimetric indicator (No complex file !)
Step 1 - Training Areas	1373	alpha.bin
		anisotropy.bin
Areas File [J:/dF3_Data_Directory_BUX/13/svm_training_areas.txt	Graphic Editor	entropy.bin
- Step 2 - Classification Configuration		Freeman_Dbl.bin = >> Freeman_Dbl.bin
🔽 BMP 🔽 Confusion Matrix CM E	ditor	Freeman_Udd.bin Freeman_Udd.bin
— Step 3 - Color Maps		mask valid pixels bin
ColorMap 16 C:/Users/Administrator/AppData/Roaming/PoISARpro_5.1.1/ColorMap/Supervised_ColorMap	11 🗃 Edit	T11.bin
Coded Colormap Pauli S11+S22 S12+S21 S11-S22 Sinclair S11 (S12+S21)/2 S22 Sinclair S11 (S12+S21)/2 S22	1	T12_imag.bin T12_real.bin
- Step 4 - SVM Parameter Setting		
Input Polarimetric Indicators Sampling option Output SVM parameters		
C T3	🗖 ВМР	
🕥 Other Select 🛛 🔽 Kingsstant unbelanced training spint 🗌 Mean Hyperplane Distance	ce 📻 _{BMP} 📕	
	ig	
Step 5 - Kernel Parameter		
C RBF RECOMMANDED (• Polynomial Degree Setup and Run	C Linear	Select the features that need to be added to the classifier
Step 6 - Run Classification Exit		

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

SNASEC

sa

🧣 Data Processing: SVM Supervised Classification		3. Select the Kernel function
- Input Directory-		
J:/GF3_Data_Directory_B0X/T3		
- Output Directory		We choose polynomial
J:/GF3_Data_Directory_B0X	/ []]	kernel function
Init Bow 1 End Bow 1892 Init Col 1 End C	 `d1373	Kernel function
Step 1 - Training Areas	.01 1010	
Areas File J:/GF3 Data Directory B0X/T3/svm training areas.txt	Graphic Editor	P Degree:2
- Step 2 - Classification Configuration		
EMP Confusion Matrix	CM Editor	
ColorMap 16 C:/Users/Administrator/AppData/Roaming/PolSARpro_5.1.1/ColorMap/Supervised_Color	rMap11 🗃 🛃	
□ Coded Colormap □ Sinclair S11+S22 S12+S21 S11 □ Sinclair S11 (S12+S21)/2 S2	-5221	4. Run Classification
Step 4 - SVM Parameter Setting		C:\Windows\system32\cmd.exe
Input Polarimetric Indicators Sampling option Output SVM parameter		File : sym-predict.c
C T3	🗖 ВМР	Project : ESA_POLSARPRO Authors : Cedric LARDEUX
Other Select If important unbalanced training point Mean Hyperplane D	stance 🔲 BMP	Uersion : 1.0 Creation : 01/2011
Sten 5 - Kernel Parameter	uming	*
	C Linear	UMR CNRS 6164 Remote Sensing Group - SHINE Team
Cost 100 Gamma = 1/sigma Optimisation parameters Degree 2		UNIVERSITY OF RENNES I Rat. 11D - Campus de Regulieu
Setup and Run	/ 3	263 Avenue General Leclerc 35042 RENNES Cedex
		×
Step 6 - Run Classification 4. Exit		Description : This function is based on the LIBSUM V2.29 and adapted
		CO PPOCESS FOISHAPPO BINAFY FILE

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE

20-25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China

Classification Result

svm_classification_file.bmp

NRSEE

Do it yourself:

Select different kernel functions to classify and compare the classification results.

ADVANCED LAND REMOTE SENSING INTERNATIONAL TRAINING COURSE 20–25 November 2017 | Yunnan Normal University Kunming, Yunnan Province, P.R. China "龙计划4"高级陆地遥感国际培训班 2017年11月20日—11月25日 云南师范大学,中国,昆明

