

Synthetic Aperture Radar Tomography – practical course

Timo Balz, Stefano Tebaldini, Laurent Ferro-Famil

TomoSAR_Main.m

% DEMONSTRATIVE TOMOGRAPHIC SAR PROCESSING FOR FOREST ANALYSIS

% AUTHOR: STEFANO TEBALDINI, POLITECNICO DI MILANO

% EMAIL: stefano.tebaldini@polimi.it

% TEL: +390223993614

%

% THE FOLLOWING SCRIPT AND ALL RELATED SCRIPTS/FUNCTIONS AND DATA ARE INTENDED AS % MATERIAL FOR THE TOMOSAR TRAINING COURSE HELD IN BEIJING IN FEBRUARY 2015 % BY LAURENT FERRO-FAMIL AND STEFANO TEBALDINI

%

% THIS SOFTWARE WAS DEVELOPED AND TESTED USING MATLAB R2011b

%

% SAR DATA USED IN THIS SCRIPT ARE PART OF THE SAR DATA-SET ACQUIRED BY DLR

% IN 2008 IN THE FRAME OF THE ESA CAMPAIGN BIOSAR 2008

% DATA FOCUSING, COREGISTRATION, PHASE FLATTENING, AND GENERATION OF KZ

% MAPS WERE CARRIED OUT BY DLR.

% DATA PHASE CALIBRATION WAS CARRIED OUT BY THE AUTHOR

%

% TERRAIN ELEVATION DATA USED IN THIS SCRIPT ARE EXTRACTED FROM

% THE LIDAR DATA-SET ACQUIRED BY THE SWEDISH DEFENCE RESEARCH AGENCY (FOI)

% AND HILDUR AND SVEN WINQUIST'S FOUNDATION IN THE FRAME OF THE ESA

% CAMPAIGN BIOSAR 2008

% processing of Lidar data and Projection onto Sar geometry was carried out % by the author

%

% YOU ARE WELCOME TO ADDRESS ME QUESTIONS/COMMENTS/CORRECTIONS AT

% stefano.tebaldini@polimi.it

Data

Campaign	BioSAR 2008 - ESA
System	E-SAR - DLR
Site	Krycklan river catchment, Northern Sweden
Scene	Boreal forest Pine, Spruce, Birch, Mixed stand
Topography	Hilly
Tomographic Tracks	6 + 6 – Fully Polarimetric (South- West and North-East)
Carrier Frequency	P-Band and L-Band
Slant range resolution	1.5 m
Azimuth resolution	1.6 m
Vertical resolution (P-Band)	20 m (near range) to >80 m (far range)
Vertical resolution (L-Band)	6 m (near range) to 25 m (far range)

Forward model

Resolution is determined by pulse bandwidth along the slant range direction, and by the lengths of the synthetic apertures in the azimuth and cross range directions ⇒The SAR resolution cell is split into multiple layers, according to baseline aperture

Vertical wavenumber

Each focused SLC SAR image is obtained as the Fourier Transform of the scene complex reflectivity along the cross-range coordinate

$$y_{n}(r,x) = \int s(r,x,v) \exp\left(-j\frac{4\pi}{\lambda r}b_{n}v\right) dv$$

Change of variable from cross range to height

$$z = v \cdot \sin \theta$$

$$\bigvee$$

$$y_n(r, x) = \int s(r, x, z) \exp(-jk_z(n) \cdot z) dz$$

 k_z is usually referred to as vertical wavenumber or phase to height conversion factor

$$k_z(n) = \frac{4\pi}{\lambda r} \frac{b_n}{\sin \theta}$$

 $y_n(r,x)$: SLC pixel in the *n*-th image

s(r,x,v): average complex reflectivity of the scene within the SAR 2D

resolution cell at (r,x)

 b_n : normal baseline for the *n*-th image

 λ : carrier wavelength

Reference height

DEM subtraction

The dependence on height is limited to the $y_n(r, x) = \int s(r, x, z) \exp(-jk_z(n) \cdot z) \cdot dz$ phase terms $k_z z$

 \Rightarrow Passing from one reference DEM to another \Leftrightarrow phase steering from Z_1 to Z_2

 $y_n(r, x; Z_2) = y_n(r, x; Z_1) \exp^{-jk_z(n)\cdot(Z_1-Z_2)}$

Phase calibration

Phase jitters in different passes result in signal defocusing

- Spaceborne: tropospheric and ionospheric phase screens
- Airborne: uncompensated platform motions *on the order of a fraction of a wavelength*

Phase calibration

Current navigational systems employed by airborne SARs do not provide, in general, subwavelength accuracy concerning the location of one flight line with respect to another

Need for a data-driven Phase Calibration procedure

Phase calibration

Current navigational systems employed by airborne SARs do not provide, in general, subwavelength accuracy concerning the location of one flight line with respect to another

Need for a data-driven Phase Calibration procedure

TomoSAR_Main.m

```
***
% LOAD DATA
if not(exist('I'))
  load('BioSAR_2_L_Band_sample_data')
  Master = 1
  [Nr, Na, N] = size(I{1})
  N \text{ pol} = \text{length}(I)
  rem_dem_flag = 1
  if rem_dem_flag % remove dem phases (optional)
     for pol = 1:N_pol
        for n = 1:N
           dem phase = kz(:,:,n). * (DEM - DEM avg);
           I\{pol\}(:,:,n) = I\{pol\}(:,:,n).*exp(li*dem phase);
        end
     end
   end
  Ch = \{ 'HH', 'HV', 'VV' \}
end
88888
```

Notes:

Data can be referenced to a flat DEM (DEM_avg) or to the Lidar DEM (DEM)

TomoSAR_Main.m

```
***
% Let's look at the data first....
for pol = 1:N pol
   figure, imagesc(az_ax,rg_ax,sum(abs(I{pol}),3)), colorbar
   title(Ch{pol})
   xlabel('azimuth [m]')
   ylabel('range [m]')
end
figure, imagesc(az_ax,rg_ax,DEM), colorbar
title('DEM [m]')
xlabel('azimuth [m]')
ylabel('range [m]')
figure, imagesc(az_ax,rg_ax,FOR_H,[0 35]), colorbar
title('Forest height [m]')
xlabel('azimuth [m]')
ylabel('range [m]')
```

Notes:

DEM = Lidar DEM FOR_H= Lidar forest height

TomoSAR_Main.m

Notes:

COV_4D is a 4D data structure representing the complex coherence as a function of each interferometric pair, i.e.: $y_{nm}(r,x)$

Generate_covariance_matrix.m = function to evaluate COV_4D from SLC
images

InSAR_view = function to view COV_4D as a big 2D matrix

Generate_covariance_matrix.m

function [Cov,x_sub,y_sub] = Generate_covariance_matrix(F,x_ax,y_ax,Wx_m,Wy_m)

```
[Ny, Nx, N] = size(F);
% pixel sampling
dx = x_ax(2) - x_ax(1);
dy = y_ax(2) - y_ax(1);
% filter along x
Lx = round(Wx m/2/dx);
filter_x = hamming(2*Lx+1);
% sub-sampling along x
x_sub = Lx+1:max(round(Lx/2),1):Nx-Lx;
% filter along y
Ly = round(Wy m/2/dy);
filter_y = hamming(2*Ly+1);
% sub-sampling along y
y_sub = Ly+1:max(round(Ly/2),1):Ny-Ly;
```


Generate_covariance_matrix.m


```
% Covariance matrix evaluation
Nx sub = length(x sub);
Ny_sub = length(y_sub);
Cov = ones(Ny sub,Nx sub,N,N);
for n = 1:N
   In = F(:,:,n); % n-th image
   % second-order moment
   Cnn = filter_and_sub_sample(In.*conj(In),filter_x,filter_y,x_sub,y_sub);
   for m = n:N
      Im = F(:,:,m);
      Cmm = filter_and_sub_sample(Im.*conj(Im),filter_x,filter_y,x_sub,y_sub);
      Cnm = filter_and_sub_sample(Im.*conj(In),filter_x,filter_y,x_sub,y_sub);
      % coherence
      coe = Cnm./sqrt(Cnn.*Cmm);
      Cov(:,:,n,m) = coe;
      Cov(:,:,m,n) = conj(coe);
   end
end
function Cnm = filter_and_sub_sample(Cnm,filter_x,filter_y,x_sub,y_sub)
% filter and sub-sample
t = Cnm;
t = conv2(t,filter_x(:)','same');
t = t(:, x sub);
t = conv2(t,filter_y(:),'same');
t = t(y_sub; :);
Cnm = t;
*****
```

InSar_View.m

```
function InSAR_view(DX,cax)
[Nx_out,Ny_out,N,a] = size(DX);
if a == N
    flaq 4D = 1;
else
    flag_4D = 0;
end
DDX = zeros(N*Nx_out,N*Ny_out);
for n = 1:N
    ind_n = [1:Nx_out] + Nx_out*(n-1);
    for m = 1:N
        ind_m = [1:Ny_out] + Ny_out*(m-1);
        if flag 4D
            DDX(ind_n, ind_m) = DX(:, :, n, m);
        else
            DDX(ind_n, ind_m) = DX(:, :, m) - DX(:, :, n);
        end
    end
end
if exist('cax')==1
    if max(abs(cax-[-pi pi]))==0
    disp('phase')
    DDX = angle(exp(li*DDX));
end
    imagesc(DDX,cax)
else
    imagesc(DDX)
end
axis off
```


Results – InSAR coherence – DEM subtracted

0.9

0.8

0.7

-0.6

0.4

0.3

0.2

0.1

0

InSAR coherences

InSAR phases 3 2 1 0 -1 -2 -3

UNIVERSITÉ REN

Results – InSAR coherence – DEM not subtracted

Notes: Noticeable topographic phases

Lower coherence magnitudes

TomoSAR_Main.m

```
***
% TOMOGRAPHIC PROCESSING (3D focusing)
% vertical axis (in meters)
if rem_dem_flag % height w.r.t. DEM
   dz = 0.5i
   z ax = [-20:dz:40];
else % % height w.r.t. average DEM
   dz = 1;
   z ax = [-150:dz:150];
end
Nz = length(z_ax);
% half the number of azimuth looks to be processed
T_{1}x = 10
% azimuth position to be processed (meters)
az profile m = 590;
az_profile_m = 678
az_profile_m = -92
% Focus in SAR geometry
TomoSAR focusing
if rem dem flag == 0
   % the following routines have been written assuming DEM phases are removed
   return
end
% Geocode to ground geometry and compare to Lidar forest height
Geocode TomoSAR
***
```


TomoSAR_Focusing.m


```
[t,a0] = min(abs(az_ax-az_profile_m));
az_ind = a0 + [-Lx:Lx];
% Focusing
for pol = 1:N_pol
    Tomo_3D{pol} = zeros(Nz,Nr,length(az_ind));
    for z = 1:Nz
        t = I{pol}(:,az_ind,:).*exp(li*kz(:,az_ind,:).*z_ax(z));
        Tomo_3D{pol}(z,:,:) = mean(t,3);
    end
end
```


Notes:

Just a discrete Fourier Transform

$$y_n(r,x) = \int s(r,x,z) \exp(-jk_z(n)\cdot z) \cdot dz \quad \square \qquad \hat{s}(r,x,z) = \sum_n y_n(r,x) \exp(jk_z(n)\cdot z)$$

Results – Tomographic Profiles

Lidar DEM not subtracted (rem_dem_flag=0)

LIDAR DEM subtracted (rem_dem_flag=1)

 \Rightarrow Reference height = LIDAR DEM

UNIVERSI

Geocoding

Tomographic profiles have been generated in the coordinate system (r,z):

- \circ r = (Zero-Doppler) distance from the Master track
- \circ z = height w.r.t. the reference DEM
- \Rightarrow A point at coordinates (*Y*,*Z*) in the ground range plane is found at

Geocode_TomoSAR.m

\$

```
% ground range as a function of slant range
y_of_r = sqrt(rg_ax.^2 - (Sz-dem).^2) + Sy;
```


Geocode_TomoSAR.m


```
% ground range, height coordinates
[Za,Ya] = ndgrid(z_ax_abs,y_ax_abs);
% slant range
R = sqrt((Sy-Ya).^2 + (Sz-Za).^2);
% reference dem
Z_ref = interp1(rg_ax,dem,R,'linear','extrap');
% height w.r.t. reference dem
Z = Za - Z ref;
% Geocode tomograms
for pol = 1:3
   tomo_sar = Tomo_filt{pol};
   tomo_sar = tomo_sar./max(tomo_sar(:));
   % Geocoded tomogram
   tomo_geo = interp2(rg_ax,z_ax,tomo_sar,R,Z);
   % Geocoded tomogram - height w.r.t. Lidar
   tomo geo(isnan(tomo geo)) = 0;
   for y = 1:length(y_ax_abs)
      tomo_geo_rel(:,y) = interpl(z_ax_abs,tomo_geo(:,y),z_ax + dem_gr(y));
   end
```


Geocoding - Results

SAR geometry Slant range – height w.r.t. reference DEM *Note*: Lidar forest height not matched

Ground geometry

Ground range – height

Ground geometry w.r.t. reference DEM Ground range – height w.r.t. reference DEM Note: Lidar forest height well matched

Red = Lidar terrain Black = Lidar forest height

%	589		%	%	8		8	%	%	8		; %	%	%	%	8		} } ? ?	%	%	%	%	%	%	000		; %	%	%	%	%	%	%	89		5%	;%	
%	889	°%	0/0	%	000		00	%	%	%		; %	%	%	%	%		° °	%	%	%	%	%	%	000		; %	%	%	%	%	00	%	<u>ہ</u>		; %	;%	
%	889	°%	0/0	%	000		%	%	00	%		; %	%	%	%	%		° °	%	%	%	%	%	%	000		; %	%	%	%	%	0	%	<u>ہ</u>		; %	;%	
%	889	2 	00	%	000		8	%	%	%		¦%	%	%	%	%		° °	%	%	%	%	%	00	0 0 0		; %	%	%	%	%	%	00	% %		; %	;%	
%	889	°%	0/0	%	000		%	%	%	%		¦%	%		T	ΗŻ	41	VΚ		Y	0	U		%	000		; %	%	%	%	%	%	00	<u>ہ</u>		; %	;%	
%%	889	2 2 8	%	%	000		%	%	%	%		% %	%	%	%	%		° °	%	%	%	%	%	%	% %		;°	%	%	%	%	%	%	% %		; %	;%	
%%	589	?? ??	%	%	% %		%	%	%	%		% %	%	%	%	%		° °	%	%	%	%	%	%	000		; %	%	%	%	%	%	%	% %		; %	;%	
0⁄0																																						
0/0	FI	<u> T</u> E	L	j	FI	RE	E		T	0	C	CO	N	T.	A	C_{2}	Γ	Μ	E		A'	T	•															
0⁄0	EI	ИA	I.	L	•	ຣ	st	е	f	aı	nc).	t	е.	b	a.	10	li	n	i	@	p	0.	1.	in	בח	- •	i	t									
0/0	TI	ΞL	•		+ 3	39	0	2	2.	3	99	93	6	1	4																							
%%	589	2°	%	%	% {		8	%	%	%		% %	%	%	%	%		°°	%	%	%	%	%	%	000		;°	%	%	%	%	%	%	% %		; %	;%	
%	589	2°8	%	%	89	}	:8	%	%	%		; %	%	%	%	8		}	%	%	%	%	%	00	89		:~	%	%	%	%	%	00	89		; %	; %	

Questions? balz@whu.edu.cn

