Synthetic Aperture Radar Tomography－ practical course

Timo Balz，Stefano Tebaldini，Laurent Ferro－Famil

\% THIS SOFTWARE WAS DEVELOPED AND TESTED USING MATLAB R2011b
\%
\% SAR DATA USED IN THIS SCRIPT ARE PART OF THE SAR DATA-SET ACQUIRED BY DLR
\% IN 2008 IN THE FRAME OF THE ESA CAMPAIGN BIOSAR 2008
\% DATA FOCUSING, COREGISTRATION, PHASE FLATTENING, AND GENERATION OF KZ
\% MAPS WERE CARRIED OUT BY DLR.
\% DATA PHASE CALIBRATION WAS CARRIED OUT BY THE AUTHOR
\%
\% TERRAIN ELEVATION DATA USED IN THIS SCRIPT ARE EXTRACTED FROM
\% THE LIDAR DATA-SET ACQUIRED BY THE SWEDISH DEFENCE RESEARCH AGENCY (FOI)
\% AND HILDUR AND SVEN WINQUIST'S FOUNDATION IN THE FRAME OF THE ESA
\% CAMPAIGN BIOSAR 2008
\% PROCESSING OF LIDAR DATA AND PROJECTION ONTO SAR GEOMETRY WAS CARRIED OUT
\% BY THE AUTHOR
\%
\% YOU ARE WELCOME TO ADDRESS ME QUESTIONS/COMMENTS/CORRECTIONS AT
\% stefano.tebaldini@polimi.it
\% \%\%\%\%\%\%\%\%\%\%\%\%\%\%\%

Campaign	BioSAR 2008 - ESA
System	E-SAR - DLR
Site	Krycklan river catchment, Northern Sweden
Scene	Boreal forest Pine, Spruce, Birch, Mixed stand
Topography	Hilly
Tomographic Tracks	$6+6-$ Fully Polarimetric (South- West and North-East)
Carrier Frequency	P-Band and L-Band
Slant range resolution	1.5 m
Azimuth resolution	1.6 m
Vertical resolution (P-Band)	20 m (near range) to $>80 \mathrm{~m}$ (far
Vertical resolution (L-Band)	6 m (near range) to 25 m (far range)

Forward model

Resolution is determined by pulse bandwidth along the slant range direction, and by the lengths of the synthetic apertures in the azimuth and cross range directions \Rightarrow The SAR resolution cell is split into multiple layers, according to baseline aperture

Vertical wavenumber

Each focused SLC SAR image is obtained as the Fourier Transform of the scene complex reflectivity along the cross-range coordinate

$$
y_{n}(r, x)=\int s(r, x, v) \exp \left(-j \frac{4 \pi}{\lambda r} b_{n} v\right) d v
$$

Change of variable from cross range to height
$s(r, x, v)$: average complex reflectivity of the scene within the SAR 2D resolution cell at (r, x)
b_{n} : normal baseline for the n-th image
λ : carrier wavelength

$$
z=v \cdot \sin \theta
$$

$$
y_{n}(r, x)=\int s(r, x, z) \exp \left(-j k_{z}(n) \cdot z\right) d z
$$

k_{z} is usually referred to as vertical wavenumber or phase to height conversion factor

$$
k_{z}(n)=\frac{4 \pi}{\lambda r} \frac{b_{n}}{\sin \theta}
$$

Reference height

$y_{n}(r, x)=\int s(r, x, z) \exp \left(-j k_{z}(n) \cdot z\right) \cdot d z \quad$ Note: z is always intended as height with respect to a Digital Elevation Model (DEM)

\Rightarrow "zero" of the resulting Tomographic profiles

DEM subtraction

The dependence on height is limited to the

$$
y_{n}(r, x)=\int s(r, x, z) \exp \left(-j k_{z}(n) \cdot z\right) \cdot d z
$$ phase terms $k_{z} z$

\Rightarrow Passing from one reference DEM to another \Leftrightarrow phase steering from Z_{1} to Z_{2}

$$
y_{n}\left(r, x ; Z_{2}\right)=y_{n}\left(r, x ; Z_{1}\right) \exp ^{-j k_{2}(n)\left(Z_{1}-Z_{2}\right)}
$$

Phase calibration

Phase jitters in different passes result in signal defocusing

- Spaceborne: tropospheric and ionospheric phase screens
- Airborne: uncompensated platform motions on the order of a fraction of a wavelength

Phase calibration

Current navigational systems employed by airborne SARs do not provide, in general, subwavelength accuracy concerning the location of one flight line with respect to another

Need for a data-driven Phase Calibration procedure

TomoSAR at Kangerlussuaq, Greenland - from IceSAR 2012

Phase calibration

Current navigational systems employed by airborne SARs do not provide, in general, subwavelength accuracy concerning the location of one flight line with respect to another

Need for a data-driven Phase Calibration procedure

\%\%\%\%\%

```
% LOAD DATA
if not(exist('I'))
```

 load('BioSAR_2_L_Band_sample_data')
 Master = 1
 [\(\mathrm{Nr}, \mathrm{Na}, \mathrm{N}]=\operatorname{size}(\mathrm{I}\{1\})\)
 N_pol = length(I)
 rem_dem_flag = 1
 if rem_dem_flag \% remove dem phases (optional)
 for pol = 1:N_pol
 for \(n=1: N\)
 dem_phase = kz(:,:,n).*(DEM - DEM_avg);
 I\{pol\}(:,: n) = I\{pol\}(:, :, n).*exp(1i*dem_phase);
 end
 end
 end
 Ch \(=\left\{{ }^{\prime} H H^{\prime}, ' H V^{\prime}, ' V V^{\prime}\right\}\)
 end
\% \%\%\%\%\%

Notes:

Data can be referenced to a flat DEM (DEM_avg) or to the Lidar DEM (DEM)
universite D
REN

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Let's look at the data first....
for pol = 1:N_pol
        figure, imagesc(az_ax,rg_ax,sum(abs(I{pol}),3)), colorbar
        title(Ch{pol})
        xlabel('azimuth [m]')
        ylabel('range [m]')
end
    figure, imagesc(az_ax,rg_ax,DEM), colorbar
    title('DEM [m]')
    xlabel('azimuth [m]')
    ylabel('range [m]')
    figure, imagesc(az_ax,rg_ax,FOR_H,[0 35]), colorbar
    title('Forest height [m]')
    xlabel('azimuth [m]')
    ylabel('range [m]')
```

\% \%\%\%\%\%

Notes:
DEM = Lidar DEM
FOR_H= Lidar forest height

Results

Results

Results

Results

univer

Results

\% COHERENCE EVALUATION
\% estimation window (in meters)
Wa_m $=30$
$W r _m=30$
[COV_4D,a_sub,r_sub] = Generate_covariance_matrix(I\{1\},az_ax,rg_ax,Wa_m,Wr_m);
figure, InSAR_view(abs(COV_4D),[01]), colorbar
title('InSAR coherences')
figure, InSAR_view(angle(COV_4D), [-pi pi]), colorbar
title('InSAR phases')
\%
\%\%\%\%\%

Notes:

COV_4D is a 4D data structure representing the complex coherence as a function of each interferometric pair, i.e.: $y_{n m}(r, x)$

Generate_covariance_matrix.m = function to evaluate $C O V _4 D$ from SLC images

InSAR_view $=$ function to view COV_4D as a big 2 D matrix

```
function [Cov,x_sub,y_sub] = Generate_covariance_matrix(F,x_ax,y_ax,Wx_m,Wy_m)
```

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Ny,Nx,N] = size(F);
% pixel sampling
dx = x_ax(2)-x_ax(1);
dy = y_ax(2)-y_ax(1);
% filter along x
Lx = round(Wx_m/2/dx);
filter_x = hamming(2*Lx+1);
% sub-sampling along x
x_sub = Lx+1:max(round(Lx/2),1):Nx-Lx;
% filter along y
Ly = round(Wy_m/2/dy);
filter_y = hamming(2*Ly+1);
% sub-sampling along y
y_sub = Ly+1:max(round(Ly/2),1):Ny-Ly;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Covariance matrix evaluation
Nx_sub = length(x_sub);
Ny_sub = length(y_sub);
Cov = ones(Ny_sub,Nx_sub,N,N);
for n = 1:N
    In = F(:,:,n); % n-th image
    % second-order moment
    Cnn = filter_and_sub_sample(In.*conj(In),filter_x,filter_y,x_sub,y_sub);
    for m = n:N
        Im = F(:, :,m);
        Cmm = filter_and_sub_sample(Im.*conj(Im),filter_x,filter_y,x_sub,y_sub);
        Cnm = filter_and_sub_sample(Im.*conj(In),filter_x,filter_y,x_sub,y_sub);
        % coherence
        coe = Cnm./sqrt(Cnn.*Cmm);
        Cov(:,:,n,m) = coe;
        Cov(:,:,m,n) = conj(coe);
    end
end
```

\%
\%
function Cnm = filter_and_sub_sample(Cnm,filter_x,filter_y,x_sub,y_sub)
\% filter and sub-sample
t = Cnm;
t = conv2(t,filter_x(:)','same');
$\mathrm{t}=\mathrm{t}\left(:, \mathrm{x} _\right.$sub) ;
$\mathrm{t}=$ conv2(t,filter_y(:),'same');
$\mathrm{t}=\mathrm{t}(\mathrm{y}$ _sub, :) ;
Cnm = t;
\%

```
function InSAR_view(DX,cax)
[Nx_out,Ny_out,N,a] = size(DX);
if a == N
    flag_4D = 1;
else
    flag_4D = 0;
end
DDX = zeros(N*Nx_out,N*Ny_out);
for n = 1:N
    ind_n = [1:Nx_out] + Nx_out*(n-1);
    for m = 1:N
        ind_m = [1:Ny_out] + Ny_out*(m-1);
        if flag_4D
                        DDX(ind_n,ind_m) = DX(:,:,n,m);
        else
            DDX(ind_n,ind_m) = DX(:,:,m) - DX(:,:,n);
        end
    end
end
if exist('cax')==1
    if max(abs(cax-[-pi pi]))==0
    disp('phase')
    DDX = angle(exp(1i*DDX));
end
    imagesc(DDX,cax)
else
    imagesc(DDX)
end
axis off
```


Results - InSAR coherence - DEM subtracted

InSAR coherences

InSAR phases

Results - InSAR coherence - DEM not subtracted

InSAR coherences

Notes:
Noticeable topographic phases
Lower coherence magnitudes

\%\%\%\%\%

```
% TOMOGRAPHIC PROCESSING (3D focusing)
% vertical axis (in meters)
if rem_dem_flag % height w.r.t. DEM
        dz = 0.5;
        z_ax = [-20:dz:40];
else % % height w.r.t. average DEM
    dz = 1;
    z_ax = [-150:dz:150];
end
Nz = length(z_ax);
% half the number of azimuth looks to be processed
Lx = 10
% azimuth position to be processed (meters)
az_profile_m = 590;
az_profile_m = 678
az_profile_m = -92
% Focus in SAR geometry
TomoSAR_focusing
if rem_dem_flag == 0
    % the following routines have been written assuming DEM phases are removed
    return
end
% Geocode to ground geometry and compare to Lidar forest height
Geocode_TomoSAR
```

\% \%\%\%\%\%
\% pixel index

```
[t,a0] = min(abs(az_ax-az_profile_m));
az_ind = a0 + [-Lx:Lx];
% Focusing
for pol = 1:N_pol
    Tomo_3D{pol} = zeros(Nz,Nr,length(az_ind));
    for z = 1:Nz
        t = I{pol}(:,az_ind,:).*exp(1i*kz(:,az_ind,:).*z_ax(z));
            Tomo_3D{pol}(z,:,:) = mean(t,3);
    end
end
```

\%

Notes:

Just a discrete Fourier Transform

$$
y_{n}(r, x)=\int s(r, x, z) \exp \left(-j k_{z}(n) \cdot z\right) \cdot d z \quad \square \hat{s}(r, x, z)=\sum_{n} y_{n}(r, x) \exp \left(j k_{z}(n) \cdot z\right)
$$

Results - Tomographic Profiles

Lidar DEM not subtracted (rem_dem_flag=0)

LIDAR DEM subtracted (rem_dem_flag=1)
\Rightarrow Reference height $=$ DEM_avg $=200 \mathrm{~m}$

HV

VV

\Rightarrow Reference height $=$ LIDAR DEM

Geocoding

Tomographic profiles have been generated in the coordinate system (r, z) :
o $\quad r=$ (Zero-Doppler) distance from the Master track
o $z=$ height w.r.t. the reference DEM
\Rightarrow A point at coordinates (Y, Z) in the ground range plane is found at

$$
\begin{aligned}
& r=\sqrt{\left(Y_{\text {Master }}-Y\right)^{2}+\left(Z_{\text {Master }}-Z\right)^{2}} \\
\text { Master Track } & Z=Z-Z_{\text {ref }}(r)
\end{aligned}
$$

\% pixel index
[t,a0] = min(abs(az_ax-az_profile_m));
\% Master position
Sy = interp1(S\{Master\}.x,S\{Master\}.y,az_profile_m);
Sz = interp1(S\{Master\}.x,S\{Master\}.z,az_profile_m);
\% Terrain elevation
dem $=\operatorname{DEM}(:, a 0)^{\prime} ;$
\% Forest height
for_h = FOR_H(:,a0)';
\% ground range as a function of slant range
y_of_r = sqrt(rg_ax.^2 - (Sz-dem).^2) + Sy;
\%
\%
\% absolute ground range axis
dy = 1;
y_ax_abs = [min(y_of_r)-5:dy:max(y_of_r)+5];
\% absolute height axis
z_ax_abs = [min(dem)-10:dz:max(dem)+30];
\% ground range as a function of slant range
y_of_r = sqrt(rg_ax.^2 - (Sz-dem).^2) + Sy;
\% resample lidar dem and lidar forest height from range to ground range
dem_gr = interp1(y_of_r,dem,y_ax_abs,'linear', nan);
for_h_gr = interp1(y_of_r,for_h,y_ax_abs,'linear',nan);
 \% ground range, height coordinates
[Za,Ya] = ndgrid(z_ax_abs,y_ax_abs);
\% slant range
$R=\operatorname{sqrt}((S y-Y a) . \wedge 2+(S z-Z a) . \wedge 2) ;$
\% reference dem
Z_ref = interp1(rg_ax,dem,R,'linear','extrap');
\% height w.r.t. reference dem
Z = Za - Z_ref;
\%
\%
\% Geocode tomograms
for pol = 1:3
tomo_sar = Tomo_filt\{pol\};
tomo_sar = tomo_sar./max(tomo_sar(:));
\% Geocoded tomogram
tomo_geo $=$ interp2(rg_ax,z_ax,tomo_sar,R,Z);
\% Geocoded tomogram - height w.r.t. Lidar
tomo_geo(isnan(tomo_geo)) $=0$;
for $y=1$:length(y_ax_abs)
tomo_geo_rel(:,y) = interp1(z_ax_abs,tomo_geo(:,y),z_ax + dem_gr(y));
end
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\% Draw pictures here\%
end
\%

Geocoding - Results

SAR geometry
Slant range - height w.r.t. reference DEM
Note: Lidar forest height not matched

Ground geometry

Ground range - height

VV Ground Geometry relative to DEM

Red $=$ Lidar terrain Black $=$ Lidar forest height

Note: Lidar forest height well matched
Ground geometry w.r.t. reference DEM Ground range - height w.r.t. reference DEM

$\% \%$ $\% \%$ $\% \%$ $\% \%$
 $\% \%$ $\% \%$ $\%$
\% FEEL FREE TO CONTACT ME AT:
\% EMAIL: stefano.tebaldini@polimi.it
\% TEL: +390223993614
$\% \%$
 $\% \%$

Questions?

balz@whu.edu.cn

