
Map & Table calculation

ILWIS Reference Guide 207

6.3 Table calculation

6.3.1 Introduction
Table calculation is used to perform operations on attribute data in attribute tables.
The operators and functions which can be used in Table Calculations are identical
to those in Map Calculation. The difference is that the outcome of a calculation is
not stored in a map but in a table, generally in a newly created column. Table
calculations often take much less time compared to map calculations. Therefore it is
recommended to perform calculations on geographic data in tables. Afterwards,
results can always be displayed in an attribute map.

The following list gives an overview of the functionality:
n column and record calculations using arithmetic, relational, logical, conditional,

exponential, logarithmic, and other operators and functions
n classification of columns
n aggregation of values
n calculations using columns of another table on disk (join)
n calculations using predefined variables and record specific operations
n calculations using map values, coordinates and colors
n calculations on point data
n application of user-defined functions.
For an overview of operators and functions, please refer to the first pages of this
chapter.

The result of calculation can be written either:
n into the same table, in a new column, or
n in a new table, in a new column (only possible through the menu), or
n in another existing table, in a new column.

Calculations are made by typing your calculation formula on the command line of a
Table window. The TabCalc command line may be hidden or shown with menu
command Options, Command line.

6.3.2 General syntax of TabCalc formulae
A TabCalc formula or statement consists of an output column name that contains
the result of the calculation, a definition symbol (=) or an assignment symbol (:=),
and an expression.

Outputcolumn = Expression

or

Outputcolumn := Expression

Map & Table calculation

208 ILWIS Reference Guide

Example
A simple TabCalc formula reads:

Column3 = Column1 + Column2

In the table, this results in:

Column1 Column2 Column3
1 10 11
2 20 22
3 30 33
4 40 44

Each record in Column3 (new or existing) stores the sum of the values of the
records in existing Column1 and Column2.

Output column name
All column names used on the command line should start with a character between
A to Z. There is no limitation on length of column names. This is different from
other object names which have a limit of eight characters.
If necessary, the output object's domain or its domain and value range may be
specified in a pair of curly brackets after the output object name.
To create for instance a column OUT with domain value 'MyVal', this would look
like:

OUT {dom=MyVal} = expression

To create a column OUT2 with domain MYVAL2 where the column values should
range between minimum value 0 and maximum value 10000, with a precision of 1,
this would look like:

OUT2{dom=MyVal2;vr=0:10000:1} = expression

When you double-click the column name in the table window the Column
Properties box appears on the screen. In this box you may edit several column
properties. When necessary you can update your column values, ID’s or classes or
you can break the dependency link.

Definition symbol = and assignment symbol :=
By using the definition symbol = on the command line, a dependent column is
created: the definition of how the output column was created is stored. For more
information, please refer to Basic concepts : dependent data objects.

By using the assignment symbol := on the command line, an editable column is
created: the dependency link is broken and the output values are directly assigned
to the output fields in the column. In ILWIS 1.4, dependent columns did not exist.

Expression
The expression usually contains operators and/or functions to specify what
calculation has to be performed such as +, -, /, etc. An overview of Tabcalc
operators and functions is presented in the next topic. Normally, the expression
performs the calculation on all records of the columns mentioned in the expression.

Map & Table calculation

ILWIS Reference Guide 209

Further:
n When using class names or IDs in an expression, ”double quotes” are needed

around the class names or IDs.
n Instead of using class names or group names in an expression, you can also use

the codes of class names or group names. These codes can be an abbreviation of
your class or group names.

F It does not matter whether you type spaces around the definition or assign symbol,
or in the expression or not.

F It does not matter whether you type in capitals or in small characters; a TabCalc
formula is not case-sensitive.

F The output column may be a new or an existing column. When you specify a new
output column name, the results are written into a newly created column. When you
specify an existing output column name, the values in that column are overwritten
by the new results.

F TabCalc statements do not really have a limitation on. When the command line
seems full, you can just continue typing. With the Left and Right Arrow -keys on
the keyboard, you can move back and forth in your formula.

F The TabCalc command line has a history: use the Up Arrow-key on the keyboard to
retrieve previously used expressions.

F Advanced users who are sure about the correctness of an expression may end their
expression with a semi-colon(;). In this way, dialog boxes are skipped by accepting
all the default values.

6.3.3 Description of Operators and functions
There are some differences in operations available for calculations on columns with
domain Value and domain Class, ID, Group or String. Therefore they are listed and
explained separately.

6.3.3.1 Operators on domain Value and Image

Arithmetic operators

+ a + b add operator;
- a - b subtract operator;
* a * b multiply operator;
/ a / b divide operator;
MOD a MOD b modulus operator; returns the remainder of a divided by

b, e.g. 10 mod 3, returns 1
DIV a DIV b integer division operator; dividing integer a by b returns

the quotient, e.g. 10 div 3, returns 3

Map & Table calculation

210 ILWIS Reference Guide

Example of the + operator
Column3 = column1 + column2

column1 column2 column3
1 10 11
2 20 22
3 30 33
4 40 44

Each record in column3 (new or existing) stores the sum of the values of the
records of existing column1 and column2.

Example of the / operator
PopDens = Populat/Areaha

Populat Areaha PopDens
10000 37 270
9000 61 148
8000 51 157
3000 36 83

This expression calculates the ratio of the columns Populat (Population) and
Areaha (area in hectares) and stores the result in column PopDens (the
population density). Column PopDens may already exist; in that case it is
overwritten. It may also not exist yet; in that case it is created.

Example of the MOD and DIV operators
ResMod = col1 MOD col2

ResDiv = col1 DIV col2

col1 col2 ResMod ResDiv
10 5 0 2
11 5 1 2
12 5 2 2
13 5 3 2

Column ResMod contains the result of col mod col2. The mod operator divides
col1 by col2 and returns the remainder of the division.
Column ResDiv contains the result of col1 div col2. The div operator
divides col1 by col2 and returns the quotient.

Relational operators

= eq a = b a eq b equal to
< lt a < b a lt b less than
<= le a <= b a le b less than or equal to
> gt a > b a gt b greater than
>= ge a >= b a ge b greater than or equal to
<> ne a <> b a ne b not equal to

When a relational operator is used, ILWIS tests whether the outcome of the
statement containing this operator is true or false (Bool domain).

Map & Table calculation

ILWIS Reference Guide 211

If for a certain record the expression is true, True is assigned for that record in the
new column and when not it returns False. You may want to assign values in the
column rather that True and False. Then you need to use the IFF function.
On non-value columns, only the =, eq, <>, ne operators apply.

When using the symbols it does not matter whether you type spaces around the
operators or not. When using the characters, spaces are required on both sides of
the operator.

Example of relational > operator (greater than)
Suitable = Soildep > 0.20

This expression may also be written as:
Suitable = Soildep gt 0.20

Soildep Suitable
0.15 False
0.45 True
0.90 True
0.20 False

If the value of Soildep (soil depth) is greater than 0.20, the expression is True
which appears in the output column Suitable. For values less than 0.20 the
expression is False.

Relational operators are often used in combination with a conditional IFF function.
To test whether values lie in a certain range, e.g. are greater than 0.20 but less than
0.80, the INRANGE function can be used.

6.3.3.2 Operators on domain Bool

Logical operators
AND a and b returns true if both expressions a and b are true
OR a or b returns true if one or both of the expressions a and b is

true
XOR a xor b returns true if only one of the expressions a and b is true
NOT not a returns true if expression a is false

Examples of logical AND operator
ResAnd1 = (colA >= 40) AND (colB >= 70)

ResAnd2 = (colA >= 50) AND (colA <= 150)

colA colB ResAnd1 ResAnd2
5 5 False False

10 90 False False
20 5 False False
30 75 False False
40 80 True False
75 20 False True

110 40 False True
155 35 False False
200 85 True False
230 90 True False

Map & Table calculation

212 ILWIS Reference Guide

The first expression is true for those records :
n where the expression colA greater than or equal to 20 is true, and
n where, at the same time, the expression colB is greater than or equal to 70

The second expression is true for those records:
n where the value in column ColA is greater than or equal to 50, and
n where at the same time ColA is less than or equal to 150.

If you want to assign values instead of True and False, use a conditional IFF
function. Testing whether values lie in a certain range can also be performed with
the INRANGE function.

Examples of logical OR operator
The result of A or B is true if either expression A, or expression B or if both
expressions A and B are true. In mathematical terms, the logic or is called a union.

ResOr1 = (colA >= 40) OR (colB >= 70)

ResOr2 = (colA < 50) OR (colA > 150)

colA colB ResOr1 ResOr2
5 5 False True

10 90 True True
20 5 False True
30 75 True True
40 80 True True
75 20 True False

110 40 True False
155 35 True True
200 85 True True
230 90 True True

If you want to assign values instead of True and False, you can use a conditional
IFF function.

Example of logical XOR operator
The result of A xor B is only True if either one of the expressions A and B is true.
If both expressions A and B are true, or if both expressions A and B are false, the
record is assigned False.

ResXor = (colA >= 20) XOR (colB >= 70)

colA colB ResXor
 5 5 False
 10 90 True
 20 5 True
 30 75 False
 40 80 False

If you want to assign values instead of True and False, you can use a conditional
IFF function.

Map & Table calculation

ILWIS Reference Guide 213

Example of logical NOT operator
The result of NOT (A) is true when the expression A is not true.

ResNot = NOT(colA >= 20)

colA ResNot
5 True

10 True
20 False
30 False
40 False

If you want to assign values instead of True and False, you can use a conditional
IFF function.

6.3.3.3 Functions on domain Value and Image

Conditional IFF function

IFF(a,b,c) If condition a is true, then return the outcome of expression b,
else (when condition a is not true) return the outcome of
expression c. Mind the double ff in iff (standing for IF Function).

F The conditional IFF may be used for all types of input data: values, IDs, Groups
and classes.

F The IFF function is used very often and may be combined with other operators and
functions.

Example of a conditional IFF function
The most simple kind of expression containing an IFF function looks like:

Suitable = IFF(Soildep > 0.20, 50, 1)

Soildep Suitable
 0.15 1
 0.45 50
 0.90 50
 0.20 1

If the condition Soildep is greater than 0.20, then value 50 is assigned in column
Suitable, else, if Soildep is less than or equal to 0.20, value 1 is assigned.

Examples of a conditional IFF with a logical operator
Three new columns are calculated using the soil depth and the phosphate content.

Result1 = IFF((Soildep>0.20) AND (Phosph>10), 1, 0)

Result2 = IFF((Soildep>0.20) OR (Phosph>10), 100, 5)

Result3 = IFF((Phosph<10) OR (Phosph>30), ?, Phosph)

Map & Table calculation

214 ILWIS Reference Guide

Soildep Phosph Result1 Result2 Result3
0.15 8 0 5 ?
0.45 34 1 100 ?
0.90 10 0 100 10
0.20 25 0 100 25
1.25 18 1 100 18

In the first expression a logical AND was used and for only two records the
expression was true resulting in a value of 1. All other records in column
Result1 were assigned a 0.

In the second expression the logical OR was used and the value 100 was returned
when the expression was true. If the expression was false the value in the new
column was 5.

In the third expression also a logical OR was used returning an undefined (?) when
the expression was true and returning the value of the column Phosph when the
expression was false. Assigning undefined values may be useful when you want to
exclude extreme values from further calculations. The same result can be obtained
using the INRANGE function:

Result3 = IFF(INRANGE(Phosph,10,25), Phosph, ?)

Examples of nested conditional IFF functions
You may use more than one IFF function in one expression, a so-called nested
conditional IFF function. It is a kind of stepwise specification of, and assignment of
values to certain conditions.

Result1 = IFF(Soildep>0.20, IFF(Phosph>10, 1, 2), 3))

Result2 = IFF(Soildep<0.20, 1, IFF(Soildep< 0.40, 2,
IFF(Soildep<0.80, 3, IFF(Soildep< 1.20, 4,0))))

Soildep Phosph Result1 Result2
0.15 8 3 1
0.45 34 1 3
0.90 9 2 4
0.20 25 3 2
1.25 18 1 0

The first expression nests two IFF statements. Value 1 is assigned to column
Result1 if Soildep is greater than 0.20, and if also Phosph is greater than 10.
If either one or both of the statements are false, value 0 is assigned. In other words:
both requirements should be met in order to assign value 1. The same result could
have been obtained by using the logical AND.

The second expression nests four IFF statements. In words the expression means:
If column Soildep is less than 0.20, then assign a 1 to column Result2, else
if column Soildep is less than 0.40, then assign a 2 to column Result2, else
if column Soildep is less than 0.80, then assign a 3 to column Result2, else
if column Soildep is less than 1.20, then assign a 4 to column Result2, else
assign a 0 to column Result2.

Map & Table calculation

ILWIS Reference Guide 215

With this kind of expression you can (re)classify values of a column. You may also
use the special function classify (CLFY) which is explained later in this chapter.

INRANGE function

INRANGE(a,b,c) tests whether values of expression or map a are contained
by a range or closed interval with endpoints b and c.
Mathematic notation: b ≤ a ≤ c or a ∈ [b;c]

Example INRANGE function
The INRANGE(a,b,c) function tests whether value (a) is contained by a range or
closed interval including the end points b and c. Mathematic notation: b ≤ a ≤ c or
a ∈ [b;c]. Below, the INRANGE function is combined with a conditional IFF. Not
only values may be assigned; you can also use strings.

Result1 = IFF(INRANGE(Value,100,1000),Value,?)

Result2 = IFF(INRANGE(Value,100,1000),”Normal”, ”Out of
Range”)

Value Result1 Result2
 306.309 306.309 Normal
 501.626 501.626 Normal
 37.926 ? Out of Range
 325.583 325.583 Normal
 484.975 484.975 Normal
 375.206 375.206 Normal
2305.375 ? Out of Range

Original values are assigned to column Result1 if the values are in the specified
range. Else the result is undefined (?). In column Result2 the string ”Normal”
appears if the values are in the specified range. Else, the result is again undefined.

Exponential functions

SQ(a) a² square function: a*a; a square
SQ(a,b) a² + b² square function: a*a + b*b; a square plus b square
SQRT(a) √a square root function: calculates the positive square

root of a
HYP(a,b) √(a² + b²) hypotenuse: calculates the positive square root of the

sum of a square and b square
POW(a,b) ab exponential function: a raised to the power b. The n-

th root of a is found by using this function in the
form of: POW(a, 1/n)

EXP(a) ea exponential function: value e (i.e. 2.718) raised to
the power a

Map & Table calculation

216 ILWIS Reference Guide

Memory refreshment: Laws of exponents
Negative exponents: a-n = 1/an

Fractional exponents: am/n = n√(am)

Multiplication: anam = an+m

Division: an/am = an-m

Raising to a power: (an)m = an*m

Example of square function SQ(a)
Function SQ(a) multiplies a with itself.

col2 = SQ(col1)

col3 = SQ(col2 - col1)

col1 col2 col3
2 4 4
4 16 144
6 36 900
8 64 3136

Col2 stores the result of col1 * col1.
Col3 stores the result of (col2-col1) * (col2-col1).

Example of square function SQ(a,b)
Function SQ(a,b) sums the squares of arguments a and b.

col3 = SQ(col1,col2)

col1 col2 col3
2 10 104
4 20 416
6 30 936
8 40 1664

Column3 stores the result of (col1*col1) + (col2*col2).

Square root function SQRT(a)
Function SQRT(a) returns the value that when multiplied by itself gives the input
value or expression.

col2 = SQRT(col1)

col1 col2
4 2

16 4
25 5
30 5.477

Col2 stores the square root of col1.

Map & Table calculation

ILWIS Reference Guide 217

Hypotenuse function HYP(a,b)
Function HYP(a,b) returns the root of the sum of a square and b square. In
mathematic notation: √(a² + b²). Function HYP finds the side opposite the right
angle in a right-angled triangle. This function is used often in slope calculations.

colC = hyp(colA,colB)

colA colB colC
 1 1 1
 1 3.873 4
 1 2 2.236
 3 4 5

ColC stores the result of √((colA*colA)+(colB*colB))

Example of exponential function POW(a,b)
Exponential function POW(a,b) raises a to the power b. Mathematic notation: E.
Using the function in the form of POW(a, 1/b) returns the b-th root of a; see also
the laws of exponents.

Col3 = POW(col1,col2)

Col4 = POW(col1,3)

Col5 = POW(col1,1/3)

col1 col2 col3 col4 col5
2 2 4 8 1.260
4 4 256 64 1.587
8 8 16777200 512 2.000

Col3 stores the result of col1 to the power col2.
Col4 stores the result of col1 to the power 3.
Col5 stores the result of the third root of col1.

Example of exponential function EXP(a)
Exponential function EXP(a) raises e (= 2.718) to the power a.
Mathematic notation: ea.
Constant value e can be used on the command line, by typing EXP(1).

col2 = EXP(col1)

col1 col2
1 2.718
2 7.389
4 54.598
8 2980.960

col2 stores the results of e col1.

Map & Table calculation

218 ILWIS Reference Guide

Additional information: Introduction on exponential growth functions

An = A0*(1 + perc/100)n and An = A0*eperc/100*n

An the amount after n years;
A0 the amount in year 0;
perc the growth rate as a percentage per year;
n the number of years.

Example
The expected total residential area after 3 years, of a residential area of 250 ha with
an estimated growth rate of 5% per year, is:

Area3y = 250 * (1.05)3 = 289 ha (first formula)
Area3y = 250 POW(1.05,3) (TabCalc syntax)

Area3y = 250 * e 0.05*3 = 290 ha (second formula)
Area3y = 250 EXP(0.05*3) (TabCalc syntax)

Exponential growth with POW and EXP functions
Introduction on growth functions:

An = A0 * (1 + perc/100)n ⇒ An = A0* POW(1+perc/100, n)
An = A0 * eperc/100*n ⇒ An = A0 * EXP(perc/100 * n)

AreaHaY4 = AreaHaY0 * POW(1 + (GrowPerc/100), 4)

AHaY4 = AreaHaY0 * EXP(GrowthPerc/100 * 4)

LandUse AreaHaY0 GrowPerc AreaHaY4 AHaY4
residential 1136 6 1434 1444
commercial 425 4 497 499
industrial 173 3 195 195
institutional 137 1 143 143
recreational 77 2 83 83
transportation 18 1 19 19

Column AreaHaY0 contains the areas in hectares for each land use class in year 0;
column GrowPerc contains growth rates per year;
column AreaHaY4 contains the areas of the land use classes after 4 years
according to the first formula and column AHaY4 according to the second formula.

Logarithmic functions

LOG(a) 10log(a) calculates the base 10 logarithm of a
LN(a) elog(a) natural logarithm, calculates the base e (2.718)

logarithm of a

Map & Table calculation

ILWIS Reference Guide 219

Examples of LOG and LN functions

ExampleLOG = LOG(column)

ExampleLN = LN(column)

Column ExampleLOG ExampleLN
 1234 3.091 7.118
 2345 3.370 7.760
 3456 3.539 8.148
 13579 4.133 9.516
 24680 4.392 10.114

Column ExampleLOG contains the 10-based logarithm of column Column.
Column ExampleLN contains the e-based logarithm (or natural logarithm) of
column Column.

Memory refreshment: Laws of logarithms
log(n*m) = log(n) + log(m)

log(n/m) = log(n) - log(m)

log(nm) = m * log(n)

ln(EXP(n)) = n

If you would like to calculate blog(a), the b-based logarithm of a, instead of
10log(a), you can divide the old logarithm by the logarithm of the new base:
blog(a) = 10log(a)/10log(b)

Example of a logarithmic function

Result2log = LOG(column1)/LOG(2)

Result4log = LOG(column1)/LOG(4)

Column1 Result2log Result4log
16 4 2
32 5 2.5
64 6 3

256 8 4

Column Result2log contains the values of 2log(column1).
Column Result4log contains the values of 4log(column1).

Random number generators
For certain statistical analyses you might want to create columns with random
values. For instance to simulate a point data set for comparison with measured
point data (Spatial Correlation and Pattern Analysis).

Map & Table calculation

220 ILWIS Reference Guide

The following random number generators are available:
RND(n) returns integer values in the range 1 to n. To simulate a die, use this

function in the form of: RND(6)
RND(0) returns a 0 or 1 at random
RND() returns random real values in the range [0;1> , i.e. between 0 and 1,

including 0 but excluding 1

F Use always := otherwise new random values will be assigned in every new
calculation.

F Integer n has a maximum value of 2 billion (2*109)

Examples of the random functions
Random1 := RND(1000)

Random2 := RND(0)

Random3 := RND()

Random1 Random2 Random3
 371 1 0.803
 61 1 0.615
 992 0 0.412
 340 1 0.107
 760 1 0.501

Column Random1 contains long integer values in the interval [1;1000].
Column Random2 contains a 0 or 1 at random.
Column Random3 contains real values between 0 and 1.

Sign operator and functions
-(a) returns a multiplied by -1
NEG(a) returns a multiplied by -1
ABS(a) returns the absolute (= positive) value of a
SGN(a) returns -1 for negative values of a, 0 when a is 0, and 1 for positive

values of a

Examples of the sign functions
ColNeg = -Col1

ColNeg = NEG(Col1)

ColAbs = ABS(Col1)

ColSgn = SGN(Col1)

 Col1 ColNeg ColAbs ColSgn
 56.48 -56.48 56.48 1
-42.72 42.72 42.72 -1
 -5.10 5.10 5.10 -1
 31.88 -31.88 31.88 1
 19.33 -19.33 19.33 1
-21.92 21.92 21.92 -1

Map & Table calculation

ILWIS Reference Guide 221

Column ColAbs contains the absolute values of column Col1.
Column ColNeg contains the value of column Col1 multiplied by -1.
Column ColSgn contains a 1 when the value in Col1 is positive, and -1 when
negative.

Rounding functions

ROUND(a) rounds a off to a long integer,
FLOOR(a) rounds down; returns the largest long integer value smaller than

input value (truncation),
CEIL(a) rounds up; returns the smallest long integer value larger than

input value,

Examples of rounding functions
Round1= ROUND(Col1)

Floor1= FLOOR(Col1)

Ceil1 = CEIL(Col1)

Col1 Round1 Floor1 Ceil1
56.48 56 56 57

-42.72 -43 -43 -42
-5.10 -5 -6 -5
31.88 32 31 32

Column Round1 contains the rounded values of column Col1.
Column Floor1 contains the truncated values of Col1.
Column Ceil1 contains the smallest integer value larger than the values in Col1.

MinMax functions

MIN(a) calculates the minimum value of all records that are the
outcome of column a

MIN(a,b) calculates the minimum value of expressions a and b
MIN(a,b,c) calculates the minimum value of expressions a, b and c
MAX(a) calculates the maximum value of all records that are the

outcome of column a
MAX(a,b) calculates the maximum value of expressions a and b
MAX(a,b,c) calculates the maximum value of expressions a, b and c

Examples of MinMax functions
ResMin = MIN(colA)

ResMax = MAX(colA,colB)

colA colB ResMin ResMax
13 57 13 57
34 93 13 93
75 42 13 75
29 19 13 29
18 66 13 66

Map & Table calculation

222 ILWIS Reference Guide

The first formula returns the minimum value of colA.
The second formula compares the record values in colA and colB and returns the
largest value of the two.

Average function AVG(a)
AVG(a) returns the average value of column a
STDEV(a) returns the standard deviation of column a

Example of the Average function
Average = AVG(Area)

Standdev = STDEV(Area)

Area Average Standdev
1000 2500 1118
2000 2500 1118
3000 2500 1118
4000 2500 1118

The column Average contains the average value of all values in column Area.
Column Standdev contains the standard deviation of column Area.

To calculate weighted averages or averages per class refer to: AGGAVG function in
the section aggregations under special Table Calculations.

Trigonometric functions

SIN(a) sine (input angles specified in radians); returns real values in the
range -1 to 1

COS(a) cosine (input angles specified in radians); returns real values in
the range -1 to 1

TAN(a) tangent (input angles specified in radians)
ASIN(a) arc sine (input values must be in the range -1 to 1); returns real

values in radians in the range -π/2 to π/2
ACOS(a) arc cosine (input values must be in the range -1 to 1); returns real

values in radians in the range 0 to π
ATAN(a) arc tangent; returns real values in radians in the range -π/2 to π/2
ATAN2(y,x) returns the angle in radians of two input values; x is horizontal, y

is vertical

F ATAN(y/x) = ATAN2(x,y) if x and y are both positive.
F The function ATAN and especially ATAN2 are often used in calculation of slope

maps and aspect maps. Then use RADDEG(ATAN2(DX,DY)+PI).
F For the functions SIN, COS and TAN, the input angles have to be specified in

radians. To convert degrees to radians, use the angular function DEGRAD. For
example, the formula SIN(DEGRAD(60)) calculates the sine of 60°.

F For the functions ASIN, ACOS, ATAN and ATAN2, the output values are in
radians. To convert radians to degrees, use the angular function RADDEG. For the
functions ASIN and ACOS, the input values must be in the range -1 to 1.

Map & Table calculation

ILWIS Reference Guide 223

Examples Trigonometric functions

Result1 = tan(colA)

Result2 = acos(colB)

colA colB Result1 Result2
-3.82 0.62 -0.8060 0.9021
-1.67 0.34 10.0472 1.2239
-0.75 -0.86 -0.9316 2.6061
0.33 -0.72 0.3425 2.3746
0.98 -0.03 1.4910 1.6008
1.41 -0.66 6.1654 2.2916
2.74 -0.48 -0.4247 2.0715

Result 1 shows the tangent of the values (in radians) of colA.
Result 2 shows the arccosine of the values (also in radians) in colB. These values
lie between 0 and π.

Angular functions

DEGRAD(a) converts degrees to radians; a*2π/360
RADDEG(a) converts radians to degrees; a*360/2π MOD 360

The DEGRAD function converts the degree values in column a to radians: a is
multiplied with 2π/360. The DEGRAD function is often used in combination with
trigonometric functions. For example, to calculate the tangent of 60°, you use the
following formula: TAN(DEGRAD(60))

Example of degrees to radians function DEGRAD(a)
To calculate the tangent of col1 (in degrees), use the following expression:

col2 = (TAN(DEGRAD(col1))

col1 col2
 30 0.577
 45 1
 60 1.732
 90 ?

Example of radians to degree conversion RADDEG(a)
The RADDEG function converts radian values in column a to degrees: a is
multiplied with 360/2π MOD 360. ILWIS uses a default range of 0 - 360 with a
precision of 0.01. The RADDEG function is often used in combination with
trigonometric functions.

When you want to convert slope values in percentages (slopepct) to degrees
(slopedeg), use the following expression:

slopedeg = RADDEG(ATAN(slopepct/100))

Map & Table calculation

224 ILWIS Reference Guide

slopepct slopedeg
 10 5.71
 25 14.04
 50 26.57
 100 45.00
 173 59.97

Hyperbolic functions

SINH(a) hyperbolic sine; (ea - e-a)/2
COSH(a) hyperbolic cosine; (ea + e-a)/2
TANH(a) hyperbolic tangent; tanh(a) = sinh(a)/cosh(a)

Hyperbolic functions are related to a hyperbola (x2 - y2 = r2), in the same way as
trigonometric functions are related to a circle. In the formulas above, a represents
the x of the hyperbole.

6.3.3.4 Predefined values
ILWIS includes the following predefined values:

PI value π : 3.141593...
PI2 value 2 * π : 6.283185...
PIDIV2 value ½ π : 1.570796...
PIDIV4 value 1/4 π: 0.785398...
EXP(1) value e : 2.718282...

Predefined values may be used in every calculator (MapCalc, TabCalc, user-defined
functions, and the pocket line calculator). Predefined values related to π are mostly
used in combination with trigonometric functions.

Examples of Predefined PI
Using the following formula you can calculate what the radius would be from a
circle as large as an area in your map. The column area can be found in a
histogram table.

Radius = SQRT(Area/PI)

Area Radius
4320890 1173
874283 528
74294 154

6286446 1415

The following formula converts degrees into radians without using the DEGRAD
function:

radians = degrees * (PI2)/360

degrees radians
15 0.26
30 0.52
45 0.79
60 1.05

Map & Table calculation

ILWIS Reference Guide 225

6.3.3.5 Operators and functions on non-value columns (Class, Group,
ID)

Below, the operators and functions are explained that can be used in Table
calculation on columns with a domain Class, Group or ID. For an overview of all
operators and functions available, please, refer to the schematic overview at the
start of this chapter.

When using class or group names or IDs within an expression, these names and
IDs should be put between double quotes, e.g. ”coffee”. In domains of the Class or
Group type, you can enter codes and class names/group names. These codes can be
an abbreviation of your class or group names. In expressions, also the codes can be
used.

Relational operators

= eq a = b equal to; tests whether the outcome of expression a is
equal to the outcome of expression b

<> ne a <> b not equal to; tests whether the outcome of expression a
is not equal to the outcome of expression b

Relational operators on Class, ID, Group or String columns

Resident = (Landuse = ”residential”)

Other = (Landuse <> ”residential”)

Parcel Landuse Resident Other
00123 Residential True False
00124 Residential True False
00125 Commercial False True
00126 Residential True False
00127 Industrial False True
01272 Institutional False True
04625 Residential True False

Column Resident shows for which parcels the first expression is True or False.
Column Other shows for which parcels the second expression is True or False.

Logical operators

AND (a) AND (b) logical and (intersection), returns true if both expressions a
and b are true

OR (a) OR (b) logical or (union), returns true if one or both of the
expressions a or b is true

XOR (a) XOR (b) logical xor, returns true if only one of the expressions a and
b is true

NOT NOT (a) logical not, returns true if expression a is false

Map & Table calculation

226 ILWIS Reference Guide

Examples logical operators on domain Class or ID columns

ResAND = (Landuse=”residential”) AND (CommVal > 20000)

ResOR = (Landuse=”commercial”) OR (Landuse=”industrial”)

Parcel Landuse CommVal ResAND ResOR
00123 Residential 12500 False False
00124 Residential 22500 True False
00125 Commercial 45000 False True
00126 Residential 30000 True False
00127 Industrial 70000 False True
04625 Residential 19000 False False

Column ResAND is created from conditions on 2 other columns: Landuse and
CommVal (commercial value). When a record in column Landuse is residential,
and that record number has also a commercial value greater than 20000, then the
expression is True. In other cases False is returned.
In column ResOR True is assigned for every record which has a commercial or
industrial landuse, else False.

Conditional IFF function

IFF(a,b,c) if condition a is true, then return the outcome of expression b,
else return the outcome of expression c.

Example of a conditional IFF function:
A simple expression containing an IFF function may look like:

Result = IFF (Landuse <> ”Residential”, ”Other”, Landuse)

Parcel Landuse Result
00123 Residential Residential
00124 Residential Residential
00125 Commercial Other
00126 Residential Residential
00127 Industrial Other
04625 Residential Residential

If the Landuse is any other than ”Residential” the description of the land use is
replaced by ”Other”, else it will remain ”residential”.

The IFF function is used very often and may be combined with other operators and
functions.

Result1 = IFF((Landuse = ”forest”) AND (altitude > 1600),
100, 0)

Result2= IFF((Landuse = ”crops”), Landuse, IFF(INRANGE
(altitude,1400,1700), ”suitable”,”not suitable”))

Map & Table calculation

ILWIS Reference Guide 227

Parcel Landuse Altitude Result1 Result2
100 crops 1450 0 crops
127 forest 1675 100 suitable
131 forest 1840 100 not suitable
146 meadow 1725 0 not suitable
149 crops 1365 0 crops
177 forest 1490 0 suitable
180 crops 1650 0 crops
197 meadow 1585 0 suitable
198 crops 1720 0 crops

Result1 assigns a value 100 to the records which have a land use type forest and
which lie below an altitude of 1600 m. All other records get a value 0.

Result2 is a string column. If the landuse is crops, Result2 is assigned the
word crops. Then, iff the altitude is between 1400 and 1700 m the string
suitable is assigned else the string, else a parcel is classified as not
suitable.

Additional operators and functions on Class/ID

+ s1 + s2 concatenation operator, glues s1 and s2
together

IN IN(s1, s2) tests whether s2 is part of s1
INMASK INMASK(col, s) tests whether complete string s is present in

a non-value column col; wildcards * and ?
are allowed

STRPOS STRPOS(s1,s2) returns the starting position of s2 in s1
LENGTH LENGTH(s) returns the number of characters (the

length) of string s
SUB SUB(s,int1, int2) returns a substring of string s; starting with

the character at position int1 and returns
int2 number of characters

LEFT LEFT(s, int) returns the first int number of characters of
string s

RIGHT RIGHT(s, int) returns the last int number of characters of
string s

STRLT
<

STRLT(s1, s2)
s1 < s2

returns true if in alphabetical order string s1
comes before string s2

STRLE
<=

STRLE(s1, s2)
s1 <= s2

returns true if in alphabetical order string s1
comes before or on the same place as string
s2

STRGT
>

STRGT(s1, s2)
s1 > s2

returns true if in alphabetical order string s1
comes after string s2

STRGE
>=

STRGE(s1, s2)
s1 >= s2

returns true if in alphabetical order string s1
comes after before or on the same place as
string s2

Map & Table calculation

228 ILWIS Reference Guide

Examples of additional functions on Class, ID, Group or String columns

Combined = Terrain + LandUse

Result = IN(combined,”H1F”)

Terrain DescrTerr LandUse Description Landuse Combined Result
 C2 LagoonPlain Pr PaddyRiceRain C2Pr False
 F CollFootslope H HomestGarden FH False
 H1 VolcHillsMod Fb SecForest H1Fb True
 H1 VolcHillsMod G Grazing H1G False
 H1 VolcHillsMod Ut UplandCropsTrees H1Ut False
 H2 VolcHillsSteep Fp PrimForest H2Fp False
 H2 VolcHillsSteep Ut UplandCropsTrees H2Ut False
 U1 CoastUpland G Grazing U1G False

The first expression results in a column Combined which contains a combination
of the class names in columns Terrain and LandUse.
The second expression is true for moderately steep hills (H1) with forest (Fb or
Fp); in that case True is assigned in Column Result. Mind that using ”h1f”
would give a different result.

The INMASK function tests whether a specified search string is present in the
mask presented in a column or a map. This offers the opportunity for a simple
check if certain words, characters, numbers, codes, etc. are a part of one of the
items in a column or map domain. You may use the wildcard ? when you are not
interested in a character or number on a certain position. The wildcard * is used to
omit one or more characters in your mask.

Examples of the INMASK function

Result1 = INMASK(Combined,”*2*”)

Result2 = INMASK(Combined,”H?U*”)

Result3 = IFF(INMASK(Combined,”H?U*”),landuse,(”not
suitable”)

Combined Description Landuse Result1 Result2 Result3
 C2Pr PaddyRiceRain False False not suitable
 FH HomestGarden False False not suitable
 H1Fb SecForest False False not suitable
 H1G Grazing False False not suitable
 H1Ut UplandCropsTrees False True UplandCropsTrees
 H2Fp PrimForest True False not suitable
 H2Ut UplandCropsTrees True True UplandCropsTrees
 U1G Grazing False False not suitable

Map & Table calculation

ILWIS Reference Guide 229

Example of the STRPOS function
To look for the starting position of a substring in a certain column you may use the
STRPOS function. In this example an attribute table of a geomorphology map is
used. The starting position of the word ”slope” will be retrieved if present in
column Description.

Slopepos = STRPOS(Description, ”slope”)

Description Slopepos
aaf active alluvial fan 0
dhm denudational steep to very steep slopes 34
dsh denudational moderately steep slopes 31
fls fault-line scarp 0
frh fault-related hills 0
fsl steep face-slopes 12
fld infilled lake 0
svd steep dipslopes 10
syc synclinal ridge 0

This might also be useful when you want to find out the starting position of your
second input domain when using the domain of a cross table.

The next example uses the cross table of a landuse and a geomorphology map.

Pos = STRPOS(%k,”* ”) + 2

Pos
Airport * fld 11
Bare rock * dsh 13
Bare rock * fsl 13
Bare rock * svd 13
Crops no irrigation * aaf 23
Crops no irrigation * frh 23
Crops no irrigation * fld 23

In column Pos the starting position is found of sub-string * followed by a space.
Then 2 is added to find the real starting position of the geomorphology code.

Examples of the other additional functions

Result1 = LENGTH(Input)

Result2 = SUB(Input,6,4)

Result3 = LEFT(Input,5)

Result4 = RIGHT(Input,6)

Result5 = IN(Input,”long”)

Input Result1 Result2 Result3 Result4 Result5
QuiteLongString 15 Long Quite String True
AnotherString 13 erSt Anoth String False

Map & Table calculation

230 ILWIS Reference Guide

Column Result1 gives the length of the strings in column Input.
Column Result2 returns a substring of column Input, starting at position 6,

and 4 characters long.
Column Result3 returns the first 5 characters of column Input.
Column Result4 returns the last 6 characters of column Input.
Column Result5 returns a 1 if ”long” is part of the string in column Input, and a

0 if not.

To test whether a string is placed in alphabetical order before, after or in the same
position as string2 you can use 4 functions:

Result6 = STRLT(Code,”h”)
Result6 = Code < ”h”

Result7 = IFF(STRLE(Code,”hd3”), 100, 5)
Result7 = IFF(Code <= ”hd3”, 100, 5)

Result8 = STRGT(code,code[%r-1])
Result8 = code > code[%r-1]

Result9 = STRGE(Code,”h”)
Result9 = Code >= ”h”

Code Result6 Result7 Result8 Result9
ac3 True 100 ? False
ad1 True 100 True False
ud3 False 5 True True
pc1 False 5 False True
hc2 False 100 False True
hd3 False 5 True True
bc2 True 100 False False
bd3 True 100 True False

Result6 returns True if the string in column Code comes before character ”h”
when you place them in alphabetical order.

When alphabetically ordered the string in column Code comes before or on the
same position as the specified ”hd3”, then 100 is returned in column Result7,
else 5.

In column Result8 True is returned when the code comes later in the
alphabetical order than the code of the record one position above it in the table.
Else it returns False.

Result9 returns True when the code starts with an ”h” or characters later in the
alphabet. Else it returns False.

