OBSERVING COMPONENTS OF THE WATER CYCLE WRS 2023

Diana Chavarro-Rincon, WRS

WHY OBSERVATION SITES?

It is needed to understand processes

UNIVERSITY OF TWENTE.

You will get engaged with data: field data, measurement techniques, satellite data products

Monitoring and Managing Water Resources With remote sensing and field data & equipment

Satellites data infrastructure Data archiving time series groundwater resources cloud computing open science spectrometers living laboratories

OBSERVATION SITES IN THE NETHERLANDS

ENSCHEDE URBAN CLIMATE MONITORING

Enschede: Monitoring Urban Climate

what:	Radiation fluxes Turbulent fluxes
how:	Scintillometer, eddy covariance system
who	Timmermans et al
goal(s)	investigate urban heat islands effect and urban microclimates

TWENTE SOIL MOISTURE NETWORK

TWENTE SOIL MOISTURE NETWORK

DINKEL CATCHMENT - B

what:	Groundwater, SM, ET, biomass
how:	SM sensors
who	Mostafa et al together with WUNDER researchers Gabriel to measure in the streams
goal(s)	Investigate role of groundwater

in the distribution and severity of drought events in the Dinkel (coupling STEMMUS-SCOPE with MODFLOW)

DINKEL CATCHMENT - BRECKLENKAMP

what:	soil moisture
how:	TEROS 11 SM sensor
who	Paul (prev. Rogier)
goal(s)	monitor SM content changes to evaluate measures taken by the water authority for improving water retention in the context of droughts

UNIVERSITY OF TWENTE.

SPEULDERBOS

to provide a long-term monitoring of key variables of forest physiology, soil physics and chemistry, hydrology and atmosphere. These data are used at ITC to develop remote sensing measurement techniques.

Op deze locatie onderzoeken wij, in semenwerking met Staatsbosbeheer, de bomen, de bosgrond, de lucht en het water, om beter inzicht te krijgen in de dynamiek dit ecosysteem. Met langdurige metingen met sensoren in de grond en boven de bomen proberen wij antwoord te geven op vragen als: 'Hoe reageert dit bos op hittegolven, droogte en andere onstantenbeden?' Zotwerken we aan een beter begrip van de natuur, onze le bester begrip van de natuur, onze le

Since the mid 1980's, measurements in a Douglas fir plantation

- Acid rain and forest health
- Air quality
- Nitrogen deposition
- Hydrology and meteorology

UNIVERSITY OF TWENTE.

SPEULDERBOS

what:	solar-induced chlorophyll fluorescence (SIF).
how:	spectrometers, Piccolo system
who	Xuhui, Christiaan, Egor
goal(s)	understand the link between SIF and stomatal conductance for transpiration estimation. Assessing the impacts of environmental stress on plants physiological activities

UNIVERSITY OF TWENTE.

ITC

SPEULDERBOS

SPEULDERBOS - GEODESY FLAVOURED RESEARCH

Earthquakes are clearly visible in the data but hydrological signals are ~10x smaller (!!)

what:	Time series of gravimetry using University of Bonn CG-5 spring operated gravimeter
how:	gravimeter
who	Roelof & colleagues from U Bonn
goal(s)	Time series may possibly contain aggregate hydrological signals (groundwater, soil moisture,).

SPEULDERBOS - GNSS INTERFEROMETRIC REFLECTOMETRY

what:	Measurements of the signal attenuation and canopy/forest floor reflections
how:	Low-cost GNSS-interferometry
who	Roelof, Paul et al., (Blue Sky project) – Also to be used in the Nile river basin for validation of altimetry observations in rivers (EO AFRICA research project)
goal(s)	Investigate canopy reflections, interception. Get insights on low-cost GNSS-reflectometry

TIBETAN PLATEAU OBSERVATORY OF PLATEAU SCALE SM & ST (TIBET-OBS)

(Established since 2004; Su et al. 2011, HESS; Zeng et al. 2016, RS; Zhang et al. 2020, ESSD)

who	Bob, Yijian, Hong, Jan, Ting, Andy Nelson, Michael Schlund
goal(s)	Digital Twin Earth – Observation Operator & Dynamic Model components/ validating remote sensing products

http://en.tpedatabase.cn/ ISMN

SARDON CATCHMENT

what:	Solar radiation, WS, RH, Ta, SM, GW levels, streamflow
how:	Different sensors, ADAS stations
who	Maciek, Mostafa
goal(s)	Investigate role of groundwater in the distribution and severity of agricultural drought events in the Dinkel

OBJECTIVES & ROLES

- Stimulate staff participation/contributions
- Include measurements in education
- Provide visibility
- Facilitate project funding
- Working towards converting our sites in Water Oriented Living Labs (WoLL) in Europe and beyond.

- Operational Manager Diana
 - Logistics/purchase (Murat, +staff)
 - Visibility/Promotion (internal/external)
 - Projects
- Scientific Manager Roelof
 - Instruments (Murat, Christiaan)
 - Computation/Data (Bas, +staff)

UTWENTE - LIVING INNOVATION LAB LILA (COMING SOON...)

LILA WILL OFFER A BROAD SPECTRUM OF TRANSDISCIPLINARY SUBJECTS: AT, UNDER AND ABOVE THE GROUND.

https://www.itc.nl/news/2021/6/1094358/ut-campus-will-have-a-living-innovation-lab#a-transdisciplinary-lab

A unique facility where we can take years of collaborative research between faculties to the next level

LILa will offer researchers the opportunity to work on developing new methods and techniques in a transdisciplinary setting

Thanks

