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7 Extracting structural characteristics of herbaceous floodplain vegetation

under leaf-off conditions using airborne laser scanner data

M. STRAATSMA* and H. MIDDELKOOP

Department of Physical Geography, Utrecht University, PO Box 80115, 3508 TC

Utrecht, The Netherlands

(Received 24 March 2006; in final form 2 June 2006 )

Hydrodynamic models of river flow need detailed and accurate friction values as

input. Friction values of floodplain vegetation are based on vegetation height and

density. To map spatial patterns of floodplain vegetation structure, airborne laser

scanning is a promising tool. In a test for the lower Rhine floodplain, vegetation

height and density of herbaceous vegetation were measured in the field at 42

georeferenced plots of 200 m2 each. Simultaneously, three airborne laser scanning

(ALS) surveys were carried out in the same area resulting in three high resolution,

first pulse, small-footprint datasets. The laser data surveys differed in flying

height, gain setting and laser diode age. Point density of the laser data varied

between 10 and 75 points m22. Point heights relative to the DTM derived from

the ALS data were used in all analyses. Laser points were labelled as either

vegetation or ground using three different methods: (1) a fixed threshold value;

(2) a flexible threshold value based on the inflection point in the point height

distribution; and (3) using a Gaussian distribution to separate noise in the ground

surface points from vegetation. Twenty-one statistics were computed for each of

the resulting vegetation-point distributions, which were subsequently compared

with field observations of vegetation height. Additionally, the percentage index

(PI) was computed to relate density of vegetation points to hydrodynamic

vegetation density. The vegetation height was best predicted by using the

inflection method for labelling and the 95 percentile as a regressor (R250.74–

0.88). Vegetation density was best predicted using the threshold method for

labelling and the PI as a predictor (R250.51). The results of vegetation height

prediction were found to depend on the combined effect of flying height, gain

setting or laser diode age. The quality of the estimation of vegetation height and

density is also affected by point density, for densities lower than 15 points m22.

We conclude that high resolution ALS data allows to estimate vegetation height

and density of herbaceous vegetation in winter condition, but field reference data

remains necessary for calibration.

1. Introduction

In response to the increased awareness of the socio-economic importance of river

flooding in the past decades, considerable effort has been undertaken in recent years

to develop hydrodynamic models of overbank flow to predict extreme flood water
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levels for the design of flood defence structures. The hydrodynamic roughness of the

floodplain surface is one of the key parameters of these models, and depends on

vegetation structure. The role of vegetation roughness in hydrodynamic modelling is

becoming increasingly important to assess the implications of ecological rehabilita-

tion measures in floodplain areas for overbank flow patterns and extreme water

levels. This is because ecological rehabilitation may involve considerable changes in

floodplain vegetation, and may lead to a more extensive use of floodplains, resulting

in complex patterns and succession stages of floodplain vegetation (Baptist et al.

2004, Jesse 2004, Van Stokkom et al. 2005). Although various schemes have been

developed to represent vegetation roughness in two- and three-dimensional

hydrodynamic models, and numerous flume experiments have been reported to

determine vegetation roughness, there is still considerable lack of quantitative

estimates of vegetation patterns and inherent roughness of real floodplains (Darby

1999, Fischer-Antze et al. 2001, Stoesser et al. 2003, Nicholas and McLelland 2004).

Therefore, monitoring floodplain vegetation structure becomes essential for

accurately modelling the hydrodynamics of submerged floodplains (Mason et al.

2003). Key parameters used in numerical two- or three-dimensional modelling

schemes to calculate hydrodynamic roughness of vegetation are vegetation height

and density, average stem spacing and flexural rigidity (Kouwen and Li 1980,

Klopstra et al. 1997). Vegetation density is the projected plant area in the direction

of the flow per unit volume. For cylindrical vegetation, this equals the product of

number of stems or stalks per unit area multiplied by the average stem diameter

(Fischer-Antze et al. 2001, Wilson and Horrit 2002). Numerous models have been

presented to convert vegetation structural characteristics to roughness (i.e. Kouwen

and Li 1980, Klopstra et al. 1997, Baptist 2005).

Traditional methods to map vegetation patterns within the floodplain are based

on visual interpretation and manual classification of vegetation units from aerial

photographs, as applied for the lower Rhine floodplains (Jansen and Backx 1998,

Van Velzen et al. 2003). These, however, may become inadequate to monitor the

spatio-temporal dynamics of vegetation roughness, since the procedures are time

consuming and do not allow documentation of within-class variation of vegetation

roughness. There is thus a need for a faster and more adequate approach to assess

hydrodynamic roughness of vegetated floodplain surfaces. In case of the River

Rhine in the Netherlands, such an approach has to be specifically suited for

herbaceous vegetation since these occupy the largest floodplain areas (Duel et al.

2001).

For many years, successful attempts have been reported to map vegetation types

using multispectral or hyperspectral remote sensing data (Ringrose et al. 1988,

Mertes et al. 1995, Thompson et al. 1998, Schmidt and Skidmore 2003, Van der

Sande et al. 2003, Rosso et al. 2005). Recently, spectral information has been

combined with height information in classification schemes (e.g. Hill et al. 2002,

Ehlers et al. 2003). Mertes (2002) gives an overview of different aspects of remote

sensing of riverine landscapes. The resulting maps with vegetation classes need to

be converted to a vegetation structure map using a lookup table, since vegetation

structure cannot be extracted directly from the spectral image. In the classification

procedure, spatial detail of vegetation structural characteristics is lost. In contrast,

airborne laser scanning (ALS) provides information on the distribution of

vegetation directly, and therefore has been used extensively in forestry surveys

to estimate forest characteristics (Lefsky et al. 2002, Lim et al. 2003). It has been

2448 M. Straatsma and H. Middelkoop
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used to map vegetation height of floodplains as well, but only in summer when

vegetation was in leaf-on condition (Cobby et al. 2001, Mason et al. 2003).

However, in the Netherlands, most floods occur in winter (Middelkoop and Van

Haselen 1999). Relations derived for summer vegetation may therefore be

unrepresentative.

The main goal of this study was to estimate vegetation height and density of

herbaceous floodplain vegetation in senescence on a field plot level using airborne

laser scanning data. Flexural rigidity and average stem spacing seems unlikely to

be extractable from ALS data in case of herbaceous vegetation. We focused on

herbaceous vegetation, as this is the dominant vegetation type in Dutch

floodplains. Three different methods to distinguish between ground points and

vegetation points were evaluated. We determined a large number of statistical

characteristics of the vegetation points and evaluated which of these were the best

predictors of vegetation height and density. The study was based on ALS data

collected during three surveys in different sections of the lower Rhine floodplain in

the Netherlands: one in March 2001 and two in March 2003. Simultaneously with

each laser survey, field reference data were collected on vegetation height and

density at the same floodplain sections.

2. Extraction of vegetation structure of low vegetation from ALS data

ALS has been extensively used for various applications, such as aerodynamic

roughness determination (Menenti and Ritchie 1994), ice sheet modelling (Krabill

et al. 2000), and coastal dune morphology (Woolard and Colby 2002). It has been

successfully applied to measure vegetation structure (Wehr and Lohr 1999). In

forestry, laser scanning has been successfully applied to map forest properties, such

as timber volume (Naesset 1997), tree height (Naesset 2002, Brandtberg et al. 2003)

or number of stems and stem diameter (Lefsky et al. 1999, Naesset 2004). Lim et al.

(2003) give an overview of airborne laser scanning of forests.

Only a few papers have reported on documenting and mapping vegetation height

of low vegetation. Weltz et al. (1994) and Ritchie et al. (1996) found good

correspondence between field data and airborne laser measurements of plant height,

canopy cover and ground cover of low height rangeland vegetation. However, they

did not present regression models to estimate these parameters from laser data.

Davenport et al. (2000) and Cobby et al. (2001) used low-resolution (1 point per

9 m2) laser data to estimate crop height. Since the vegetation density of the crops was

very high, they were unable to detect the ground surface in the laser data, and

therefore they used the standard deviation of de-trended laser heights as a predictor.

The standard deviation of laser scan height data correlated in a (log–) linear way

with crop height determined by field sampling (R250.89 in Davenport et al. 2000,

R250.80 in Cobby et al. 2001). Hopkinson et al. (2004) predicted vegetation height

of shrubs, aquatic marshland vegetation, grassland and herbs. Like the previous

studies, they used the standard deviation of all laser points, corrected for local

ground surface undulations, as a predictor of vegetation height (R250.77). All laser

data and field data were collected during leaf-on season. The parameters in the

regression models in these studies varied greatly. Cobby et al. (2001) used a log–

linear regression, which did not give satisfactory results on the data of Hopkinson

et al. (2004). Moreover, the slope of the regression reported by Hopkinson et al.

(2004) was three times higher than the one from Davenport et al. (2000). The high

regression slope reported by Davenport et al. (2000) might be due to higher density

Extracting structural characteristics of herbaceous floodplain vegetation 2449
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of the crops when compared with the natural vegetation studied by Hopkinson et al.

(2004). Dense crops create a continuous canopy cover and most laser pulses will

reflect off the top of the canopy, thereby limiting the variation in the vertical

distribution.

In spite of this successful application of ALS laser data to document vegetation

height of crops and marshlands in summer, it remains to be evaluated whether these

methods are applicable for assessing vegetation structure in Dutch floodplains,

when vegetation is leafless, and only the stalks of the grasses and herbs are present.

Thus, contrary to Davenport et al. (2000) and Cobby et al. (2001), the vegetation

type to be mapped is very open and consists of thin stalks. Consequently, regression

models established in these previous studies might not be valid for winter vegetation.

Besides vegetation height, vegetation density is also needed as input to

hydrodynamic models. No literature was found that related laser-derived

parameters to the vegetation density of herbaceous vegetation.

3. Materials and methods

3.1 Study area

This study is based on laser data collected in three floodplain sections of the

distributaries of the River Rhine in The Netherlands: ‘Duursche Waarden’

floodplain (DW) along the right bank of the River IJssel, and the ‘Afferden en

Deestse Waarden’ (ADW) and the ‘Gamerense Waarden’ (GW) floodplains along

the left bank of the River Waal (figure 1). In all these floodplains, landscaping

measures have been carried out to reduce flood levels and to restore the ecology. For

these floodplains, high-density laser data were acquired by the Dutch Ministry of

Transport, Public Works and Water Management as a monitoring pilot. Vegetation

presently consists of hardwood and softwood forest and shrubs, but is dominated by

herbaceous vegetation. Vegetation is characterized by a heterogeneous pattern of

vegetation types and structure. Herbaceous vegetation consists mostly of sedge

(Carex hirta L.), sorrel (Rumex obtusifolius L.), nettle (Urtica dioica L.), thistle

(Cirsium arvense L.) and clover (Trifolium repens L.). The vegetation height inside

the plots ranged between 0.26 and 1.66 m.

3.2 Field measurements

We measured vegetation height and density in 42 field plots of homogeneous

vegetation (figure 1): 12 plots in the DW and ADW floodplain in March 2001, and

30 plots in the GW floodplain in March 2003. The plots represented a large range of

herbaceous vegetation types. Plot size was at least 200 m2, to ensure a sufficient

number of laser points available for subsequent analysis. The plots were geo-located

using a Garmin GPS12, resulting in a horizontal accuracy of 5 m, which is the

estimated positioning error (EPE) given by the Garmin proprietary software.

Vegetation height was measured in two steps: (1) we estimated the average

vegetation height as an imaginary plane through the average top of the vegetation

and (2) we measured the length of 30 randomly selected stalks reaching at least half

the height of step 1. The mean and standard deviation of the 30 measured heights

were registered. Vegetation density was determined from the product of the number

of stalks per unit area and the average stalk diameter, which was based on the same

30 stalks using a sliding gauge.

2450 M. Straatsma and H. Middelkoop
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3.3 Airborne laser scanning data

The laser data were acquired by Fugro-Inpark using the FLI-MAP II system

mounted on a helicopter (Huising and Gomes Pereira 1998, Baltsavias 1999a). FLI-

MAP, fast laser imaging and mapping airborne platform, is a scanning laser range

finder combined with a dGPS and an inertial navigation system for positioning. An

overview of the laser scanning technique used is given by Wehr and Lohr (1999).

FLI-MAP has an additional option to change the gain setting. The gain is the

amount of amplification of the return signal before it is converted to a digital signal.

Surveyors may increase the gain to compensate for the declining emission of energy

due to ageing of the laser diode.

Table 1 summarizes the characteristics of the three laser scanning campaigns and

the locations are shown in figure 1. The laser data collected in 2001 in the ‘Duursche

Waarden’ and the ‘Afferdensche en Deestse Waarden’ floodplains is referred to as

the ‘DWADW’ dataset. Between 2001 and 2003, Fugro-Inpark added a second laser

range finder to FLI-MAP, resulting in a doubling of the data collection rate and a

re-orientation of the scanners. Instead of one nadir looking scanner, the two

scanners were facing 7u forward and backwards to decrease the number of

Figure 1. Location of the study sites and field plots.

Extracting structural characteristics of herbaceous floodplain vegetation 2451
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occlusions in built-up areas. With the new FLI-MAP configuration two datasets

were collected in the ‘Gamerense Waard’ floodplain in 2003. One was acquired from

a height of about 80 m and with normal gain setting of the receiver, resulting in the

‘GWhigh’ dataset, the second from a minimum height of 55 m and with the

maximum gain, called the ‘GWlow’ dataset. The GWhigh dataset covers the entire

GW floodplain, while each flight line was flown twice to increase the point density

resulting in a point density of 75 points m22. The GWlow dataset only covers 10

field plots (figure 1). The three datasets enable the evaluation of the resulting

regression equations to estimate vegetation height, which are influenced by the

different flight parameters (table 1).

3.4 DTM extraction and labelling

For the determination of the vegetation height, the effect of the undulations of the

terrain should be eliminated. This can be done by constructing a digital terrain

model (DTM) based on points that are expected to represent the ground. This is

the common practice, as reported in most literature. Sithole and Vosselman (2004)

give an overview of eight different DTM extraction methods. They conclude

that all methods perform well in relatively flat terrain such as lowland river

floodplains.

3.4.1 DTM filtering. For this study, only the laser points that were located inside

the field plots were considered. For each plot, a DTM was constructed using

iterative residual analysis based on a simplified version of the method of Kraus

and Pfeifer (1998). In each step, a surface was computed as a local second order

trend surface in a moving window. The window radius was 1.5 m to ensure enough

points are available for a robust fit. A larger window would lead to a loss of detail.

The residual distance to this surface was computed for each point. Points with

positive residuals are likely to be vegetation points. Since the range of values for an

unvegetated, flat surface was computed and proved to be approximately 30 cm, a

simple weight function was applied to compute the surface in the next iteration:

points with an residual value of more than 15 cm were excluded from further

analysis in the DTM processing. With the remaining points a new DTM surface

was computed. Iterations were continued until all points had residuals less

than 15 cm. The final DTM was a smooth surface running through the middle of

these ground points. Heights relative to the DTM were used in subsequent

computations.

3.4.2 Vegetation labeling. In a second step, a detailed study was carried out to

decide which points should be labelled as vegetation. Three different methods were

evaluated: (1) a threshold method; (2) an inflection method; and (3) a Gaussian

method. The first method is based on a fixed threshold value above the DTM; the

Table 1. Metadata for the three laser scanning campaigns.

Acquisition
time

Floodplain
location

Scan
angle

Number
of sensors

Sensor
age

Flying
height Gain

Point
density

Flight
strips

March 2001 DWADW ¡30u 1 old 80 m 100% 12 Single
March 2003a GWhigh ¡30u 2 new 80 m 80% 75 Double
March 2003b GWlow ¡30u 2 new 55 m 100% 60 Single

2452 M. Straatsma and H. Middelkoop
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other two are based on histogram analysis of heights above the DTM. For the

threshold method, we used 15 cm above the DTM as a threshold (figure 2a), similar

to the DTM filtering setting.

For the second and third method laser points were binned in 2 cm vertical bins.

Narrower bin intervals led to very spiky histograms, and wider intervals to a loss

of detail. The vertical point distribution was considered as a combination of a

noise distribution of ground points and a uniform distribution of vegetation

points. The inflection method finds the point of maximum concave-up curvature

in the upper limb of the histogram, the so-called inflection point. The rationale

behind the selection of this point as a threshold value is that the sum of a noise

distribution of the ground points and the uniform distribution of the vegetation

points gives a strong concave up curvature. Any point that lies above the

inflection point value is labelled as a vegetation point, all points below are ground

points. To find the inflection point, a Harris function was fitted through the upper

part of the histogram for each field plot (figure 2b). The Harris function is defined

as:

y hð Þ~ azbhcð Þ{1 ð1Þ

where y(h) is the frequency of occurrence in a bin at height h. Parameters a, b and

c are estimated from a least squares fit using a minimum of 15 bins to ensure

stability of the fit. The inflection point was obtained by determining the height at

which the second derivative of the Harris function reaches the maximum value.

The height of the inflection point in the example is 0.09 m (figure 2b).

The Gaussian method fits a Gaussian curve to the histogram. The Gauss curve is

defined as:

p hð Þ~ 2psð Þ{0:5exp {
1

2

h{m

s

� �2
 !

ð2Þ

where p(h) is the frequency of noise occurrence at height h, m is the mean and s is the

standard deviation. Fitting the Gauss curve boils down to finding the mean and

Figure 2. Labelling of vegetation point (black bars) and ground points (grey bars); (a)
threshold value of 0.15 m; (b) inflection point; and (c) difference between Gaussian fit and
point distribution.

Extracting structural characteristics of herbaceous floodplain vegetation 2453



D
ow

nl
oa

de
d 

By
: [

St
ra

at
sm

a,
 M

.] 
At

: 0
8:

16
 3

0 
M

ay
 2

00
7 

standard deviation of the ground points. The mean of all points in the plot, however,

also considers the vegetation points. Therefore, we used the mode of the distribution

instead of the mean to estimate m. The disadvantage of the mode is that the data

have to be binned, which introduces a dependence on the choice of the bin

boundaries. Moreover, the mode can be undetermined. To counteract this effect we

used the weighted mode, the average of the seven most frequent values in the point

distribution, weighed by frequency. The standard deviation was based on the points

lower than the weighted mode using the 15.9 and 25 percentiles. These two standard

deviations were averaged to derive the final standard deviation. The Gauss curve

was then scaled by the product of twice the number of observations below the

weighted mode and the bin width (figure 2c). The difference between the histogram

values and the fitted Gauss curve in the range above one standard deviation above

the mode provided the number of points per bin that were assumed to represent

vegetation. In each bin, points were labelled randomly as vegetation up to the

predicted number of vegetation points. This ensured a spatially random distribution

of the vegetation points.

3.5 Relative point height distribution and comparison with field data

The three methods, described in the previous section, result in three height

distributions of vegetation points for each plot. With respect to predicting

the vegetation height, each point distribution was described by 21 different

statistics:

N central tendency: mean, median, mode;

N variability: standard deviation and variance;

N shape: skewness and kurtosis;

N percentiles: D10, D20, …, D100 + D95, D96, D97, D98, D99.

The observed vegetation heights in the field were subsequently compared with

these statistics using correlation as an indicator of the strength of the relation.

Forward stepwise linear regression was subsequently carried out to determine the

strongest predictors (Wonnacott and Wonnacott 1990). The effects of gain setting

and flying height were tested using two statistical tests; a t-test on differences in

means and a paired sample t-test of the D95 percentiles of the GWhigh and GWlow

data set. Samples could be paired for these datasets since the same reference plots

were used. To gain insight in the effect of laser diode age and the flight parameters,

the slopes of the regression models for vegetation height were compared using a

single percentile as a regressor using three Student’s t-tests.

Vegetation density was predicted using the percentage index (PI), which computes

the percentage of laser hits that fall within the height range of the vegetation (h1 to

h2):

PIh1{h2
~

1

h2{h1

�
Nh1{h2

Ntot
ð3Þ

in which Nh12h2
is the number of vegetation points between height 1 and 2 above the

ground surface, Ntot is the total number of points in the field plot including

vegetation points and ground surface points. The height interval for PI is equal to

the height of the vegetation. The first term in the equation is added, because higher

vegetation would increase Nh12h2
, but does not necesserily increase the vegetation

2454 M. Straatsma and H. Middelkoop
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density. Ideally, h1 should be set to zero, and h2 to the maximum height of the

vegetation. However, h1 should not include noise of the ground surface. Therefore

we chose the lower limit of the vegetation point height distribution as a minimum

value.

4. Results

4.1 Field measurements of vegetation height and density

Vegetation height in the 42 sample plots ranged from 0.26 to 1.66 m. Vegetation

density varied between 0.0003 and 0.72 m2 m23. Table 2 gives the full list of the data

collected in the field plots.

4.2 Estimation of vegetation height and density from laser data

Figure 3 shows a three-dimensional scatter plot of the laser scanning representa-

tion of the herbaceous vegetation shown on the photograph. The laser points in

this image were labelled using the inflection method. For each plot, the three

different labelling methods were applied, threshold, inflection point and Gaussian

fit, which resulted in three vegetation point distributions per plot. Each

distribution was described by the 21 laser-derived statistics and the PI parameter.

For each individual dataset (DWADW, GWhigh, GWlow), the correlations

between the field vegetation heights and the laser statistics were computed. The

average correlation per labelling method and per laser-derived statistics is shown

Table 2. Field measurements of vegetation height and density.

Floodplain Plot no. Hvb Dvc Floodplaina Plot no. Hvb Dvc

GW 1 0.69 0.12 GW 35 0.59 0.046
GW 3 0.55 0.088 GW 36 0.91 0.084
GW 7 0.99 0.13 GW 37 0.81 0.034
GW 9 0.66 0.113 GW 39 0.57 0.048
GW 10 0.48 0.015 GW 41 1.66 0.015
GW 11 0.44 0.22 GW 42 0.43 0.065
GW 12 0.77 0.35 GW 45 0.38 0.025
GW 13 0.50 0.082 GW 47 0.30 0.020
GW 15 0.38 0.070
GW 16 0.84 0.16 ADW 21 1.34 0.20
GW 17 0.69 0.091 ADW 22 0.61 0.17
GW 18 0.70 0.077 ADW 23 0.76 0.72
GW 19 1.18 0.12 ADW 31 0.42 0.037
GW 20 1.49 0.15 ADW 32 0.38 0.0054
GW 23 0.26 0.11 ADW 33 0.30 0.027
GW 24 0.84 0.34
GW 26 0.73 0.29 DW 21 0.72 0.065
GW 27 0.90 0.067 DW 22 0.70 0.049
GW 29 0.47 0.025 DW 23 0.75 0.0003
GW 31 0.47 0.016 DW 31 0.39 0.011
GW 32 0.52 0.018 DW 32 0.47 0.0020
GW 33 0.71 0.060 DW 33 0.49 0.032

aGW5‘‘Gamerense Waard’’ floodplain; ADW5‘‘Afferden en Deestse Waarden’’ floodplain;
DW5‘‘Duursche Waarden’’ floodplain.
bHv5vegetation height (m).
cDv5vegetation density (m2 m23).

Extracting structural characteristics of herbaceous floodplain vegetation 2455
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Figure 3. Three-dimensional laser data scatter plot of the herbaceous vegetation on the
picture. Vegetation points depicted in grey, ground points in black

Figure 4. Effect of point labelling methods on the strength of correlation between laser-
derived statistics and field vegetation heights. Dx5X percentile of the vegetation points;
cv5coefficient of variation; sk5skewness; kurt5kurtosis; var5variance; sd5standard
deviation.

2456 M. Straatsma and H. Middelkoop
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in figure 4. The following parameters showed the highest correlations: (1) D30 for

the threshold method (r50.72); (2) D90 to D98 plus the standard deviation and

variance for the inflection method (r.0.85); and (3) D70 for the Gaussian fit

(r50.70).

The parameter with the highest correlation was chosen for vegetation height

prediction for each labelling method. For the inflection method, a few parameters

showed a high correlation. The 95 percentile was selected to maintain congruency in

predictors even though the standard deviation and the variance showed a marginally

better correlation coefficient. Figure 5 shows nine scatter plots depicting the

measured vegetation heights vs the predicted heights based on the selected laser

percentiles. Forward stepwise regression was carried out to select the best regression

model, starting with the selected percentile (D30, D95, and D70 for the threshold,

inflection and Gaussian method respectively). This did not result in the selection of

any additional parameters for any of the regression models, due to multicollinearity

constrictions. Table 3 summarizes the regressions.

Results of the prediction of vegetation density using the PI are shown as scatter

plots (figure 6). The threshold and Gaussian method show a positive relation with

vegetation density (R250.51 and 0.49, respectively). Conversely, prediction based on

the inflection labelling shows a weak negative relation (R250.09). Table 4

summarizes the equations.

Figure 5. Scatter plots of predictions of vegetation height per dataset using three different
point labelling methods: (a), (b) and (c) threshold method; (d), (e) and (f) inflection method;
(g), (h) and (i) Gaussian method

Extracting structural characteristics of herbaceous floodplain vegetation 2457
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4.3 Effect of point density

To investigate the effect of varying the point density on the estimation of vegetation

height and density, the analyses were repeated for the GWlow dataset that was

progressively thinned out. The original point density of 60 points m22 was step-wise

reduced to create 12 different datasets with 50, 40, 30, 20, 15, 10, 8, 6, 4, 2, 1 and 0.5

points m22. Point density was reduced by omitting data points at regular intervals

from the original dataset, which was in chronological order of data aquisition. This

mimics the spatial distribution that would be obtained from a higher flying speed or

Table 3. Regression equations for vegetation height.

Labelling
method Dataset Regression equation R2 RSE (m)a

Threshold
DWADW Hv517.20D3022.45 0.58 0.17
GWhigh Hv510.57D3021.26 0.41 0.24
GWlow Hv56.98D3020.83 0.57 0.21

Inflection
DWADW Hv52.51D95 + 0.11 0.76 0.13
GWhigh Hv51.47D95 + 0.28 0.74 0.16
GWlow Hv51.06D95 + 0.40 0.88 0.11

Gaussian
DWADW Hv55.13D7020.39 0.37 0.21
GWhigh Hv52.67D70 + 0.02 0.46 0.23
GWlow Hv51.80D70 + 0.19 0.65 0.19

a Residual standard error.

Figure 6. Scatter plots of predictions of vegetation density per dataset using three different
point labelling methods: (a) threshold method; (b) inflection method; and (c) Gaussian
method.

Table 4. Regression equations for vegetation density using three different methods.

Regression equation R2 RSE (m21)a

Threshold Dv51.18PI + 0.03 0.51 0.08
Inflection Dv520.13PI + 0.14 0.09 0.11
Gaussian Dv51.16PI + 0.01 0.49 0.08

a Residual standard error.

2458 M. Straatsma and H. Middelkoop



D
ow

nl
oa

de
d 

By
: [

St
ra

at
sm

a,
 M

.] 
At

: 0
8:

16
 3

0 
M

ay
 2

00
7 

altitude, with an equal footprint size. For each of the thinned datasets, the D95

percentile was calculated using the inflection labelling method and subsequently

correlated with observed vegetation height. The PI was based on the threshold

method and correlated to the vegetation density. No correlation could be computed

for the vegetation density for point densities lower than 6 points m22 as no

vegetations points occurred at some plots. Figure 7 shows the effect of decreasing

point density on the correlation coefficient between the D95 percentile of the laser

data and vegetation height plus the correlation between the PI and vegetation

density as measured in the field. In general, correlations obtained using low point

densities are lower (r50.85 for vegetation height), but remarkably, correlations do

not change for point densities of 15 points m22 or higher. Apparently, a point

density of 15 points m22 is most efficient for vegetation height and vegetation

density mapping in this study area and for this size of field plots.

4.4 Effect of flying altitude and gain setting

The GWhigh and GWlow laser datasets share 10 field plots, which allowed to

compare the combined effect of lower flying altitude and increased the gain setting

(cf. table 1). The following tests were performed using the inflection labelling

method and the D95 percentile. A t-test on differences in means of both data sets

showed no significant difference between the D95 percentiles of the GWhigh and

GWlow dataset (a590%, p50.54). These results were in accordance with

expectations, since the difference in the average value of the D95 percentiles was

expected to be low relative to the range of vegetation heights. In contrast, a paired

sample t-test did reveal significant differences between the height of the D95

percentile of the GWhigh and GWlow datasets (a590%, p50.08). These results

indicate that a low flying height, combined with a high gain, improves detection of

the top of the vegetation.

The slope of the regression lines between laser data and observed vegetation

height also indicates the ability of the laser signal to detect the top of the vegetation.

A steeper slope indicates a poorer detection of the vegetation top. Figure 5 shows the

regression lines for the DWADW, GWhigh and the GWlow data sets. The slope of

the DWADW is steepest, and the slope of the GWlow dataset is mildest. Three

Student’s t-tests were carried out to determine whether there were significant

differences between the slopes of the regression lines based on vegetation labelling

using the inflection method. All differences in slope were significant at the 95% level

of confidence. Table 5 gives the significance levels of the three t-tests.

Figure 7. Effect of point density on correlation strength for vegetation height (D95 in #)
and density (PI in D). No variation in correlation is present at point densities higher than 15
points m22.
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5. Discussion

5.1 DTM and point labelling

The DTMs for all plots, created using the method of Kraus and Pfeifer (1998), did

not show any outliers, and created a smooth surface. Based on visual inspection,

the DTMs of the plots seemed very typical of the gently undulating topography

observed in the field. However, as Kraus and Pfeifer (1998) stated, it will smooth

out terrain jumps, such as erosive river banks. Sithole and Vosselman (2004) also

note in their filtering algorithm test that discontinuities in the terrain surface

poses one of the largest problems in point cloud filtering. In case floodplain-wide

mapping of vegetation structure is needed, this effect should be taken into

account. In this research, laser points from a single dataset, but from different

flight strips were combined into one dataset per plot. Height differences between

flight strips were checked visually for a few plots, but no systematic errors were

detected. Moreover, the combined point distributions did not show a bimodal

distribution for any plot. Still, it is advised to create a DTM based on individual

flight strips.

Point labelling was done based on the heights relative to the DTM. The three

different methods show a varying level of flexibility with respect to discrimination

between vegetation and ground points. The threshold method, with the threshold set

to 15 cm above the DTM is the most rigid, and identical to the method the DTM

was created. It assumes that no vegetation points are present below 15 cm above the

DTM. The advantage with this method is that point labelling is possible on a per-

point base. The other two methods need a histogram of the point distribution. Both

assume that the peak in the point distribution represents the ground surface, an

assumption that is not violated in case of herbaceous floodplain vegetation in winter

condition. The inflection method defines a threshold value based on the shape of the

height histogram as characterized by the Harris function. This function has three fit

parameters [a, b, c; equation (1)], which introduces flexibility with respect to height

and width of the point distribution. The height of the inflection point was in all cases

lower than 15 cm, and typically around 5 cm. The assumption that underlies this

method, is that the ground and vegetation points together generate a point of

maximum inflection in the histogram. The disadvantage of this method is that it will

also label points as vegetation at sites where no vegetation occurs. The Gaussian

method assumes that the ground points show a Gaussian distribution, and labels

points as vegetation whenever their frequency in a certain bin exceeds the frequency

of the Gaussian distribution. The Gaussian curve [equation (2)] in our case depends

on the standard deviation and the weighted mode of the ground points. The number

of points labelled as vegetation differ per method. The threshold method labels least

points as vegetation, the inflection method most, which is related to the percentile

used in the regressions. For example, the inflection method labels most points as

vegetation, and therefore a high percentile, D95, correlates best with vegetation

height.

Table 5. Confidence levels of Student’s t-tests on difference in slopes of regression lines.

DWADW GWhigh GWhigh

GWhigh 99.9
GWlow 99.9 95
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5.2 Vegetation height and density estimation

Vegetation height of herbaceous floodplain vegetation can be predicted reliably at

the plot level using high-density first-pulse airborne laser scanning data (R250.74–

0.88 using the inflection labelling method), while estimation of vegetation density is

less accurate (R250.51 using the threshold method). The inflection method shows

the best predictions of vegetation height for all three datasets (figure 5). The

threshold and the Gaussian method in general selected fewer points, and are

therefore more sensitive to outliers in the height distribution. These outliers might

result from the relatively low spatial accuracy of the plot boundaries, which was

about 5 m. This could have led to the inclusion of laser hits related to other

vegetation types. Conversely, vegetation density was predicted better by the

threshold and Gaussian method (figure 6). The PI relates point density of vegetation

points to hydrodynamic vegetation density. The inflection method labels more

points as vegetation than the two other methods, but the PI values did not correlate

well with field reference values, and are even negatively correlated. This could be

caused by the height at which the vegetation density was measured in the field,

which was at least at 13 cm above the ground surface (half the minimum vegetation

height). This is well above a typical inflection height of 5 cm. The threshold method

performed marginally better than the Gaussian method. The inverse dependence of

PI on h2 minus h1 [equation (3)] could lead to unrealistic values in case h2 nears or

equals h1. This should not be a problem for vegetation higher than 25 cm as in this

study.

5.3 Comparison with other research

In this paper we predicted vegetation height and density of low herbaceous

vegetation in winter condition, consisting of open vegetation that generates a weak

return. Nevertheless, the quality of prediction of vegetation height in this study is

similar to the results obtained in regression models for forests: Means et al. (1999),

Naesset (2002) and Naesset and Bjerknes (2001) reported regression models

explaining 74–95% of the variance in the field reference data of vegetation height.

Given the small range in height of herbaceous floodplain vegetation, it is remarkable

that the results obtained in our study are of similar quality as those obtained in

forestry surveys.

Davenport et al. (2000), Cobby et al. (2001), and Hopkinson et al. (2004) studied

vegetation height of low vegetation under leaf-on condition. However, in our study,

we predicted vegetation height of herbs in senescence. This means that the

vegetation signal is much weaker, due to the smaller plant surface. Still, the

predictive quality of vegetation height found in this study is comparable to

the studies on low vegetation under leaf-on condition. The differences found in the

regression equations from this study and previous studies (Davenport et al. 2000,

Cobby et al. 2001, Hopkinson 2004) demonstrate that portability of the derived

relations is low. It points to the need for future field reference data and more

physical understanding of these relations.

No studies on vegetation density of low vegetation are known to the authors. We

chose to relate the vegetation density to the percentage index (R250.51 using the

threshold method) because of the rationale that denser and higher vegetation should

result in more vegetation points in the laser datasets. Although prediction results

could be somewhat increased by including percentiles as additional regressors, we

Extracting structural characteristics of herbaceous floodplain vegetation 2461
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chose not to as percentiles refer to height. Laser-derived parameters from forestry

studies that relate to vegetation density, such as stem number and stem diameter
explained 39–85% of the total variance (Lefsky et al. 1999, Naesset 2002). Similar to

our study, forestry studies obtained better results for vegetation height than for

parameters related to vegetation density.

5.4 Effects of flight parameters; flying height, laser diode age and gain setting

Detection of vegetation by laser scanning depends on many factors related to the

minimum detectable object (Baltsavias 1999b). Flight parameters for this study are
given in table 1. The results showed that airborne laser scanning is well able to

predict the height of senescent herbaceous vegetation, in a height range order of 0.2–

2 m (table 3). The average stalk diameter of 4 mm of the herbaceous floodplain

vegetation apparently exceeds the minimum detectable object size.

The DWADW and GWhigh data sets yielded different slopes of the regression

models to estimate vegetation height, which was significant at the 99.9 confidence

level (table 5). The reason for this difference might be the age of the laser diode age,

the calibration settings or the larger average incidence angle in the GWhigh dataset,

due to the reorientation of the laser scanners between 2001 and 2003. The slope of

the GWlow dataset was significantly steeper than for the GWhigh dataset. The

paired sample t-test also showed significant differences between the GWhigh and

GWlow datasets. Remarkably, the increase in the regression slope of the GWhigh

and GWlow dataset was significant even though the field and laser data were

collected on the same day. The reason for the difference in slope and 95 percentile

must therefore be the combination of the reduced flying height and increased gain

setting for the GWlow dataset. Together these effects result in a larger amount of

energy reaching the analogue to digital converter in the laser scanner from an

equally reflective object. Consequently, small objects are detected better, and the

regression slopes are lower. With these datasets, it is impossible to assess the

influence of the individual parameters. However, as long as the parameters

influencing the regression equations are unclear, field reference data will remain

necessary to establish the regressions.

Naesset (2004) concluded for spruce and pine forest that the effect of flying

altitude is marginal and that the flying altitude can be increased by 60% without any

serious effect on the estimated stand properties. Nilsson (1996) mentions that

optimal laser footprint size for forest surveys changes only with acquisition season.

These conclusions for forests are contrary to our conclusions for herbaceous

floodplain vegetation. The reason for this difference might lie in the shape and

structural properties of the vegetation involved. Trees are larger and Naessets data

were collected in leaf-on conditions, which makes detectability of trees better than

thin floodplain herbs, which seem at the edge of detectability.

The remaining unexplained variance might result from measurement uncertainties

or location errors in the field data. Although the field plots comprised 200 m2 of

homogeneous vegetation each, a 5 m positional error in the location of the plots may

influence the height distribution due to spatial heterogeneity of floodplain

vegetation. Another source of unexplained variance might be the varying incidence

angle resulting from the scanning motion of the laser scanner. The average incidence

angle per plot will vary since the plots might be positioned differently with respect to

the flight lines. This results in two opposite effects related to the detectability of the

vegetation, which change with varying incidence angle: (1) the nadir facing point will

2462 M. Straatsma and H. Middelkoop



D
ow

nl
oa

de
d 

By
: [

St
ra

at
sm

a,
 M

.] 
At

: 0
8:

16
 3

0 
M

ay
 2

00
7 

have a smaller footprint and therefore a higher amount of energy per unit area, but

(2) the vegetation will be hit vertically resulting in a smaller reflective surface in the

direction of the pulse. The combined effect on the detectability will depend on the

details of the plant structure. Full waveform laser data combined with the incidence

angle could give more insight in this issue.

5.5 Point density

For point densities lower than 15 points m22, the correlation between laser data and

field reference data becomes unstable. This is the result of two effects: (1) the

accuracy of the DTM decreases due to a less accurate representation of small height

variations in the floodplain surface; and (2) there are fewer points to determine the

histogram to separate ground points from vegetation points, which renders the

labelling more noisy. A solution would be to use a larger area for the determination

of the histogram, but this larger area should not include shrubs or trees.

5.6 Computation of hydrodynamic roughness

The relations to derive vegetation height and density of non-woody herbaceous

vegetation from ALS data could be computed in a moving window or per grid cell of

the hydrodynamic model. A few issues arise with the computation of hydrodynamic

roughness based on ALS data. Firstly, the relations do not hold for other land cover

classes, and should therefore not be applied to other classes. Moreover, single trees

within the herbaceous vegetation should be delineated separately, see Morsdorf et

al. (2004) for details). Secondly, some hydrodynamic models need additional

information on flexural rigidity, stem spacing, or bottom roughness (Kouwen and

Li 1980, Klopstra et al. 1997, Baptist 2005), which cannot be extracted from ALS

data directly. However, the product of stem density and flexural rigidity has heen

correlated with vegetation height for both growing and dormant grass up to 1 m

vegetation height (Kouwen 1988). This relation is not valid for herbaceous

vegetation. The bottom roughness, which has a minor effect on the water levels,

should be derived from a lookup table. Baptist (2005) provides a model wich can be

applied directly using vegetation height and density from ALS data, except for the

bottom roughness.

6. Conclusions

With airborne laser scanning, a new tool has become available to quantify

vegetation height and density of herbaceous vegetation in senescence, which enables

the computation of roughness values for hydrodynamic modelling. Laser scanning

provides detailed and accurate estimates of vegetation height and to a lesser extent

of vegetation density. Three different vegetation labelling methods were evaluated.

The threshold method uses a fixed height above the DTM, the inflection method

and the Gaussian method analyse the histogram of the height distribution. The

inflection method uses the height above the DTM with the strongest concave-up

curvature as a threshold. The Gaussian method explicitly takes the noise of the

ground points into account by fitting a Gaussian curve to the ground points. The

threshold and the Gaussian method selected fewer points, and are therefore more

sensitive to outliers in the height distribution. Vegetation height estimation was most

successful using the inflection method for point labelling. The 95 percentile proved

the best predictor (R250.74–0.88). However, regression models differed significantly
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for datasets that were acquired with different flying height, gain, and laser diode age.

The validity range for vegetation height is the height range order of 0.2–2 m.

Vegetation density was predicted using the PI, which relates vegetation point density

to hydrodynamic vegetation density. The PI based on the threshold (R250.51) and

Gaussian (R250.49) labelling method proved better estimators of vegetation density

than the PI based on the inflection method (R250.09). This might be caused by

difference in reference heights between field and laser data. The validity range for

vegetation density is in the order of 0.001–0.7 m2 m23.

No increase in predictive quality is gained from point densities larger than 15

points m22. A lower point density might even be possible when larger areas of

homogeneous vegetation are present in the study area. Because these herbs in winter

are low and thin, the method is sensitive to the combined effect of flying height, gain

setting and age of the laser diode. The common factor in these parameters is that

they influence the amount of energy at the receiving end of the laser scanner. With

increasing energy, the vegetation detection increases too.

We conclude that airborne laser scanning data can be used to map vegetation

height and density of senescent floodplain vegetation for floodplain roughness

parameterization. Field observations of vegetation structure remain, however,

necessary to calibrate the regression models.
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