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Abstract 

Land cover maps provide essential input data for a sequence of models used to assess 

the hydromorphological and ecological aspects of lowland rivers and their 

floodplains, but the effect of land cover classification errors on these models has not 

been quantified in an integrated way. Our main objective is to assess the uncertainty 

in hydromorphological and ecological modeling of a large lowland river depending on 

the classification accuracy (CA) of a land cover map.  We quantified the uncertainty 

for the three distributaries of the river Rhine in The Netherlands with respect to four 

aspects: (1) hydrodynamics, (2) annual average suspended sediment deposition, (3) 

ecotoxicological hazard, and (4) floodplain importance for desired habitat types and 

species. We carried out two Monte Carlo (n=15) analyses: one at a 69% CA, the other 

at 95% CA. Subsequently we ran all four models with the 30 realizations. 

The error in the current land cover map gave an uncertainty in water levels of 

up to 19 cm. Overbank sediment deposition varied up to 100% in the area bordering 

the main channel, but when aggregated to the whole study area, the variation in 

sediment trapping efficiency was negligible. The ecotoxicological effects, indicated 

by the fraction of little owl habitat with a daily cadmium intake exceeding a toxicity 
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threshold of 148 µg d-1, varied between 54 and 60%, aggregated over the distributary. 

The normalized spread of floodplain importance for species varied between 10 and 

15%. Increasing the classification accuracy to 95% significantly lowered the 

uncertainty of all models applied. Compared to landscaping measures, the effects due 

to the uncertainty in the land cover map are of the same order of magnitude. Given 

high financial costs of these landscaping measures, increasing the classification 

accuracy of land cover maps is a prerequisite for improving the assessment of the 

efficiency of landscaping measures.  

 

Key words: biodiversity; ecotoxicological hazards; floodplain vegetation; 

hydrodynamic uncertainty; Monte Carlo analysis; River Rhine; special areas of nature 

conservation; suspended sediment deposition 

 

1. Introduction 

Over the past decades, much effort has been put into the development of models to 

quantify the impacts of hydrological changes and landscaping measures on flood risk 

and floodplain ecology. Hydrodynamic models provide estimates of peak water levels 

and sediment deposition (RWS, 2007; Bates et al., 2010), while ecological models 

characterize habitat suitability, biodiversity (Lenders et al., 2001; Schipper et al., 

2008a) and ecosystem services (Nelson et al., 2009). Such models are routinely used 

in environmental impact assessments of floodplain restoration projects with 

landscaping measures that aim to reduce the flood risk and improve the ecological 

quality of the river area 

 A land cover map provides essential input for both hydrodynamic and 

ecological models. In hydrodynamic modeling, land cover maps are commonly used 

to parameterize floodplain roughness by assigning a roughness coefficient to each 

land cover type (Chow, 1959). In the context of ecological modeling, land cover maps 

provide essential information to define and delineate habitat (e.g., Schipper et al. 

2008a). Establishing accurate land cover maps of large floodplain areas would require 

extensive field survey, and therefore remote sensing data are used for this purpose. 

Over the past decennia, numerous land cover classification schemes have been 

developed and tested by integrating airborne and satellite imagery, multi-temporal 

images, different data products (Foody, 2002; Geerling et al., 2007; Antonarakis et al., 

2008; Straatsma and Baptist, 2008), or a-priori knowledge (Janssen and Middelkoop, 
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1992). Typical overall classification accuracies reported in these studies ranged from 

70 to 90%.  

 Several studies have addressed uncertainties in hydrodynamic (Aronica et al., 

1998; Pappenberger et al., 2005; Beven, 2006; Apel et al., 2008) and ecological 

modeling (Elith et al., 2002; Regan et al., 2002; De Nooij et al., 2006). However, the 

impact of land cover classification errors on hydrodynamic and ecological model 

output has rarely been quantified. Straatsma and Huthoff (2011) estimated the effect 

of different error sources in floodplain roughness parameterization on simulated flood 

water levels. They concluded that land cover classification accuracy (CA) is the 

dominant error source for distributed floodplain roughness, leading to uncertainties in 

simulated water levels up to 0.27 m during peak discharges in the Lower Rhine. To 

our knowledge, effects of land cover CA on other hydrodynamic or ecological models 

have not yet been quantified.  

 Our main objective was to assess the uncertainty in hydromorphological and 

ecological modeling of a lowland river due to classification errors in the land cover 

map used in an integrated way. Land cover classification error as considered here 

should be characterized as “ambiguity”, i.e. the degree of confusion among different 

candidate classes to be assigned to a landscape unit on the map. We quantified this 

uncertainty with respect to four aspects relevant for hydromorphological and 

ecological functioning: (1) hydrodynamics, (2) overbank sediment deposition, (3) 

ecotoxicological hazard, and (4) floodplain importance for desired habitat types and 

species. Using a suite of quantitative models parameterized for the distributaries of 

the river Rhine in The Netherlands, we assessed how the model output depended on 

the classification accuracy of the input land cover maps. Using Monte Carlo re-

sampling, we created an ensemble of 15 equally valid land cover maps for the 

floodplains, based on the CA of 69%, and we generated a second ensemble of 15 

maps based on a 95% CA. Subsequently, we ran all four models with the 30 land 

cover map realizations as input. 

 

2 Study area 

In this study, we considered the distributaries of the river Rhine in The Netherlands, 

excluding the estuary (Fig. 1). At the Dutch-German border, the river Rhine has an 

average discharge of 2250 m
3
s

-1
, draining a catchment area of 165,000 km

2
 

(Middelkoop and Van Haselen, 1999). Just downstream of the border, the river Rhine 
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splits into three main distributaries, i.e., the Waal, the Nederrijn and the IJssel (Fig. 

1), which account for approximately two thirds, two ninths and one ninth of the total 

Rhine discharge, respectively. The three distributaries have an average water gradient 

of 10 cm per km. The total embanked area amounts to 440 km
2
; the floodplain area 

comprises 320 km
2
 out of which 48 km

2
 consists of lakes and side channels. About 62 

% of the total embanked area (275 km
2
) is vegetated. The cross-sectional width 

between the primary embankments varies between 0.5 and 2.6 km. Design water 

levels are based on an accepted probability of 1/1250 y
-1

 of flooding, which is at 

present associated with a peak discharge of 16,000 m
3
 s

-1
 for the Rhine at the German-

Dutch border. Currently, the flood protection level of the Rhine branches in the 

Netherlands corresponds to a discharge of 15,000 m
3
 s

-1
. As part of the “Room for the 

River” project, which is to be finalized by 2015 (RvR, 2011), 24 landscaping 

measures are implemented along the lower Rhine distributaries to safely convey a 

discharge of 16,000 m
3
 s

-1
. The average suspended sediment deposition on the lower 

Rhine floodplain amounts to about 0.39 Mton per year, which is an average 

accumulation rate of 1.72 kg m
-2

 y
-1

 for all river distributaries combined. This equals 

about 13% of the total suspended sediment load that enters the river system from 

Germany (Asselman and van Wijngaarden, 2002; Middelkoop et al., 2010). Over the 

past century, large amounts of sediment-bound trace metals have been deposited on 

the lowland river Rhine floodplain (Middelkoop, 2000). Through uptake in vegetation 

and soil-dwelling invertebrates, these metals may enter ecological networks, and 

potentially induce toxic effects in the organisms exposed. Although the effects of 

metal exposure are mostly subordinate to influences of other ecosystem stressors, 

notably flooding (Schipper et al., 2008b; Schipper et al., 2011), toxicological hazards 

cannot be excluded for certain susceptible species (Van den Brink et al., 2003; 

Schipper et al., 2008a). 

 The Dutch parts of the river Rhine are almost entirely protected by the 

European Union Habitats directive (Council directive 92/43/EEC) and Birds directive 

(Council directive 79/409/EEC). Each distributary has specific protection goals in 

terms of carrying capacity for species and habitat types (Alterra, 2012)  

 

3 Materials and methods 

Here we describe the primary data that we used, the method for generating alternative 

land cover maps and the four models we applied in the uncertainty assessment. 
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3.1 Land cover map 

Land cover was based on a map with ecotopes, which are defined as ‘spatial 

landscape units that are homogeneous as to vegetation structure, succession stage and 

the main abiotic factors that are relevant to plant growth’ (Van der Molen et al., 

2003). This ecotope map provided the land cover used in the models. The map legend 

is based on the national ecotope system of the Dutch main water bodies (Bergwerff et 

al., 2003). This system uses a hierarchic structure of ecotopes based on 

geomorphology and vegetation units, and is further subdivided according to local 

erosion and deposition rates, inundation frequency and land management. The 

ecotope map was based on aerial images collected in 2005 (Houkes, 2007). In 2010, a 

reinterpretation was carried out with respect to brackish environments; we used this 

reinterpreted version for our study to be up to date. A number of classess needed 

recoding to match the map purity table. This affected 5% of the area (Supportive 

information, table 3) 

 The uncertainty in the ecotope map was determined by Knotters and Brus 

(2010) based on 406 field observations of 41 terrestrial ecotopes. They computed the 

map purity, i.e. the percentage of the map area that is correctly classified, and 

summarized the results in a map purity table. The map purity is based on a statistical 

model incorporating the spatial variance of the classification errors, see Lohr (1999) 

for details. The map purity table is similar to the error matrix in classification studies. 

Knotters and Brus (2010) reported a user’s accuracy of 69% based on eight 

aggregated ecotope groups. Three problems were noted with the field data collection: 

(1) The field data comprised point observations, whereas the ecotope map consisted 

of polygons with an average size of 20700 m
2
. In case of multiple observations per 

ecotope, variation of vegetation within the ecotope could result in multiple, different 

classifications of a single polygon. This indicates that ecotopes are not fully 

homogeneous. (2) Ecotopes are determined by inundation frequency, which is hard to 

discern from plant sociological groups in the field. (3) Time lag between aerial image 

aquisition and field data collection. Therefore the field data might not be error free, 

which should be taken into account. Additional quality control is carried out by the 

river manager, but the increase in CA is not known. 
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3.2 Ensemble realizations of the ecotope map 

Alternative realizations of the ecotope map were generated by conditional simulation 

as developed by Straatsma and Huthoff (2011). In this conditional simulation, a new 

ecotope type is assigned to each polygon, conditioned by the classification errors for 

that ecotope type as presented in the map purity table (Straatsma and Alkema 2009), 

which is iterated in the supporting information, table 1. We generated 30 alternative 

realizations of the ecotope map using two classification accuracies at ecotope group 

level. The first simulation comprised an ensemble of 15 realizations based on the 69% 

CA assessed by the field validation (Knotters et al., 2008), which underlies the 

symmetrical map purity table (Straatsma and Alkema, 2009).  

Other studies on land cover classification reported accuracies varying between 

70% and 92%, depending on the level of detail of the field observations (Van der 

Sande et al., 2003; Geerling et al., 2007; Straatsma and Baptist, 2008). We therefore 

chose a 95% CA at ecotope group level to represent an accuracy corresponding with 

the best methods available. As no map purity table existed with a 95% CA at ecotope 

group level, we created one based on the 69% CA map purity table. We decreased the 

off-diagonal values in the map purity table by a factor between 0 and 1. To calibrate 

this factor, the following steps were undertaken: for each line in the matrix, the 

difference between the original off-diagonal values and the new values was added to 

the diagonal value. This led to an increase in the diagonal value and a decrease in the 

off-diagonal values, leading to a new map purity table with a higher overall CA. The 

ecotope map purity matrix was subsequently aggregated into eight ecotope groups for 

which the classification accuracy was computed. The multiplication factor was 

changed step by step until the CA at ecotope group level reached 95%. The map 

purity table with a 95% CA at ecotope group level was used to generate the ensemble 

of 15 alternative ecotope maps with 95% CA (supporting information, table 2).  

 The conditional simulation was carried out following the method of Straatsma 

and Huthoff (Straatsma and Huthoff, 2011) and is summarized below. Each line in the 

map purity table gives the probabilities for alternative classifications of that ecotope 

type. We computed the cumulative probability by summing up the probabilities along 

each row in the map purity table. This is illustrated in Fig. 2, which gives the 

cumulative probabilities for the ecotope type ‘High water free natural grassland’ 

(ecotope number 7). For each polygon in the ecotope map, we drew a random number 

between 0 and 1 from a uniform distribution, and using the cumulative probability we 
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assigned a new ecotope class to each of the polygons (Fig. 2). In the example, the red 

arrow represents a random number of 0.71, which would change the polygon from 

‘High water free natural grassland’ to ‘Natural levee or floodplain production 

grassland’ (ecotope number 25) for the 69% CA, whereas the polygon would maintain 

its class at the 95% CA. For each CA, and for each polygon in the original map, this 

procedure was repeated 15 times, yielding the 69% CA and 95% CA ensembles. Each 

of the 15 maps in each ensemble can be considered as an equally likely realization of 

the original, uncertain ecotope map. As the 15 random numbers were drawn once per 

polygon, i.e. the same numbers were used for both CAs, we ensured that the resulting 

uncertainty in the modeling only reflected the change in classification accuracy and 

not a difference due to drawing new random numbers for each of the two ensembles 

of maps. 

 

3.3 Modeling  

We determined the effects of a 69% and a 95% CA on two hydromorphological and 

two ecological models. Each of the models was run with the 69% CA and 95% CA 

ensembles of ecotope maps, giving for each CA 15 spatially distributed model 

outcomes, except for the biodiversity model, which gave spatially aggregated results.  

 

3.3.1 WAQUA hydrodynamic model 

The WAQUA model is a two-dimensional hydrodynamic model that numerically 

solves the Saint Venant equations using a finite difference method (RWS, 2007). It is 

used by the Dutch Ministry of Infrastructure and Environment for the calculation of 

water levels and discharge distribution in the complex channel and floodplain areas of 

the rivers Rhine and Meuse in The Netherlands (RWS, 2007). For the present study, a 

series of simulations of steady flow in the study area was carried out. The WAQUA 

model that was used for this study is based on a staggered curvilinear grid. Each of 

the 886,861 cells represented a column-shaped volume of water with a variable 

surface area of 700 m
2
 on average. The boundary conditions of the model included the 

river discharge at the upstream boundary and the water level at the downstream 

boundary, which was determined using a rating curve. The main spatial model inputs 

for the WAQUA model were a Digital Terrain Model (DTM), a map with hydraulic 

structures (e.g. groins, embankments), and a roughness map. Roughness maps were 

based on the ecotope map using the Baseline database and software (Hartman and 
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Van den Braak, 2007). The Baseline software reclassifies each ecotope class to a 

roughness class (Table 1) using a lookup table, and assigns vegetation structural 

characteristics. Stage dependent roughness is computed at run time by applying the 

roughness model of Klopstra et al. (1997) 

 We used WAQUA with the 69% and 95% CA ensembles as input, giving 30 

model parameterizations, which were subsequently run at nine stationary discharges 

(3,500 - 4,000 - 5,000 - 6,000 - 7,000 - 8,000 - 10,000 - 12,000 and 16,000 m
3 

s
-1

) at 

the upstream boundary at Emmerich, Germany. At the lowest simulated discharge of 

3,500 m
3
s

-1
, the low-lying floodplains are just inundated. The highest discharge 

corresponds to the current design discharge with a statistical return period of 1,250 

years. The simulation time for the runs was set to three days to stabilize the water 

levels and discharge distribution. Output of the computations consisted of spatially 

distributed values of the Chézy C roughness coefficient, flow velocities, water levels, 

and the discharge distribution over the bifurcation points.  

 

3.3.2 SEDIFLUX model for suspended sediment deposition 

We used the GIS-embedded SEDIFLUX model to calculate the transport and 

deposition of suspended sediment, using the 2D water flow patterns calculated by the 

WAQUA model. This model was developed and tested for floodplain sections along 

the river Rhine by Middelkoop and Van der Perk (1998). For this study we used a 

similar approach as followed by Straatsma et al. (2009) to estimate the average 

deposition rate. For each of the nine discharge levels, the suspended sediment 

concentration at the upper model boundary was established using a sediment rating 

curve derived for the 1970-2006 observation record at the German-Dutch border. The 

main output of the SEDIFLUX-model includes the 2D pattern of sediment deposition 

rate (kg m
-2 

d
-1

) for each discharge level. The average annual deposition (kg m
-2

 y
-1

) 

was subsequently calculated by summing the products of these calculated sediment 

deposition rates for each discharge level and the average annual number of days that 

the corresponding discharge classes occurred in the 1970-2006 period. The output 

consisted of the spatial pattern in the spread of the annual average sediment deposition 

for two classification accuracies. 

 

3.3.4. Ecotoxicological hazards 

Ecotoxicological hazards due to sediment contamination were assessed for the little 
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owl (Athene noctua), which is one of the species potentially affected by trace metals 

in the lowland river Rhine floodplain (Van den Brink et al., 2003; Schipper et al., 

2008a). We defined a simplified food web with three levels: (1) vegetation, beetles, 

earthworms and wild berries, (2) common vole, bank vole, common shrew, and wood 

mouse, and (3) the little owl at the top level (Schipper et al. 2012). Ecotoxicological 

hazards were assessed for those ecotopes providing suitable habitat to the little owl 

and were based on the daily intake of cadmium through contaminated food: 

∑
=

⋅⋅=

jn

i

iji CfDFIDI
1

,        (1) 

where DI = daily intake of cadmium (µg d
-1

), DFI = daily food intake (80 g d
-1

; 

(Schönn et al., 2011), fi = weight fraction of prey type i in the little owl’s diet in 

ecotope j (dimensionless), nj = number of prey types in ecotope j, Ci = cadmium 

concentration of prey type i (µg g
-1

). Dietary fractions fi,j were calculated by adjusting 

initial diet fractions derived from the literature (Supportive information, table 4) 

according to the habitat suitability of the ecotope type for the respective prey items. 

Corrected fractions were rescaled to ensure that they summed to 1:  
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where fi,i = initial fraction (weight-based, dimensionless) of prey type i in the little 

owl’s diet, and HSi,j = habitat suitability of ecotope type j for prey type i, expressed as 

a dimensionless value between 0 and 1. Habitat suitability was calculated based on 

ecotope suitability (ESi,j; Supportive information, table 5) as described in Schipper et 

al. (2008a). Irrespective of habitat suitability, small mammals were absent from areas 

beyond their maximum colonization distance from flood-free areas (Schipper et al. 

2008a), which were defined as locations where the ground surface elevation is higher 

than the water level resulting from a discharge that is exceeded 2 days per year (7200 

m
3
 s

-1
 at Emmerich). Cadmium concentrations Ci in small mammal prey were 

calculated based on their assimilation of cadmium from contaminated first level food 

web items, whereas cadmium concentrations Ci in first-level items were derived from 

soil concentrations with regression equations or bioaccumulation factors (Schipper et 

al. 2008a). Soil cadmium concentrations were derived from a soil quality map of the 

three river distributaries, scale 1:25000 (Hin et al., 2001), representing contaminant 

concentrations in the upper 50 cm of the soil profile. This polygon map consisted of 
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seven classes with cadmium concentrations of 0, 1, 2, 3, 4, 6, and 10 mg kg
-1

 dry 

weight.  

 The daily intake calculations were performed at a 10x10 m spatial resolution. 

To obtain an indication of toxic effects, daily intake values were compared with a 

toxicity threshold of 148 µg cadmium per day (Schipper et al., 2012) Results were 

summarized as the fraction of habitat (i.e., HSlittle owl > 0) with a cadmium DI > 148 µg 

d
-1

. In addition, the results were summarized per river branch by computing the map 

fraction as a function of the number of realizations that exceeded the toxicity 

threshold. For example, 5% of the river IJssel showed seven runs higher than the 

toxicity level. The toxicity consistency was subsequently computed as the map 

fraction that was always above, or always below (n=15, or n=0) the toxicity level. 

 

3.3.5. BIO-SAFE model for biodiversity potential 

BIO-SAFE is a model for quantification of (potential) values of riverine landscapes 

for protected and endangered species, depending on ecotope distribution (potential 

habitat) and ecological and legal status of species and habitat types. De Nooij et al. 

(2006) and Lenders et al. (2001) described the indices used for quantification of 

(potential) values of riverine landscapes and the setup, validation and sensitivity 

analysis of BIO-SAFE. The model was developed for the floodplains of the rivers 

Rhine and Meuse in the Netherlands, Germany, France, Belgium (De Nooij et al., 

2004) and the river Vistula in Poland (Wozniak et al., 2009). For the present study we 

included the specified protection goals in terms of carrying capacity for species and 

habitat types for each distributary, according to European legislation for protection of 

nature areas (Habitats and Birds Directive). For each species and habitat type, the 

Floodplain Importance score (FI) was computed. High FI scores represent a high 

(potential) value of an area for a particular species or habitat type. 

 

4 Results 

The effects of the uncertainties in the land cover maps on the four models are 

presented in this section. The spatial patterns in the uncertainties in hydrodynamics, 

sediment deposition and ecotoxicological hazards are presented in maps (Fig. 3, 4). 

Results are described by the 68% confidence interval for selected model outcomes 

(P84 – P16), equaling the interval between one standard deviation above and below the 

mean in case of a normal distribution. We will refer to this statistic as the spread.  
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Summary statistics were calculated per classification accuracy for the three 

distributaries (Table 2). Details on the model outcomes are given in subsequent 

sections.  

 

4.1 Uncertainty in hydrodynamics 

The spread in water levels occurring at the 16,000 m
3
s

-1
 design discharge varied 

spatially (Fig. 3a-b, 4a-b). A small spread was found for the upstream part of the 

Waal; short sections in the IJssel showed the largest spread. The effect of increased 

CA becomes apparent when comparing part a and b of figures 3 and 4: at a 69% CA, 

the river IJssel showed a spread of up to 19 cm at the design discharge, which was 

reduced to 7 cm at a 95% CA. The Waal (Fig. 4) has a lower fractional discharge over 

the floodplain area than the IJssel, which resulted in a 12 cm spread from a 69% CA 

at the design discharge. Still, an increased CA reduced the maximum spread for the 

Waal to 5 cm (Table 2). The results for the Nederrijn fall in between those obtained 

for the Waal and IJssel. In general, the spread was reduced by approximately 60%, 

depending on the distributary (Table 2). Note that the spread filters out the extremes 

in the variation that was found. The maximum difference in water levels that we 

found was 44 cm in the IJssel. To summarize the spread in the three distributaries at 

different discharge levels, we computed the spread at the river axes at each river 

kilometer for each of the nine stationary discharges (Fig. 5). The spread in water level 

shows a strong linear correlation with the discharge (r = 0.96 - 0.99 for the maximum 

spread per river branch; r = 0.96 - 0.98 for the median spread per river branch). 

 The variation in roughness also affected the discharge distribution. Lower 

roughness on a particular side of the bifurcation point for a specific realization of the 

ecotope map led to a lower water level at that side. This increased the discharge into 

that branch. As a result of this effect, the spread in discharge ranged between 65 and 

89 m
3
s

-1
 for the 69% CA ensemble, and between 37 and 58 m

3
s

-1
 for a 95% CA 

(Table 2) at design discharge. These discharge variations lead to differences in water 

level of 3, 7, and 7 cm for the river Waal, Nederrijn, and Lek, respectively (Fig. 7 in 

Straatsma and Huthoff (2010)). 

 

4.2 Uncertainty in sediment deposition 

The annual average suspended sediment deposition (Fig. 3c, 4c) is largest in the area 

between the main channel and the minor embankments. Here, the inundation 
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frequency is high; during inundation, the flow velocity decreases and sediment settles. 

Comparing the spatially distributed annual sedimentation and spread (Fig. 3, 4 c-e), 

we found that: (1) the river IJssel has a lower median sediment deposition rate than 

the River Waal, (2) the spread in the annual deposition is lower in IJssel River than 

the River Waal, (3) the spread in the deposition is an order of magnitude lower than 

the median of the deposition, (4) the spatial distribution of the spread is highly 

variable. The results for the Nederrijn again take the intermediate position with 

respect to depostion rate. The pattern of high deposition close to the main channel is 

similar to the other two river branches. To get insight in the uncertainty relative to the 

total deposition, we the normalized the spread (NS; Normalized Spread) by dividing 

the spread map by the median map. NS map was summarized by a histogram (Fig. 6) 

for each of the three distributaries. All show a similar distribution of the NS: 70% of 

the map has a NS of less than 0.2 at a 69% CA, which increases to 90-95% of the map 

for a 95% CA.  

 Table 3 shows the distribution statistics (spread) of the annual sediment 

deposition aggregated for each river branch and the entire model area. The uncertainty 

at the scale of the river branches is very small (spread << 1% of the median value for 

both 69% CA and 95% CA). The 5000 m
3
s

-1
 discharge class contributes most (20%) 

to the total sediment deposition on the Rhine floodplains. However, the 7000 m
3
s

-1
 

discharge class contributes most to the uncertainty of the average annual sediment 

deposition, except for the IJssel distributary where the 5000 m
3
 s

-1
 discharge class 

contributes most to the uncertainty. This is likely due to the fact that the low-lying 

IJssel floodplains are inundated during lower discharges than the floodplains along 

the other distributaries. 

 With a 95% CA, there was slightly less overbank deposition in the Waal and 

Nederrijn distributaries, which was compensated for by slightly larger deposition 

along the Bovenrijn and IJssel distributaries. This is likely due to the fact that in the 

conditional simulation procedure, the probability of assigning an ecotope with a 

higher roughness is greater than assigning an ecotope with a lower roughness 

(Straatsma and Huthoff, 2011). In general, this causes larger sedimenation rates close 

to the river channel and concurrently smaller sedimentation rates further away from 

the river in the 69% CA scenario than in the 95% CA scenario. 
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4.3 Uncertainty in ecotoxicological hazards 

For the 69% CA, the spread in ecotoxicological hazards (i.e., the spread in the fraction 

of little owl habitat with a daily cadmium intake exceeding the corresponding toxicity 

threshold) ranged from 0.03 for the Nederrijn and Waal to 0.06 for the IJssel (Table 2; 

Fig. 3f, 4f). The spread was somewhat lower for the 95% CA (Table 2). On average, 

toxicological hazards were largest for the IJssel and smallest for the Nederrijn. This 

reflects differences in the average soil cadmium concentrations, which are 2.85 and 

1.36, and 3.05 mg kg
-1 

for the Waal, Nederrijn and IJssel, respectively. The number of 

times a polygon exceeded the threshold showed a stronger bimodal pattern for the 

95% CA than for the 69% CA, as illustrated by the increase in areas that never (0) or 

in all cases (15) exceeded the threshold (Fig.3; Fig. 4). The histogram of exceedance 

values per river branch (Fig. 7) showed the same pattern. The consistency of the 

output, defined as the habitat area on the map that either always or never exceeded the 

threshold for all 15 model runs, increased from a map fraction of 0.52 to 0.87 (Table 

2) for the IJssel. The other distributaries showed a smaller increase. 

 Surprisingly, we found little differences in the total map fraction with 

unsuitable habitat within an ensemble (Table 2). For the Bovenrijn-Waal the fraction 

of unsuitable habitat ranged between 0.39 and 0.42, for the Pannerdensch Kanaal-

Nederrijn-Lek between 0.16, and 0.19. However, the fractions of unsuitable habitat 

were much larger for the 95% CA ensemble than for the 69% ensemble. Soil 

cadmium concentrations were on average slightly higher for ecotope types providing 

little owl habitat (i.e., grassland ecotopes) than for ecotope types that may be confused 

with grassland. Hence, confusion of grassland with these other ecotope types resulted 

in a decrease in the average soil cadmium concentration within the little owl habitat. 

As the probability for confusion with other types was higher for the 69% CA 

ensemble, the fraction of habitat with daily intake values below the toxicity threshold 

was lower for the 69% CA ensemble. 

  

4.4 Uncertainty in biodiversity values  

The potential biodiversity values of the floodplains (FI scores) differed remarkably 

between habitat types and species protected by the EU legislation (Natura 2000 sites) 

within each river branch (Figures 8, 9). The spreads were systematically larger for the 

69% CA ensemble. Absolute values of the FI scores were higher for the 69% CA 

ensemble for all habitat types, except for “Xeric sand calcareous grasslands” and 
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“Softwood alluvial forest with white willow” (H6120 and H91E0_A) in the Nederrijn, 

“Xeric sand calcareous grasslands” (H6120) in the IJssel, and “lowland hay meadow 

with meadow foxtail” (H6510_B) in the Waal (Figure 8; Table 4).The FI score of the 

95% CA ensemble was even 5.8 times higher for “Hydrophilous tall herb fringe 

communities of plains along dry forests” for all Rhine branches combined. The higher 

FI scores for the 69% ensemble was caused by the map purity table, which converted 

meadows more often to herbeceaus vegetation, than the other way around, leading to 

a systematic difference in the ecotope distribution.  

 These general patterns also held for the protected species (Figure 9). The 69% 

CA resulted in higher FI scores for all species, except Greylag Goose, Eurasian 

Curlew, Greater White-fronted Goose (Anser anser, Numenius arquata, and Anser 

albifrons), and wider confidence intervals, except for Northern Shoveler (Anas 

clypeata). However, FI scores and confidence intervals increased less for species than 

for habitat types. The scale of application of the BIO-SAFE model also influenced the 

results. The uncertainty is larger for separate river branches than for the application of 

BIO-SAFE to the whole study area, which is visible in the spreads (Figure 9 top panel 

versus other panels).  

 

5 Discussion 

Uncertainty in hydrodynamic and ecological models has many sources (Regan et al., 

2002; Walker et al., 2003). Ideally, all would be combined in a single study to find the 

overall error. In this study, we quantified the effects of land cover classification error 

on hydrodynamic and ecological model output. We focused on water levels, 

suspended sediment deposition, ecotoxicological hazards and floodplain importance 

for different habitat types and species. The CA of the land cover map was determined 

from field data (Knotters et al., 2008). In this study, large effects were found of land 

cover CA on hydromorphological and ecological modeling. This uncertainty points to 

the need for an unambiguous quality assessment of the ecotope map. Below, we will 

first discuss model output before we put our results in perspective by comparing them 

to other factors that influence hydrodynamics and ecology: (1) landscaping measures 

in the context of the “Room for the River” project, (2) scenario studies that provide 

insight in a possible situation in 2050, and (3) uncertainty due to vegetation 

succession.  

 



 15

5.1 Hydrodynamic and ecological model output 

The reference hydrodynamic model used in this study was calibrated on historic flood 

events. Strictly speaking, each new realization of the ecotope map would require a re-

calibration of the hydrodynamic model such that each realization accurately 

reproduces the historic flood events. In this study, the re-calibration step has been 

omitted, due to the large efforts involved in calibration of a 2D model with two 

bifurcation points. Calibration of a hydrodynamic model would normally reduce the 

prediction error by comparing model output with measured discharges, or water 

levels. Including the additional calibration step is part of a follow up study currently 

carried out. Calibration of the sedimentation model is more labor intensive as 

deposition rates need to be measured by placing sediment traps in the floodplain 

(Middelkoop and Asselman, 1998; Thonon, 2006). Still, further calibration of 

SEDIFLUX for larger areas and for different flood magnitudes could reduce the 

overall prediction error of spatially distributed sedimentation rates. With the spread 

maps presented here one can target the most sensitive areas for placing the sediment 

traps. Currently, no data are available for calibrating and validating the output of the 

ecotoxicological model and BIOSAFE, and hence the errors in the land cover map 

directly influence the output.  

 Increasing the CA from 69% to 95% led to a 60% reduction in the uncertainty 

in flood water levels, a 50% increase in the map fraction that has a normalized spread 

of 0.2 or less for suspended sediment deposition, and a 6-67% increase in the 

consistency of the ecotoxicological hazard assessment for the Little Owl. Using the 

type of Monte-Carlo tests carried out in this study, it is possible to determine the 

required classification accuracy based on the accepted level of uncertainty in the 

model output. For example, if the uncertainty in the water levels should be no larger 

than a spread of 10 cm, the required CA of the ecotope map would be 77%, 86%, and 

89% for the rivers Waal, Nederrijn, and IJssel, respectively assuming a linear 

relationship between CA and uncertainty in output for the sake of this example. 

Similarly, if benchmarks were set for the required accuracy in suspended sediment 

deposition modeling, ecotoxicological hazard modeling, or floodplain biodiversity 

modeling, the corresponding CA could be established. However, at the moment no 

such benchmarks exist, not even for water level, which represents the key factor for 

flood hazard assessments. Establishing such benchmarks is a societal and political 

choice; how much risk are we prepared to take? The answer would influence the 
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amount of data to be collected, the methods to be developed by the remote sensing 

community, and the models applied in flood hazard assessment. In the meantime, 

scientists could further study the relationship between CA and uncertainty to address 

the assumption of a linear relationship. 

 

5.2 Other sources of uncertainty in hydrodynamic and ecological model output 

The “Room for the River” landscaping measures (Fig. 1) should facilitate an increase 

in discharge capacity from 15,000 to 16,000 m
3
s

-1 
by the year 2015. Various measures 

are carried out to increase the cross-sectional area of the high-water bed of the river, 

between the primary river dikes, including the creation of side channels, dike 

relocation, and floodplain lowering. The ecotope distribution will also be changed, 

primarily due to targeted ecological restoration. The required flood level reduction is 

20 cm for the Waal, 30 cm for the Nederrijn, and 40 cm for the IJssel (Deltares, 2011; 

RvR, 2011). The spread in the water levels for a 69% CA was 12, 15, and 19 cm for 

the Waal, Nederrijn and IJssel, respectively (Table 3), corresponding with 

approximately 50% of the reduction in the water levels required according to “Room 

for the River.” Given the societal significance of flooding and the high cost of the 

landscaping measures, i.e. €2.3 billion (Waterforum, 2011), the higher 95% CA in the 

underlying land cover maps is indispensible. This would reduce the spread to 5, 7, and 

7 cm for Waal, Nederrijn and IJssel, respectively, which is around 20% of the task in 

the “Room for the River”. The landscaping measures presently undertaken in the 

Room for the River project will locally dramatically enhance overbank sedimentation 

rates, up to a factor 5 to 10 (Asselman, 1999; Thonon et al., 2007). Still, the areal 

extent of the measures is too small to result in significant changes in total sediment 

trapping by the embanked floodplains.  

 Scenario studies are commonly used to explore the effects of future conditions 

on the fluvial area. Recently, a scenario study was carried out by Straatsma et al. 

(2009) to explore options for accommodating a design discharge of 17,000 m
3
s

-1
 at 

Emmerich in 2050. They studied only the river Waal, and their ‘best’ scenario with 

respect to flood hazard reduction yielded an average lowering of the water level of 65 

cm, which was 5 cm less than required. As the uncertainty due to land cover 

classification error at a 69% CA is 12 cm for the Waal, the uncertainty due to 

classification errors is less relevant for the 2050 temporal horizon. Similarly, the 

sediment deposition, and ecotoxicological hazard are influenced more by the 
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projected landscaping measures in 2050 than by CA error. Potential biodiversity 

values are the exception; the CA presents an equal variation in BIO-SAFE output as 

the effects of landscaping measures up to 2050.  

 Vegetation succession is another source of changes in ecotopes. As changes in 

vegetation due to succession are expected to be small within the 6-year mapping 

interval of the ecotope map, we did not consider succession. However, the target 

vegetation that may develop under the ‘Room for the River’ plans will eventually lead 

to a higher – but yet harder to predict – hydraulic roughness, and thus an increase in 

water levels (Makaske et al., (2011). Since more natural vegetation is likely to be 

patchier than the present-day vegetation that still strongly reflects the cultivation of 

the floodplain, the classification accuracy of vegetation maps will be an increasingly 

challenging task. 

 

Conclusions 

We assessed the effects of land cover classification errors on hydrodynamic and 

ecological model output for the three distributaries of the river Rhine in the 

Netherlands. Model output pertained to water levels and discharge distribution during 

design discharge, annual average suspended sediment deposition, ecotoxicological 

hazard for the little owl, and biodiversity values. Based on a conditional simulation of 

ecotope maps, we created two ensembles of 15 maps each, one based on a 69% 

classification accuracy (CA), and one with a 95% CA. We conclude that: 

• A 69% CA gave a 12 to 19 cm uncertainty in the water levels during design 

discharge, which is approximately 50% of the task set for the proposed flood 

mitigation measures for 2015. An increased CA of 95% leads to a relevant 

improvement. 

• Ambiguities in the land cover map led to uncertainty in the discharge 

distribution over the bifurcation points. Increasing the CA from 69 to 95% 

reduces the uncertainty by almost 50%. River management should therefore 

advocate the reduction of classification errors in land cover maps.  

• The spread in the sediment deposition rate was spatially highly variable and 

depended strongly on the CA. An increase of the CA reduced uncertainty in 

sediment deposition significantly. This is important for the design of local 

landscaping measures and the expected morphological changes. For the 

distributaries as a whole, the deposition showed negligible variation. For 
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assessing the sediment trapping efficiency at the scale of an entire delta, 

increasing the land cover CA is therefore not relevant. 

• Based on the ecotoxicological modeling, the map fraction with unsuitable 

habitat did not depend strongly on the CA for ensemble averages over the 

distributaries. However, the consistency of the ensemble output increased with 

a higher CA. This implies that targeting ecological restoration to specific 

species as the Little Owl will be more accurate and efficient when an 

unambiguous land cover map. 

• For potential biodiversity values, BIO-SAFE predicted on average higher 

Floodplain Importance scores for a lower CA, due to the larger deviation from 

the current map. Therefore, the current map might underestimate the potential 

biodiversity of the Rhine branches. A high CA would justify ecological 

rehabilitation works better, because the current situation is known better and 

the target can be specified more clearly.  

• Investments in higher classification accuracy seem reasonable given the large 

investments that are needed to carry out the mitigating measures. For scenario 

studies with a long temporal horizon, uncertainty in land cover classification is 

less relevant.  

Given the future challenges for river and floodplain management, such as climate 

change, nature restoration, and housing demands, uncertainty reduction in land cover 

mapping will pay off as large amounts of money are involved in projects worldwide. 

Using an integrated approach as presented in this paper, benchmarks may be 

established, which is a political choice on the risk we want to take with respect to 

flood hazard and river health. A high map accuracy will give the river manager a 

better argument for landscaping measures, modelers a higher quality output, remote 

sensing community a tangible targets for land cover CA, and the public a safer and 

more healthy river.  
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Table 1 Ecotope codes, descriptions and associated roughness classes. 
 Ecotope 

code 

Ecotope description Roughness class 

1 H-REST High water free temporarily bare Rest 

2 HA-1 High water free agriculture Agricultural land 

3 HA-2 High water free built-up area Paved / Built-up area 

4 HB-1 High water free natural forest Natural forest 

5 HB-2 High water free shrubs Shrubs 

6 HB-3 High water free production forest Production forest 

7 HG-1 High water free natural grassland Natural meadows 

8 HG-1-2 High water free grassland (natural or production) Production / natural meadows 

9 HG-2 High water free production grassland Production meadows 

10 HM-1 High water free reeds Reeds and other helophytes 

11 HR-1 High water free herbaceous vegetation Herbaceous vegetation 

12 I.1 High water free temporarily bare Rest 

13 II.2 Sweet sand bars Bare river bar 

14 III.2-3 Low dynamic hard substrate influenced by sweet to brackish 

water 

Paved / Builtup area 

15 IV.8-9 Species poor helophytes swamp/Species rich reed swamp Reeds and other helophytes 

16 IX.a Agriculture on the shoreline Agricultural land 

17 O-U-

REST 

Natural levee or floodplain temporarily bare Rest 

18 O-UA-1 Natural levee or floodplain agriculture Agricultural land 

19 O-UA-2 Natural levee or floodplain builtup area Paved / Builtup area 

20 O-UB-1 Natural levee or floodplain forest Natural forest 

21 O-UB-2 Natural levee or floodplain shrubs Shrubs 

22 O-UB-3 Natural levee or floodplain production forest Production forest 

23 O-UG-1 Natural levee or floodplain grass land Natural grassland 

24 O-UG-1-2 Natural levee or floodplain grass land (natural or production) Production / natural meadows 

25 O-UG-2 Natural levee or floodplain production grassland Production meadows 

26 O-UK-1 Natural levee or floodplain unvegetated Rest 

27 O-UR-1 Natural levee or floodplain herbaceous vegetation Herbaceous vegetation 

28 OK-1 Unvegetated natural levee Rest 

29 R Temporarily bare Rest 

30 REST Temporarily bare Rest 

31 U-REST Floodplain temporarily bare Rest 

32 UA-1 Floodplain agriculture Agricultural land 

33 UA-2 Floodplain built-up area Paved / Built-up area 

34 UB-1 Floodplain forest Natural forest 

35 UB-2 Floodplain shrubs Shrubs 

36 UB-3 Floodplain production forest Production forest 

37 UG-1 Floodplain grass land Natural grassland 

38 UG-1-2 Floodplain grass land (natural or production) Production / natural meadows 

39 UG-2 Floodplain production grass land Production meadows 

40 UM-1 Natural levee or floodplain reed Reeds and other helophytes 

41 UR-1 Floodplain herbaceous vegetation Herbaceous vegetation 

42 V.1-2 Floodplain swamp Herbaceous vegetation 

43 VI.2-3 Softwood shrubs or pioneer softwood forest Shrubs 

44 VI.4 Softwood forest Natural forest 

45 VI.7 Floodplain willow production forest Willow production forest 

46 VI.8 Production forest on shoreline Production forest 

47 VII.1 Swampy inundation grass land Natural grassland 

48 VII.1-3 Swampy inundation grass land / structure rich grass land/ 

production grass land 

Production / natural meadows 

49 VII.3 Production grass land Production meadow 
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Table 2 Overview of uncertainty (expressed as the spread, i.e., the 68% confidence 

interval) in hydrodynamic and ecological model output due to errors in the land cover 

map according to two classification accuracies.  

Model output  Waal Nederrijn IJssel 

Water level (cm)a 69% CA 12 (8) 15 (9) 19 (12) 

95% CA 5 (3) 7 (5) 7 (5) 

Discharge distribution (m3s-1)b 69% CA 89 (340) 85 (338) 65 (156) 

95% CA 58 (92) 49 (78) 37 (83) 

Sediment deposition: 16th  and 

84th percentile (kg m-2 y-1) 
69% CA 2.076-2.080 1.301-1.315 0.795-0.806 

95% CA 2.096-2.104 1.326-1.331 0.782-0.786 

Ecotoxicological hazards c 69% CA 0.39-0.42 0.16-0.19 0.54-0.60 

95% CA 0.46-0.48 0.22-0.23 0.71-0.72 

Ecotoxicological consistency d 69% CA 0.75 0.88 0.52 

95% CA 0.93 0.94 0.87 

FI values: average normalized 

spread for habitat types 

69% CA 0.27  0.28 0.28  

95% CA 0.11 0.33 0.23 

FI values: average normalized 

spread for 29 species 

69% CA 0.15 0.10 0.12 

95% CA 0.05 0.07 0.06 
a Maximum of the spreads, computed on the rivers kilometers per region; in brackets the median spread 

is given. 
b
 Spread of discharge variation per distributary, in brackets the range. 

c 
Values represent the fraction of little owl habitat with a daily cadmium intake exceeding a toxicity 

threshold of 148 µg d
-1

. 
d Values represent the fraction of the little owl habitat that is either in 0, or in 15 of the realizations 

exceeding the toxicity threshold of 148 µg d
-1

. Hence they represent the area where the ensemble gives 

consistent outcome.  
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Table 3 SEDIFLUX model output: distribution statistics (mean, 16% and 84% 

percentiles) of the annual sediment deposition (n = 15) in the Rhine branches and 

entire model area. 

 Mean  16% 

percentile 

 84% 

percentile 

 spread 

 69% 

CA 

95% 

CA 

 69% 

CA 

95% 

CA 

 69% 

CA 

95

% 

CA 

 69% 

CA 

95% 

CA 

Entire model area            

Deposition flux density 

(kg m2 y-1) 

1.43 1.44  1.43 1.44  1.44 1.44  0.008 0.002 

Total annual deposition 

(tonnes y-1) 

476 476  475 475  477 476  2 1 

Bovenrijn            

Deposition flux density 

(kg m2 y-1) 

1.32 1.29  1.31 1.28  1.33 1.29  0.018 0.009 

Total annual deposition 

(tonnes y-1) 

31 30  31 30  31 30  0.4 0.1 

Waal            

Deposition flux density 

(kg m2 y-1) 

2.26 2.29  2.25 2.29  2,26 2.30  0.008 0.010 

Total annual deposition 

(tonnes y-1) 

221 223  221 223  222 223  1 0.4 

Nederrijn-Lek            

Deposition flux density 

(kg m2 y-1) 

1.31 1.33  1.30 1.33  1.31 1.33  0.013 0.005 

Total annual deposition 

(tonnes y-1) 

135 137  135 136  136 137  1 0.5 

IJssel            

Deposition flux density 

(kg m2 y-1) 

0.80 0.78  0.80 0.78  0.81 0.79  0.010 0.004 

Total annual deposition 

(tonnes y-1) 

89 87  88 86  89 87  1 0.5 
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Table 4 BIO-SAFE codes for habitat types and description. 

 
Habitat 

code 

Description 

H6120 Xeric sand calcareous grasslands 

H6430_A Hydrophilous tall herb fringe communities 

of plains with Filipendula ulmaria 

H6430_B Hydrophilous tall herb fringe communities 

of plains with Epilobium hirsutum 

H6430_C Hydrophilous tall herb fringe communities 

of plains along dry forests 

H6510_A Lowland hay meadows with Alopecurus 

pratensis 

H6510_B Lowland hay meadows with Sanguisorba 

officinalis 

H91E0_A Softwood alluvial forests with Salix alba 

H91E0_B Softwood alluvial forests with Alnus 

glutinosa and Fraxinus excelsior 

H91F0 Riparian mixed forests of Quercus robur 

Ulmus laevis and Ulmus minor Fraxinus  

excelsior or Fraxinus angustifolia 
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Figure headings 
Figure 1 Study area showing the three main distributaries of the river Rhine ; 

Bovenrijn-Waal, Pannerdensch Kanaal-Nederrijn-Lek and IJssel. At the 

bifurcation points "Pannerdensche Kop" and "IJsselkop" the water is distributed 

over the three branches. 

 

Figure 2 Recoding of a polygon of the ecotope type ‘High water free grassland’ 

(ecotope number 7) based on the cumulative probability function for this ecotope 

type as derived from the map purities. With a random number of 0.71, the 

polygon is recoded into ecotope type 25, i.e. ‘Natural levee or floodplain 

production grassland’ for a 69% CA, whereas it remains nr 7, ‘High water free 

grassland,’ for a 95% CA. 

 

Figure 3: Spatial distribution of model uncertainty for a section of the river IJssel: a) 

spread in water level (m) at a 16.000 m
3
s

-1
 discharge resulting from a 69% CA, b) 

same, but for a 95% CA, c) median of predicted annual average suspended 

sediment deposition (kg m
-2 

y
-1

), d) spread in annual average sediment depostion 

(kg m
-2 

y
-1

) due to a 69% CA, e) same, but for a 95% CA, f) nr of runs with the 

daily cadmium intake of the little owl exceeding a toxicity threshold of 148 µg 

cadmium per day for a 69% CA, g) same, but for a 95% CA.  

 

Figure 4: Spatial distribution of model uncertainty for a section of the River Waal: 

Subpanels equal to Fig. 3. 

 

Figure 5 The spread in water level at the river axis for the three distributaries. Both 

the median and the maximum spread correlate linearly with the discharge at the 

upstream boundary of the study area.  

 

Figure 6 Distribution of the normalized spread (spread / mean) of the annual average 

suspended sediment deposition. 

 

Figure 7 Distribution of the number of times a polygon exceeded the toxicity 

threshold of 148 µg d
-1

. Data are summarized per distributary. Note that the 

distribution for CA95 is more bimodal due to the smaller number of changes in 

the land cover map. 

 

Figure 8 BIO-SAFE Floodplain Importance (FI) scores for the 20 most sensitive 

protected species in each of the Rhine branches.  

 

Figure 9 BIO-SAFE Floodplain Importance (FI) scores for nine terrestrial habitat 

types in the Rhine branches. The 68% confidence interval is indicated by the 

black vertical lines. Habitat codes are described in Table 4. 
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