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Abstract

Introduction

Flood risk has significantly increased over the last four decades, quantified as the number of
reported occurrences and the number of people affected. Hydrodynamic models are used
routinely within the framework of disaster risk management to compute flood risk and
reduce economic damage and human suffering. They are used to model inundation extent,
water depth and flow velocity for flood hazard assessment. While a lot of progress has been
made in solving the flow equations efficiently and reliably uncertainty reduction has
remained a major issue. The current study aims at providing better insight into the
uncertainty of flood water levels due to uncertain floodplain roughness parameterization.
The study focuses on three key elements in the uncertainty of floodplain roughness: (1)
classification error of the land cover map, (2), within class variation of vegetation structural
characteristics, and (3) mapping scale.

Methods

To assess the effect of the first error source, new realizations of ecotope maps were made
based on the current floodplain ecotope map and an error matrix of the classification.
Uncertainty in classification of the terrestrial ecotopes of the Rhine branches has been
determined as “map purities”, referring to the percentage of the mapped area that is
correctly classified. A few problems were noted with the fieldwork related to the
discernability of the different ecotopes in the field. Also, the spatial support of the field data
(point measurements) did not match the aerial image interpretation of ecotopes per
polygon, sized 400 m? or more. Therefore the reported classification accuracy should be
interpreted as a minimum value. Fifteen model runs were carried out with a classification
accuracy of 69, 80, 90, and 95 percent to determine the effect of classification accuracy on
uncertainty in the peak water levels. For within class variation, few data were available.
Therefore, field measurements of vegetation structure were compiled to obtain uncertainty
ranges for each vegetation structural type. The scale error was investigated by reassigning
roughness codes on a smaller spatial scale.

Results and conclusion

It is shown that the various error-sources lead to large variation in floodplain roughness.
Classification error proved to be the largest contributor to the uncertainty. Even at the 95 %
classification accuracy, the variation in peak water levels was higher than for the vegetation
structural error and the scale error. The associated uncertainty of predicted water levels is in
the order of decimeters for classification error and cm for within class variation and scale
errors. The relation between uncertain floodplain roughness and the error bands in water
levels may serve as a guideline for the desired accuracy of floodplain characteristics in
hydrodynamic models. However, these should not be interpreted as absolute uncertainty
bands as no calibration has been applied. Therefore the next step will be to determine the
absolute uncertainty when the models are calibrated and make the link to operational flood
forecasting.
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1. Introduction

Uncertainty reduction in operational flood forecasting has been a major topic over
the last years to accurately predict flood levels for alluvial areas. Hydrodynamic
models are used routinely within this framework. They are used to model inundation
extent, water depth and flow velocity for flood hazard assessment. While a lot of
progress has been made in solving the flow equations efficiently and reliably (Hunter
et al., 2007; Bates et al., 2010) uncertainty reduction has remained a major issue.,
especially in the field of operational flood forecasting.

Walker et al. (2003) defined uncertainty as “any departure from the unachievable
ideal of complete determinism.” Uncertainty in flood modeling has been addressed
by many researchers in the form of equifinality (Beven, 2006) using the generalized
likelihood uncertainty estimation (GLUE) procedure e.g. (Aronica et al., 1998;
Pappenberger et al., 2005). The main idea is that spatially distributed input and
calibration data will help in improving the accuracy of the hydrodynamic models.
Remote sensing is particularly well suited for spatial parameterization of the river
corridors (Mertes, 2002). Remote sensing input may consist of a Digital Terrain
Model (DTM) derived from photogrammetry, or airborne laser scanning (ALS)
(Mandlburger et al., 2009). Model boundary conditions of water levels and discharge
can be derived from RADAR and meteosat data using a rainfall runoff model. Model
output is also regularly calibrated using RADAR-derived flood extent (Schumann et
al.,, 2009). In these ways remote sensing data may help in reducing the overall
uncertainty in model predictions.

An important source of uncertainty is the floodplain roughness parameterization
(FRP). FRP is a daunting task given the number of processes involved in energy
dissipation (Kouwen and Li, 1980) and the spatial heterogeneity of the floodplain
vegetation. Floodplain roughness is often parameterized by a single roughness value
(Horritt and Bates, 2002), or derived from a remote sensing-based land cover map
linked to a lookup table (Van der Sande et al.,, 2003). Meanwhile, airborne laser
scanning (ALS) has proven its ability to accurately map vegetation height (Cobby et
al.,, 2001; Straatsma and Middelkoop, 2007), and hydrodynamic vegetation density
(Straatsma, 2008). This allowed the computation of the spatial-temporal roughness
coefficient during flood events, instead of a fixed roughness value based on a lookup
table (Mason et al., 2003; Mason et al., 2007; Straatsma and Baptist, 2008). Even
though the uncertainty in the classified land cover map and the vegetation structural
prediction is known, an assessment of the effects of these parameters on the output
of hydrodynamic models is rarely carried out.

Floodplain roughness, together with the roughness of the main channel, is often
used for model calibration (Horritt and Bates, 2002). Because roughness is changed
afterwards anyway, little effort has been spent on the question how accurate it
should be parameterized in the first place, and what is the effect of errors in the
floodplain roughness parameterization. Werner et al. (2005) assessed the number of
classes that should be distinguished for floodplain roughness. Calibration of these
models was carried out based on flood extent and water levels. They concluded that
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5 classes suffice, but do not address the effects of classification errors, nor did they
assess the accuracy of the vegetation parameters that these classes were meant to
represent. A few studies have investigated the sensitivity of water levels to the
variation in vegetation pattern (Stolker et al., 1999; Huthoff and Augustijn, 2004).
Both studies used a 1D river schematization and applied arbitrary changes in
vegetation patterns. No studies have been carried out using a two dimensional
model, which has a better spatial representation of the roughness and real remote
sensing-based roughness parameterization. It is concluded that no comprehensive
assessment exists of the effects of uncertainty in floodplain roughness on
hydrodynamics

Land cover classification is the primary step for FRP (Geerling et al., 2007; Straatsma
and Baptist, 2008), but it leads to a number of errors. Firstly, no classification is
perfect. It is always associated with a particular classification accuracy. Overall
classification accuracy of ecotope maps typically ranges between 70 and 90 %
(Townsend and Walsh, 2001; Geerling et al., 2007; Knotters and Brus, conditionally
accepted). Secondly, within a class some natural variation in vegetation structure will
occur, which is lost in the classification. This so called within class structural variation
can still influence the flow pattern as the water flow is reduced in e.g. the denser
parts of the forest, compared to the more open parts. Finally, classification is scale
dependent (Van der Sande et al., 2003). Small areas would be classified as a different
class, were a finer scale chosen. Examples include single trees in a meadow, or open
areas inside a forest.

Our aim is to quantify the uncertainty in 2D hydrodynamic models from remotely
sensed roughness parameterization separated in these three error sources, which
we will refer to as (1) classification error, (2) within class structural variation, and (3)
scale errors. With this study we will lay the foundation for implementing the
uncertainty of floodplain roughness in a operational setting.

The study is carried out in the Netherlands in the distributaries of the river Rhine, a
lowland alluvial river. We used aerial images as primary remote sensing data.
Modeling is carried out using the WAQUA 2D hydrodynamic model (RWS, 2007).
Uncertainty is evaluated based on differences in computed roughness values, water
levels and flow velocities, and distribution of discharge over different river branches.
This is a follow up study of the FC2015 project reported by Straatsma and Alkema
(2009). This research was carried out within the Flood Control 2015 program. For
more information please visit http://www.floodcontrol2015.com.
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2. Roughness parameterization

Accurate predictions of water levels are relevant for the height of the embankments,
informing the communities on possible evacuation and for risk assessment. At this
moment there is no quantification of the required accuracy of the model output. For
hydrodynamic models the vegetation roughness is one of the determining factors for
the computed water levels, in addition to bathymetry, roughness of the main
channel and the downstream water level. The order of magnitude of the error in
water level is reported in several studies. Stolker et al. (1999) modeled differences in
water level using a 1D model. Assuming floodplains covered with meadows, the land
cover was varied over a length of 10 km with different vegetation types and a cover
percentage varying between 10 % and 100 %. Table 1 summarizes the results. For
example, in case 10 % of the land cover in the floodplain is changed from meadow to
reed over a 10 km stretch of river, the peak increase in water level is 15 cm. Huthoff
and Augustijn (2004) report an 8 cm change in water level and stress the effect of
the shape of the cross section of the river. Both studies represent a sensitivity study
as the sensitivity of the model is tested for variation in input, but they are not studies
of error propagation as their input is hypothetical.

Table 1 Effect of classification errors relative to meadows (Stolker et al. 1999)

Land cover change 10 % changed to new 100 % changed to new vegetation
meadow to: vegetation cover (cm) cover (cm)

Forest and shrubs 12-20 50-120

Reed 15 50

Herbaceous vegetation 1-6 5-20

2.1 Roughness models

Roughness determines the retardance of the water flow. The higher the roughness,
the slower the water will flow and, hence, the higher the water levels will reach. For
the non-vegetated river bed, the roughness depends on the grain size and bed form
dimensions (Van Rijn 1994) . Vegetation roughness of the floodplains has been
described by many different models (Petryk and Bosmajian, 1975; Kouwen and Li,
1980; Kouwen, 2000; Baptist et al., 2007; Huthoff et al., 2007). It depends on
vegetation structural characteristics like vegetation height and density, rigidity of the
stems and the presence of leaves. Vegetation density is defined as the sum of the
projected plant areas in side view per unit volume (m”m=, which reduces to m™).
Seasonal variation and management that allows vegetation to vary dynamically lead
to a high spatiotemporal variation of vegetation structural characteristics and
inherent roughness patterns (Baptist et al., 2004; Jesse, 2004; Van Stokkom et al.,
2005).

In any case the base data for roughness parameterization consists of a vegetation
map of the floodplain area. Various remote sensing data may provide information on
vegetation type and structure including their dynamics. Promising sensor systems
include airborne laser scanning (ALS), optical systems and microwave sensors. An
important issue to overcome is the translation of remote sensing information, e.g.
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the intensity and patterns of reflected electromagnetic radiation to relevant
parameters to compute patterns of hydrodynamic roughness.

2.2 Roughness parameterization in WAQUA

The implementation of roughness in hydrodynamic models varies. For WAQUA, the
required data for model input has been made available by the Ministry of Public
Works, Transport and Water Management (RWS) in the Baseline 4.03 database
(Hartman and Van den Braak, 2007). It contains a complete dataset of base maps,
derived maps, and a model schematization for the Rhine branches. The
hydrodynamic roughness is implemented in a very detailed form in the Baseline
database. For WAQUA, hydrodynamic roughness is derived from point, line, and
polygon information (Fig. 1).

Roughness polygons are derived from the ecotope map, which is combined with the
outline of the main channel, lakes and high water free areas. All these maps are
converted using a lookup table to determine the roughness-polygon map (Fig. 1).
Each roughness code for vegetation is linked to vegetation structural parameters,
such as vegetation height and density plus bottom roughness and drag (Van Velzen
et al. 2003). The roughness in the WAQUA model, expressed as Chézy C, depends on
the water depth and is computed during runtime of the model using the equation
presented in Klopstra et al. (1997). The roughness is assigned to the model
computational cell and the energy loss is computed over the cell.

Point and line elements of roughness are derived from a database containing
hedges, individual trees and tree-lined lanes. These files are compiled in the Digital
Topographic Dataset of the wet infrastructure (DTB-nat). Hedges are parameterized
as line elements, assigned with a height and a density, whereas single trees are
represented as point data with tree diameter as relevant hydrodynamic parameter.
The energy loss of these roughness elements is computed, and attributed to the cell
boundary containing the roughness elements.

Base maps Derived maps Model input
Ecotope map

Main channel LUT + Roughness-polygons

Lakes merging

High water free areas

Roughness-lines area-u, area-v
Hedges LUT LUT
files
Single trees LUT + Roughness-points
LUT WAQUA

Tree-lined lanes merging

Figure 1 Flow chart of roughness parameterization for the WAQUA hydrodynamic model. The
elements that were varied in this study are the immediate model input. The area-u and area-v files
have been varied according to the classification accuracy table (Knotters et al. 2008). The lookup table
(“rough.karak”) relating the derived maps to the WAQUA input has been changed based on field
measurements.

@ Food Control ;& —— 12
UNIVERSITY OF TWENTE. gy ——



Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

The final model input to WAQUA consists of “area files” that describe the roughness
in the downstream and the across stream direction (u and v). These files describe for
each cell the fraction of the cell that is occupied with a specific roughness code, and
the fraction of the cell that is covered by that roughness code. Another lookup table
“rough.karak” links the roughness codes to vegetation parameters.
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3 Study area

Within this study, we looked at the distributaries of the river Rhine in the
Netherlands, excluding the estuary. At the Dutch-German border, the river Rhine has
an average discharge of 2250 m3/s, draining a catchment area of 165 000 km?®.
Coming Germany, the river Rhine bifurcates into the "Pannerdensch Kanaal" and the
Waal river at the "Pannerdensche Kop" (PK) bifurcation point where roughly one
third enters the "Pannerdensch Kanaal" and two thirds are conveyed into the river
Waal. At the "lJsselkop" (1JK) bifurcation points again, one third enters the right hand
channel named the lJssel river and two thirds flow into the Nederrijn river (Fig. 2).
However the exact ratio of dividing the water over the channels depends on the
shape and roughness of the main channel and the floodplain.

The study area spans three distributaries with an average water gradient of 0.10
m/km and a maximum length of 152 km along the river axis, which is for the lJssel.
The total embanked area amounts to 440 kmz, the floodplain area is 320 km? out of
which 48 km? consists of lakes and side channels. The vegetated area takes up 62 %
of the total embanked area. Groynes fixate the main channel and limit the width of
the main channel to 250, 160, 105 m for the Waal, Nederrijn and lJssel river. The
cross-sectional width between the primary embankments varies between 0.5 and
2.6 km. Meadows dominate the land cover, but recent nature rehabilitation
programs led to increased areas with herbaceous vegetation, shrubs and forest.

Ketelme é-\ 3

The Netherlands Flow

r 2\ ‘ﬁec!ion

.ﬂms‘erdallb

Ealgium Germany

IJssel nver :".:

] Boundary conditions
e Field reference sites

O Bifurcation point
I Main Channel
| Floodplain

Kilomatars
[1] 8

' A Nedermijn river
L— 1 "N Leknver o #7 ) iy

Flow direction

-

Kiimpen a/d Lek

Deestse Waarden

J@0ieumess veriat Pannerdensche kop T Sag
4 Upper Rhine

~ Waal River

-~ F-

Werkendam o ver NS
. Gamerense Waard
The Netherlands ', Germany
Figure 2 Study area showing the three main distributaries of the river Rhine; Waal, Nederrijn/Lek and
IJssel river. At the bifurcation points "Pannerdensche Kop" and "lJsselkop" the water is distributed

over the three branches.
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4 Methods

In this study, we focused on three aspects of the roughness parameterization and
the uncertainty assessment in the WAQUA hydrodynamic model. Firstly we
established the relationship between the classification accuracy and the uncertainty
in the predicted water levels. Secondly, we determined the effect of the within class
variation, and thirdly we determined the hydrodynamic effects of the scale error. For
each of the error sources, we carried out 15 model runs of the Rhine distributaries.
The uncertainty was determined by the variation in roughness, flow velocities, water
levels and discharge distribution.

4.1 Classification error

Currently the vegetation map of the lower Rhine and Meuse floodplains is based on
ecotopes. Ecotopes are ‘spatial landscape units that are homogeneous as to
vegetation structure, succession stage and the main abiotic factors that are relevant
to plant growth’ (Van der Molen et al., 2003). Mapping of ecotopes within the lower
Rhine floodplain is based on visual interpretation and manual classification of
vegetation units from aerial photographs, scale 1:10,000 (Jansen and Backx, 1998) .
Uncertainty in classification of the terrestrial ecotopes of the Rhine branches has
been determined by Knotters et al. (2008) as map purities, the percentage of the
mapped area that is correctly classified. The map purities table is similar to the
confusion matrix, or error matrix, of a regular classification validation, except that
the percentage of the total map that is correctly classified instead of the number of
field reference points are listed in the cells. The map purities sum up to one per row.
The map purity for the ecotope map of the Rhine branches of 2005 is estimated at
37% for 41 in the field distinguished different ecotopes (n=406 field observations).
The overall accuracy of this map is 69% when aggregated to eight terrestrial ecotope
groups (Knotters and Brus, conditionally accepted). Classification accuracy is the
number of correctly classified points divided by the total number of points in a
regular classification. For the map purity table, it is the percentage of the map
correctly classified divided by the total map area. In the map purity table (e.g. table
2) the classification accuracy is computed by the sum of the values on the diagonal
divided by the sum of the the whole table.

A few problems were noted with the fieldwork related to the discernability of the
different ecotopes in the field. Also, the spatial support of the field data (point
measurements) did not match the aerial image interpretation of ecotopes per
polygon, sized 400 m? or more. Therefore the reported classification accuracy should
be interpreted as a minimum value.

4.1.1 Recoding the area-files as realizations of vegetation types

The method to create new realizations of the roughness maps has been presented in
Straatsma and Alkema (2009), and will be iterated here in brief. In that research, we
used the map purities table as probabilities that an ecotope polygon is classified
correctly. We computed the cumulative probability by summing up the probabilities
along each row in the map purities table (Fig. 3). For each polygon in the ecotope
map, we drew a random number between zero and one with a uniform distribution,
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and using the cumulative probability we assigned a new ecotope code to each of the
polygons (Fig. 3). This procedure was repeated 15 times for each polygon, giving 15
new realizations of the original ecotope map. Each has the same probability and can
be seen as different outcomes of the same manual procedure of creating the
ecotope map. These maps were recoded to WAQUA roughness codes and used in
the 2D hydrodynamic model with a stationary discharge.

1
075 = Map purities,
pro babilities
05 Cumulative
025 probability
0
pioneer meadow herbaceous shrubs forest

Figure 3 Recoding based on the cumulative probability function derived from the map purities. map
purities are for a meadow polygon. The red arrow gives the random number of for a meadow (0.81)
and the subsequent recoding into herbaceous vegetation as the random number is between 0.6 and
0.95.

Contrasting with the 2009 study, we worked on the WAQUA roughness files (“area-
u.001” and “area-v.001”; Fig. 1) directly to bypass the labour intensive conversions
from ecotope maps to roughness files. These area-files are ASCIlI formatted column
files that list the WAQUA grid cell coordinates, the roughness code and the fractional
coverage of that code with respect to the total cell area. To be able to change all the
WAQUA cells that are within a single roughness polygon, the polygon-ID had was
added to the area files. The additional advantage was that the update of the
roughness files are more up to date than the ecotope map of 1997 provided in the
Baseline-4 database. In 2003, a large update of the roughness map was carried out,
but these updates were not implemented in a new ecotope map. Therefore the
ecotope map still reflected the situation of 1997, while the area files included the
update of 2003.

The map purity table of Knotters et al. (2008) has been standardized by Straatsma
and Alkema (2009). In this study, we aggregated the map purity table to the
vegetation types according to the vegetation handbook of Van Velzen et al. (2003)
(Table 2). This was done by computing a weighted average over the lines of the
ecotopes that are within the same vegetation class and summing up the columns
that represent the same vegetation class. Weights were assigned based on the
surface area of the ecotopes that were merged into a single vegetation type. Correct
classifications are present in the diagonal of the map purity table, indicated in grey in
table 1. Related to Fig. 3, an ecotope polygon representing production meadow
would have a 52 % chance of keeping its vegetation type and a 48 % chance of being
recoded to another vegetation type (Table 1).

The recoding of polygons was carried out for each polygon individually and repeated
15 times resulting in 15 new area-u and area-v files. These realizations represent 15
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possible outcomes of the ecotope map given the validation presented in Knotters et
al. (2008).

Table 2 Purity matrix for (aggregated) ecotopes in the Rhine branches (based on (Knotters et al.,
2008)). Also the total areas of the different ecotopes are given (ref km?: coverage of ecotopes in
reference situation, after PM km®: coverage of ecotopes after application of the purity matrix, dA:
change in surface area due to application of the purity matrix). Users accuracy is 37% at ecotope level,
69 % ecotope group level (eight classes) and 43 % at vegetation types level (16 classes presented
here).
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Description Km2 [Km2 [Km2 [111 (114 (121 [1250 |1201 (1202 (1212 (1804 |1807 1231 [1232 [1233 (1242 (1244 |1245
Equivalent roughness length
Groyne field /sand bar 111 [3.4 4.1 (0.7 [86% 14%
IStone protection 113 0.5 [0.0 }0.5 80% 20%
Buildup area / paved 114 [13.8 |18.2 [+4.4 92% 5% 2% 2%
IAgricultural area 121 [35.3 [32.9 |-2.5 78% 21%
Submerged vegetation (grass-type)
Pioneer vegetation 1250 0.8 [2.5 [1.7 |53% [24% 8% 15%
Production meadow 1201 [135.4]102.8}-32.6 (1% 2% 52% [32% (7% 3% 3%
Natural grass/hayland (1202 [71.8 [77.8 |+6.0 1% 2% 2% [33% [43% 8% [3% [5% 2%
[Submerged vegetation (reed-type)
Dry herbaceous veg. 1212 [22.4 [29.9 R7.5 10% 2% 4% 2% B% [53% 4% 2% 5% [5% ©B% 2%
Reed-grass 1804 3.7 [3.7 [0.0 22% |59% 16% 3%
Reed 1807 3.4 6.8 |34 26% [65% [9%
Emergent vegetation
ISoftwood shrubs 1231 4.0 |[11.1 R7.1 3% 3% [10% 3% 43% 12% [16% (1% [8%
illow plantation 1232 0.1 1.0 1.0 100%
IThorny shrubs 1233 [1.6 [2.3 0.7 9% 5% |16% 20% 21% 2% [10% [|16%
ISoftwood product. forest{1242 2.6 |8.7 [+6.2 12% 6% 8% 43% 31%
Hardwood forest 1244 |59 [2.1 |3.8 30% 12% 12% [32% [15%
[Softwood forest 1245 [11.2 |12.0 [+0.8 6% 11% 3% 179%

4.1.2 Dependence of uncertainty in water levels on classification accuracy

The validation of the ecotope map was disputed due to the difference in support
between field data and aerial image interpretation and some of the ecotope types
were not discernable from one another based on the plant communities. Therefore
the true accuracy of the ecotope type is not known. The reported accuracy is
assumed to be a minimum, given the classification accuracies reported in other
studies that vary between 70 % and 92 %.

In anticipation of a future undisputed validation of the ecotope map, we wanted to
establish the relationship between the classification accuracy of the ecotope map
and the uncertainty in the peak water levels. This relation may also assist water
managers in setting a benchmark for classification accuracy for the ecotope map
given the uncertainty in water levels.

To determine the uncertainty in water levels, we created three new map purity
tables that represent the classification accuracy at ecotope group level of 80, 90, and
95% based on the current table that has a 69% classification accuracy. The new map
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purity tables were created by increasing the values on the diagonal and decreasing
the values off-diagonal in the map purity table using the following method. The off
diagonal values were decreased by a manually chosen multiplication factor between
0 and 1. For each line in the matrix, the difference between the original off-diagonal
values and the new values was added to the diagonal value. This led to the increase
in the diagonal value and decrease of the off-diagonal values, leading to a new error
matrix with a higher classification accuracy. The ecotope map purity matrix was
subsequently aggregated into 8 ecotope group classes and 16 vegetation type
classes. The multiplication factor was changed by trial and error until the
classification accuracy at ecotope group level was 80, 90, and 95% (Table 3).

Table 3 Characteristics of classification accuracies.

Set Classification accuracy at  Classification accuracy at  Number of runs
ecotope group level vegetation type level in WAQUA

1 69 % 43 % 15

2 80 % 65 % 15

3 90 % 83% 15

4 95 % 92 % 15

At each accuracy level 15 new realizations were created of the two roughness files
(area-u and area-v), and for each of the realizations a new random number was
drawn for each of the polygons giving a completely independent realization of the
roughness distribution within the constraints of the map purity table. In total 60
WAQUA runs were carried out to determine the effect of the increasing classification
accuracy on the uncertainty of the water levels. The variation of the water levels
between the different runs is the main output of the uncertainty analysis.

4.2 Within class variation of vegetation structural characteristics

Contrary to the classification accuracy, the error in the lookup table is generally not
well-known. Popular guidelines on selecting roughness values e.g. (Chow, 1959;
Arcement and Schneider, 1989) give Manning's values, without taking the water
depth into account, and only make a weak link to vegetation structure. Ecotopes are
defined as being uniform in vegetation structural characteristics and from the
modeling perspective there is no within class variation, similar to other guidelines on
selecting roughness values. However, large variations in vegetation height and
density were measured in the field (Straatsma and Ritzen, 2002).

Some remote sensing techniques, like terrestrial and airborne laser scanning, have
the capacity to map the spatial distribution of vegetation height and density. For
example, the variation within a single forested ecotope may range between 0 and
0.35 m™ (Fig. 4), which was mapped using terrestrial laser scanning (Straatsma et al.,
2008). This spatial differentiation of vegetation structural characteristics inside
ecotopes is not incorporated in the ecotope map, nor in WAQUA.

Van Velzen et al. (2003) provided a complete lookup table with all the relevant
vegetation parameters. They also provide a list of field reference sites and their
measured vegetation structure for each vegetation class. It is clear from this list that
the variation in vegetation structure is large and that the class values are based on
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only a few measurements. The error in the lookup table is therefore largely
unknown. Fig. 5 shows the fixed values for vegetation height and density in the
lookup table incorporated in Baseline and in the “rough.karak” lookup table (Fig. 1).
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% 3 g L
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Figure 4 Within class variation of vegetation density in a forested ecotope in the Gamerensche
Waard. Dvys is the vegetation density as modelled using terrestrial laser scanning data (from
Straatsma (2008).
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Figure 5 Feature space of vegetation height and density of different vegetation types in the
vegetation handbook.

The maximum uncertainty in the water levels due to this so called within class
variation was determined by Straatsma and Alkema (2009). They compiled a
database of field vegetation measurements, categorized them per vegetation type
and computed the quartiles of the vegetation height and density independently.
Combinations of minimum vegetation height and density up to maximum vegetation
height and density were chosen to determine the maximum range in uncertainty at
peak water levels. While these combinations effectively show maximum uncertainty,
these combination are not realistic as an inverse relationship exists between
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vegetation height and density. Taller vegetation is in general more open than lower
vegetation. Therefore, in this study realistic combinations of vegetation height and
density are computed to determine a realistic uncertainty in water levels due to
within class variation at the design discharge in 2015 (16 000 m®/s).

4.2.1 Within class variation of vegetation structural characteristics per
vegetation type

The challenge is to determine realistic values for within class variation. Two different
types of within class variation are discernable: within ecotopes and within vegetation
types of the vegetation handbook of Van Velzen et al. (2003). Ecotopes are
aggregated into vegetation types during Baseline preprocessing of WAQUA model
input. Therefore, we focused on within class variation within the vegetation types of
the handbook.

To fill in the knowledge gap on within class variation, we analyzed the database of
vegetation structural parameters that was compiled by Straatsma and Alkema (2009)
based on fieldwork in Dutch floodplains in winter between 2000 and 2007. This data
is available on request. As WAQUA does not work with roughness maps as input
directly, but with roughness codes, a new set of codes was compiled that describe
the variation in vegetation structural characteristics per vegetation type of Van
Velzen et al. (2003). Four new variations were chosen for each vegetation type.

For submerged vegetation, the vegetation height and density need to be given. For a
number of classes, enough field data were present in the database and in that case
the following procedure was followed. Data were divided in four classes, each
containing an equal number of field reference measurements. The data were first
divided by the median value of the vegetation density, and subsequently each of
these two classes were subdivided by the median value of vegetation height. The
mean and standard deviation were computed for the resulting four variations. In the
majority of the cases, however, not enough field data was available, and the
vegetation handbook was used as the starting point. The values for vegetation height
and density that were chosen for these cases were based on expert judgement and
the known distribution of vegetation parameters from similar vegetation types that
did have enough field data. In general the four classes were made up by multiplying
the height and density by 0.5 and 2.0 (Fig. 6). The different combinations of these
values give a skewed distribution around the original value that mimics the
distribution as seen in the database.

For emergent vegetation, the vegetation density values were divided in quartiles,
and the mean and standard deviation was computed. Again, in case not enough data
was available, the density was based on the vegetation handbook. Variation was
applied by multiplying the density by 0.25, 0.5, 2, and 4. Vegetation height of
emergent vegetation was maintained as it was at a height of 10 m.
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Figure 6 Variations in vegetation structural characteristics based on the handbook values and
multiplication factors of 0.5 and 2.0 for vegetation height and density.

4.2.2 Implementation in WAQUA

In WAQUA, the vegetation structure is attributed to each grid cell by using a lookup
table that relates to a roughness code to relevant surface characteristics. The codes
with values between 1201 and 1400 are reserved for different vegetation types.
Normally, only 25 codes are in use in this range. For this study, we enlarged the
lookup table to 100 items, giving four possible variations of the vegetation structure
of that vegetation type, see appendix B.

Updating the current WAQUA input needs to incorporate the within class variation.
The spatial distribution of the roughness types is stored in files called area-u and
area-v. These ASCIl formatted column files contain the MN coordinates of the
computational grid, the roughness code and the fraction of the cell covered with that
code. Each roughness code between 1201 and 1400 was assighed one of the
variations that were described above. Variations were assigned randomly, which is
warranted by the fact that each of the classes contain an equal number of field plots
and may be considered equally probable. For example, a cell that is partially covered
by dry herbaceous vegetation has the code 1212 in Baseline 4 in the original column
file. In the new area-u file one of the codes ranging between 1258 to 1261 will be
assigned (Box 1). Codes 1258 to 1261 represent the variation. This will result in a
new set of roughness files with a random component in the spatial distribution of
the vegetation structure. An example is given in box 1, appendix B gives the full
rough.karak file for those classes that were varied in this study.

Baseline 4 roughness code
r_code = 1212 a = 0.56 b = 0.23 ¢ = 1.8 d = 0.1 # Dry herbaceous vegetation

Variations including within class variation

r_code = 1258 a = 0.89 b = 0.067 ¢ = 1.8 d = 0.1 # Dry herbaceous vegetation
r_code = 1259 a = 0.59 b = 0.128 ¢ = 1.8 d = 0.1 # Dry herbaceous vegetation
r_code = 1260 a = 0.81 b = 0.034 ¢ = 1.8 d = 0.1 # Dry herbaceous vegetation
r_code = 1261 a = 0.44 b = 0.021 ¢ = 1.8 d = 0.1 # Dry herbaceous vegetation

Box 1. Example of the currently used roughness file and the variations that include the within class
variation, see also appendix B.
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Roughness codes between 1801 and 1900 consist of compound classes, describing a
mixture of two other classes. These compound classes cover 2.5 % of the vegetated
flood plain area and 1 % of the total embanked area. For example, roughness code
1807 is reed with 25 % open area and refers to code 1226 (reed) and code 122
(mulch). For each of these vegetation types, four new variations were created in
which the reference to the dominant vegetation type is changed to the new
variations of that dominant type.

Roughness codes between 111 and 122 refer to unvegetated areas, such as paved
areas, agricultural lands, or mulch. For these classes, only a Nikuradse roughness
length is given in the lookup table. For each of the original classes, four new classes
were created with varying roughness lengths using multiplication factors of 0.6, 0.8,
1.3 and 1.6. These multiplication factors were chosen to achieve similar variation in
roughness heights for the unvegetated area's as for production meadow. In Fig. 7 the
equivalent roughness heights for production meadow if the density and height of the
vegetation is varied by factors 0.5 and 2 (black lines). The central thick red line
depicts the reference roughness height of the vegetation for the standard values for
height and density. The dashed red lines show the roughnesses if the reference
roughness is multiplied by factors 0.6, 0.8, 1.3 and 1.6.

Production meadow

Flow depth (m)

Figure 7 Determination of multiplication factors for unvegetated areas based on production meadow.
Thick red line shows the variation of the ky values with water depth according to Klopstra et al.
(1997). The solid black lines show the meadow roughness with higher and lower vegeation height and
density. The four dashed red lines are the fixed roughness values based on the multiplication factors
that coincide with the changes in roughness for meadows.

To be able to determine the effect of this random component on the variation of the
hydrodynamics, fifteen new sets of roughness files were prepared. Each of these was
used as input to the same model with the same boundary conditions. Results were
compared based on the predicted water levels on the river axis of the three main
distributaries of the river Rhine and the discharge distribution over the bifurcation
points. A steady state discharge of 16 000 m?/s was chosen which is the same as the
design discharge of the Rhine for the year 2015.
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4.3 Scale error

The ecotopes were mapped at a scale a scale of 1:10,000 (Jansen and Backx,
1998). The minimum polygon size digitized for the ecotope map was 20 by 20 m,
while the median polygon size is 5000 m?, and occasionally terrestrial ecotopes may
cover more than 3 km?. In the recoding as carried out for the determination of the
effects of the classification error, the polygon size remains unchanged. However
classification is scale dependent (Van der Sande et al., 2003; Addink et al., 2007), and
large polygons may contain small patches that could be classified as a different
ecotope.

The field validation was carried out with point measurements (Knotters et al.,
2008), while aerial image classification was carried out following a decision tree per
polygon (Jansen and Backx, 1998). This difference in support and scale can be used in
determination of the scale errors in the ecotope map. We used the same map
purities table to determine the uncertainty at a different scale. We standardized the
size of the polygons to the smallest polygon mapped from the images by overlaying
the ecotope map with the curvilinear computational grid of WAQUA with a median
cell size of 700 m% The overlayed map has a median polygon size of 575 m?
approximating the minimum mapping area for the ecotope map, 400 m2. In doing so,
we implicitly assumed that the support of the field measurements would equal the
size of the overlayed polygons. An additional reason for standardizing the polygon
size is that for larger ecotopes, more spatial information is available to the
interpreter and we can assume that assigning an erroneous ecotope is less likely for
larger polygons.

Recoding was carried out using the same method as for recoding for the
classification error. Also for this error source, 15 realizations were created.

4.4 Hydrodynamic modeling

The WAQUA model has been used by the Dutch Ministry of Transport, Public Works
and Water Management for the two-dimensional simulation of hydrodynamics in the
complex channel and floodplain areas of the Rivers Rhine and Meuse in the
Netherlands (RWS, 2007) . For the present study, a series of simulations of steady
flow in the study area was carried out. The WAQUA model that was used for this
study is based on a staggered curvilinear grid. Each of the 886,861 cells represents a
column shaped volume of water with a variable surface area of 700 m* on average.
The water flow between the water volumes in the raster is calculated by numerically
solving the Saint-Venant equations of mass balance and of convective and diffusive
motion in two dimensions (RWS, 2007) using a finite difference method. The
boundary conditions of the model are the river discharge at the upstream boundary,
and the water level at the downstream boundary using a discharge-stage
relationship. Input data from which the WAQUA model calculates the water flow
field are a Digital Terrain Model (DTM), barriers and a roughness map. We ran
WAQUA with a discharge of 16,000 m>/s at the upstream end at Emmerich,
Germany. Water levels at the downstream end were around 4.39, 2.02 and 0.42 m
above ordnance datum for the downstream boundary conditions of the Waal,
Nederrijn-Lek and lJssel rivers respectively. The exact water level being governed by
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a rating curve. The full model of the Rhine branches was run as proximity of the
boundaries to the bifurcation points would limit the effect of water level variations.

We ran six sets of 15 model runs. The first four sets were related to the classification
accuracy at 69, 80, 90, and 95% classification accuracy at ecotope group level. The
fifth was related to the within class variation and the sixth to the scale error. The
number of model runs was limited as the time required for individual runs amounted
to eleven hours or more on a linux computational cluster of 10 processors. Output of
these sets that were used to determine the uncertainty were:
« Spatially distributed values of the standard deviation of the Nikuradse
equivalent roughness length
« Spatially distributed values of the standard deviation of the flow velocities
« Variation of the peak water levels along the river axis for each of the three
distributaries (Bovenrijn-Waal, Pannerdensch Kanaal-Nederrijn-Lek, lJssel).
The variation is summarized by the spread (84 percentile minus 16
percentile) and range of water levels at each river kilometer to determine the
spatial variation of the uncertainty.
« Discharge distribution between the branches at the Pannerdensche Kop and
lJsselkop bifurcation point.
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5. Results

Before we show the hydrodynamic effects of the classification error, within class
variation and the scale error, we present the analysis of the within class variation
based on the database compiled by Straatsma and Alkema (2009).

5.1 Overview of within class variation in the vegetation structural
characteristics per vegetation type

The compilation of the field data resulted in a database of 445 field measurements,
based on reference data from six floodplain sections: Duursche Waarden,
Afferdensche en Deestse Waarden, Groene rivier Arnhem, Gamerensche Waard,
Driel barrier island, Dreumelse overlaat (Fig. 1) (Straatsma and Alkema, 2009). For six
different vegetation types, the database contained enough data to compute the
vegetation structure for four different classes. Fig. 8 gives the parameter space for
vegetation height and density for submerged vegetation. The class means (big black
dots) were used in the lookup table for these classes. For herbaceous vegetation and
natural grass and hayland the class mean of the vegetation density is roughly half
and twice the median value which is indicated by the dashed vertical line. For
softwood shrubs, no combination of high density and high vegetation height existed
in the database. These results were at the basis of lowering the vegetation height
data for some of the classes. For example, hairy willowherb has a vegetation height
of 1.0 m in the vegetation handbook, but a vegetation height of 2 m would be
unrealistic. Therefore a maximum height of 1.3 m was chosen.

Dry herbaceous vegetation Natural grass and hayland
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Figure 8 Variation of vegetation height and density for submerged vegetation types. The dotted lines
give the class boundaries. The large sized dots represent the class mean, the error bars give the
standard deviation for vegetation density (horizontally) and vegetation height (vertically).
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Figure 9 Histograms of vegetation density for hardwood and softwood forest. Black dots give the class
mean. Standard deviation indicated as horizontal bars (vertical shift for visualisation only).

The distribution of vegetation density in forests shows a skewed distribution (Fig. 9).
For hardwood forest values as high as 0.3 to 0.35 (m™) were found, but these are
more indicative of shrubs. The fact that these values are still present in the forest
vegetation type is an indication of classification errors in the ecotope map. Based on
these distribution, we decided to use the multiplication factors of 0.25, 0.5, 2, and 4
for the forest types that did not have enough field reference data. Vegetation height
of forest is always set to 10 m, an arbitrary value that is at least more than the
maximum water depth. The overview of the vegetation structural parameters is
given in Table 4.

@ Food Control ;& ——— 26
UNIVERSITY OF TWENTE. iy ——



Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

Table 4 Vegetation types of the handbook and the within class variation. Each of the cells in the area-
u and area-v files that contained one of the roughness codes between 1201 and 1400 was updated
with a randomly chosen roughness code that contained the values in the last four columns.

Within class variation®

Vegetation type® Structural Baseline 4 Handbook 1
egetation type characteristic” Code Values
Production meadow Dv 1201 45.000 12.909 9.591 19.727 24.500
Hv 0.06 0.03 0.06 0.03 0.11
Natural grass and hayland Dv 1202 12.000 0.035 0.035 0.158 0.199
Hv 0.10 0.35 0.60 0.43 0.95
Herbaceous meadow Dv 1203 15.000 7.500 7.500 30.000 30.000
Hv 0.20 0.10 0.40 0.10 0.40
Thistle herb. Veg. Dv 1211 3.000 1.500 1.500 6.000 6.000
Hv 0.30 0.15 0.60 0.15 0.60
Dry herbaceous vegetation Dv 1212 0.230 0.021 0.034 0.128 0.067
Hv 0.56 0.44 0.81 0.59 0.89
Brambles Dv 1213 0.560 0.280 0.280 1.120 1.120
Hv 0.50 0.25 1.00 0.25 1.00
Hairy Willowherb Dv 1214 0.130 0.065 0.065 0.260 0.260
Hv 0.95 0.48 1.30 0.48 1.30
Reed herb. Veg. Dv 1215 0.160 0.080 0.080 0.320 0.320
Hv 2.00 1.00 4.00 1.00 4.00
Wet herb. Veg. Dv 1221 0.250 0.125 0.125 0.500 0.500
Hv 0.35 0.18 0.70 0.18 0.70
Sedge Dv 1222 1.200 0.600 0.600 2.400 2.400
Hv 0.30 0.15 0.60 0.15 0.60
Reed-grass Dv 1223 0.400 0.200 0.200 0.800 0.800
Hv 1.0 0.5 2.0 0.5 2.0
Bulrush Dv 1224 1.200 0.600 0.600 2.400 2.400
Hv 0.50 0.25 1.00 0.25 1.00
Reed-mace Dv 1225 0.350 0.175 0.175 0.700 0.700
Hv 1.50 0.75 3.00 0.75 3.00
Reed Dv 1226 0.370 0.185 0.185 0.740 0.740
Hv 2.50 1.25 3.50 1.25 3.50
Softwood shrubs Dv 1231 0.130 0.042 0.066 0.318 0.177
Hv 6.00 5.33 9.08 2.70 4.59
Willow plantation Dv 1232 0.041 0.021 0.021 0.082 0.082
Hv 3.00 1.50 6.00 1.50 6.00
Thorny shrubs Dv 1233 0.170 0.085 0.085 0.340 0.340
Hv 5.00 2.50 10.00 2.50 10.00
Hardwood prod. forest Dv 1241 0.011 0.003 0.006 0.022 0.044
Hv 10.0 10.0 10.0 10.0 10.0
Softwood prod. forest Dv 1242 0.028 0.007 0.014 0.056 0.112
Hv 10.0 10.0 10.0 10.0 10.0
Pine forest Dv 1243 0.016 0.004 0.008 0.032 0.064
Hv 10.0 10.0 10.0 10.0 10.0
Hardwood forest Dv 1244 0.023 0.011 0.026 0.040 0.098
Hv 10.0 10.0 10.0 10.0 10.0
Softwood forest Dv 1245 0.028 0.018 0.036 0.067 0.155
Hv 10.0 10.0 10.0 10.0 10.0
Orchard low Dv 1246 0.024 0.012 0.012 0.048 0.048
Hv 3.0 1.5 4.0 1.5 4.0
Orchard high Dv 1247 0.010 0.005 0.005 0.020 0.020
Hv 6.0 3.0 9.0 3.0 9.0
Pioneer vegetation Dv 1250 0.150 0.075 0.075 0.300 0.300
Hv 0.15 0.01 0.04 0.07 0.14

® Types in italics are based on field reference data, other types are based on the vegetation handbook,
multiplication factors and expert judgment.
®Dvis vegetation density (mz/m3), Hv vegetation height (m)
° Four variations based on either database analysis, or multiplication of the values in the vegetation
handbook. The values in italics are exceptions to these method, in these cases the vegetation height

was lowered.
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Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

5.2 Hydrodynamic effects

5.2.1 Variation in roughness

Each realization of the roughness files leads to a different pattern of roughness in
the floodplain as the ecotope polygons, or cells are recoded based on the map purity
table. As an example, Fig. 10 shows 4 out of the 15 roughness maps for two
floodplain sections based on the classification error at a 69 % classification accuracy
at ecotope group level. At this classification accuracy many of the polygons are
recoded into a different vegetation type and that shows in large areas that change in
roughness. For example in the Nederrijn at km 920, 5 km upstream of Wijk bij
Duurstede (not on map), a large production meadow is situated on the southern
floodplain. This area has a low roughness in three out of the four presented
roughness maps, but one map shows a significantly higher roughness as an orange
color. The Millinger Waard floodplain section (right hand panels) is a nature
development area that consists of smaller ecotopes, and hence the changes are also
spatially less extensive. Still, large differences are found in Nikuradse equivalent
roughness length. For example in the upstream part, the area outside of the summer
embankment shows large differences in roughness at a small spatial scale. The
changes in roughness in this area is specifically relevant due to the proximity of the
bifurcation point, therefore small changes in roughness immediately change the
distribution of the water over the distributaries.

To show the local variation in roughness the spread in the roughness values has been
computed by taking the difference between the 84 percentile and the 16 percentile
of the Nikuradse roughness lengths at each location. The spread was computed for
each error source. Fig. 11 shows the difference between the classification error at
69 % accuracy, within class variation and the scale error for the Millinger Waard
floodplain section. When looking at the natural levee east of river kilometer 872, a
large variation is visible for the classification error, a smaller spread for the within
class structural variation and a patchy structure for the scale error. In general, the
spread in roughness is smallest for the within class variation, spread in roughness is
the same for classification error and scale error, but for the realizations of the scale
error, the shifts in roughness are less spatially correlated due to the small polygon
size.
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Figure 10 Roughness values for four realizations based on the classification error at 69 % classification
accuracy. Note the large shifts in the agricultural area in the Nederrijn floodplain section (left hand
panels) and the more small scale changes in the nature development area of the Millinger Waard
floodplain section (right hand panels).
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Figure 11 Local spread in effective roughness heights (log ky-values), based on the 15 realizations of
roughness maps for three error sources: ecotope classification (69% accuracy), within class structural
vegetation, and mapping scale.

5.2.2 Spatially distributed values of the standard deviation of the flow
velocities

Variations in roughness have a strong effect on the flow velocities in the floodplains
and to a lesser extent in the main channel. Fig. 12 shows the spread in the flow
velocities in the same two floodplain sections along the Nederrijn and the Waal as
Fig. 10. A comparison with the roughness variations revealed that, in general, flow
variations are largest where roughness variations are largest. However, as some
parts of the floodplain contribute only little to the conveyance of the river, in these
parts large roughness variations have only little effect on flow velocities. The
strongest variations in flow velocities are typically found at locations where water
flows away from or into the main river channel. The upstream end of the Millinger
Waard floodplain section exemplifies the point as the spread in the flow velocities is
more than 0.2 m/s.
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Figure 12 Spread in flow velocities in two floodplain sections based on the classification error at 69 %
accuracy.
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Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

When comparing the three main error sources (Fig. 13) it becomes apparent that the
classification error has the largest effect on the flow velocities with a spread of up to
0.25 m/s. Within class variation has only a small effect on the flow velocities of
maximum 0.10 m/s locally. Scale error takes the intermediate position. Remarkably,
flow velocities due to the classification error at 95 % classification error (not shown)
are still larger than the spread due to scale error and within class variation.

0.25m/s

x 1Ecotope clsification
g i1t

43250 .
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4315 Be7d -
010

4.3
0.05

4305 |/ f j N R
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Figure 13 Spread in flow velocities in the Millinger Waard floodplain section based on the
classification error (69 % accuracy), within class variation, and scale error. Largest variation in flow
velocity was found for the uncertainty from the classification error, smallest uncertainty resulted from
the within class variation.

5.2.3 Variation of the peak water levels

Classification error

Water levels vary due to the different realizations. We show the effect of the
different roughness maps on the water levels at the axes of the distributaries. Fig. 14
gives the outcome of the individual runs as thin grey lines. Data has been
summarized for the following river sections: (1) Bovenrijn-Waal (BRWA), (2)
Pannerdensch Kanaal-Nederrijn-Lek (PKNELE), and (3) Ussel (lJ). The variation is
summarized by the range and spread in water levels for each river kilometer at the
river axes (Fig. 14, 16). The zero level in these graphs represents the average
predicted water level at that river kilometer. For each run, the deviation from this
average has been depicted to optimize interpretation of the results.

Classification accuracy exerts a strong influence on the water levels in the study area
(Fig. 14). For the three distributaries, the variation between the individual runs
decreases as shown by the thin grey lines for the individual runs, and as summarized
by the spread and the range. Note that the variation at the model boundaries is
limited due to the applied discharge-water level relationship. The variation of the
water level at the boundaries resulted purely from the variation in discharge. For the
Bovenrijn-Waal, the median spread drops from 0.07 to 0.02 m due to the increase in
classification accuracy of 69 to 95 %, while the maximum spread decrease from 0.2
to 0.05 m (Table 5, Fig. 15). For the lJssel, the values are 0.13 to 0.05 m for median
spread and 0.3 down to 0.12 for the maximum spread (Fig. 14, Table 5). The
Pannerdensch Kanaal-Nederrijn-Lek distributary takes an intermediate position.

The Waal shows a relatively linear decrease in the spread, both median and
maximum, with the increase in classification accuracy (Fig. 15), the statistics for the
lJssel display linear decrease in the median value, but even at a 90 % classification
accuracy, the maximum in the spread still reaches 0.28 m (Table 5; Fig. 15). The
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interquartile range in the spreads even increases from 80 to 90 % classification
accuracy. This resulted from the locally larger variation in roughness in the 90 %
classification realizations, enabled by the independent drawing of random numbers

for each realization.

Table 5 Overview of the uncertainty in water levels due to different error sources. The values
represent the spread in water levels at peak discharge between 15 model runs.

Spread
Pannerdensch Spread
Spread Kanaal- all Rhine
Bovenrijn- Nederrijn-Lek Spread distributaries
Waal (m) (m) 1Jssel (m) (m)
Classification accuracy at 69% | 0.069 0.103 0.138 0.114
3 Classification accuracy at 80% | 0.065 0.081 0.093 0.081
(4]
=Y Classification accuracy at 90% | 0.039 0.065 0.082 0.059
1]
< Classification accuracy at 95% | 0.020 0.045 0.051 0.038
% Within class variation | 0.005 0.005 0.007 0.006
= Scale error | 0.015 0.016 0.022 0.017
Classification accuracy at 69% | 0.197 0.192 0.285 0.285
Classification accuracy at 80% | 0.105 0.120 0.278 0.278
c Classification accuracy at 90% | 0.089 0.129 0.279 0.279
g - Classification accuracy at 95% | 0.048 0.075 0.118 0.118
'g‘é 95’ Within class variation | 0.008 0.012 0.023 0.023
Z0 Scale error | 0.029 0.029 0.038 0.038
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Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

Figure 14 Variations in water levels due to different classification accuracies for the Rhine
distributaries. Note the differences in the vertical scale between the rows of figures.
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Figure 15 Box plot of the spreads in water level over the three Rhine distributaries. Each black line in
Fig. 14 becomes an individual box here. The spread clearly decreases with increasing classification
accuracy. The median spread is given by the red line. The box extends from the interquartile range,
whiskers show the range of 1.5 times the interquartile range, and the flier points are the points
beyond the whisker range.
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Within class variation and scale error

Similar to the effects on flow velocity, the uncertainty in water levels due to within
class variation and scale error is much smaller than for classification error (Fig. 16,
Table 5). Within class variation leads to a maximum spread of 0.023 m, and a median
spread of 0.006 m. This shows that if the average value of the lookup table is correct,
variations around the average of up to a factor four for submerged vegetation and a
factor 16 for emergent vegetation lead to a 6 mm uncertainty in water levels. Scale
error has a larger effect of the uncertainty in the water levels, up to 4 cm in spread.
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Figure 16 Variations in water levels due to different error sources for the three river distributaries: (a-
c) classification accuracy, (d-f) within class variation, and (g-i) scale error. Note the differences in the
vertical scale between the rows of figures. Classification error is given for comparison and equals the
first column in Fig. 14.

To summarize the sources of uncertainty, Fig. 17 shows the spread for all
distributaries together. This graph clearly shows that classification accuracy if the
dominant source of uncertainty in water levels. Even at a 95 % classification
accuracy, the uncertainty due to classification error is larger than the within class
variation and the scale error.
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Figure 17 Comparison between uncertainty due to different error sources of floodplain vegetation.
Classification error is the dominant source of uncertainty. Even at the 95 % classification accuracy at
ecotope group level.

5.2.4 Discharge distribution over the bifurcation points

The variation in roughness also influences the distribution of the water at the
bifurcation points. Lower roughness leads to a lower water level locally which will
increase the conveyance in that branche. The area directly downstream of the
bifurcation points exerts the highest influence on the discharge distribution.
Classification error shows the largest effect on the discharge distribution. Even at a
95 % classification accuracy, the spread in the discharge is twice the spread for scale
error and around four times the spread for within class variation (Table 6). A lower
discharge at the bifurcation point will influence the water levels in the whole
distributary. A good example of this effect is the Nederrijn-Lek at a 69 %
classification accuracy (Fig. 14b), showing two model runs that are consistently lower
than the other runs.

The spread in the discharge distribution decreases with increasing classification
error, similar to the water level. The range in the discharge distribution is more
prone to outliers. For example at 95 % classification accuracy, one run shifted a large
discharge (170 m>/s) from the Nederrijn to the lUssel. These shifts in discharge may
have a large effect on the water levels (Fig. 18). A 200 m*/s increase in discharge
raised the water levels with approximately 0.05 m at the model boundaries
(Werkendam, Krimpen aan de Lek, Ketelmeer, Lobith; Fig. 18, Fig. 2), but locally the
increase may be as high as 0.25 m at the lJsselkop.
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Table 6 Spread in discharge distribution (p84-p16 percentile) of different stochastic errors (m3/s). In
brackets the range in the discharge variation. In brackets the range in discharge for each distributary.
Statistics based on 15 model runs.

Spread Spread Spread Spread
Bovenrijn- Pannerdensch  Nederrijn- IJssel
Waal Kanaal Lek
(m/s) (m®s) (m°/s) (m°s)
Classification accuracy at 69 % 93 (391) 69 (367) 104 (215) 114 (260)
Classification accuracy at 80 % 104 (205) 104 (179) 76 (181) 66 (99)
Classification accuracy at 90 % 51 (91) 39 (88) 62 (218) 40 (190)
Classification accuracy at 95 % 29 (51) 22 (45) 51 (174) 26 (176)
Vegetation structural variation 8 (13) 6 (14) 5 (8) 8 (11)
Scaleerror 18 (27) 13 (32) 11 (38) 13 (23)
0.5
e \\erkendam
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Figure 18 Dependence of difference in water level on difference in discharge for four boundary water
level stations in the Rhine distributaries (dQ-dh relationship at design discharge). Variation in
discharge may due to changing roughness patterns around the bifurcation points may explain up to
0.10 m in water level.

5.3 Number of runs

Because of the computational demands of the WAQUA model of the Rhine branches,
in the current study the number of individual runs was limited to 15 per set, totaling
90 runs, and four weeks of computation time on 6 cores of a Linux computational
cluster. The question arises whether enough runs were done to reliably estimate the
spread in water levels. For that reason, we assessed the maximum spread per
distributary (Fig. 19). It appears that the variation in the spread stabilizes after
around 13 model runs. Fifteen model runs are therefore suggested for future
probabilistic studies. This number of runs is acceptable if spatially-averaged results
are required (average uncertainty along distributary), or to get a rough indication of
the spread in water levels at a specific section in the river. Therefore, we also looked
at the maximum spread in 5 km long sections, the grey lines in Fig. 19. Also at the
scale of a river section, the spread in the water level levels off after around 13 model
runs, even though small changes in spread occasionally happen in the 14", or 15™
run. This implies that to get a more reliable uncertainty range at a particular location
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in the river, for example to asses the effects of a planned local river engineering
measure, more simulation runs would be necessary.

The low number of runs also affected the results on the classification error, where
the maximum spread did not show a linear decrease with increasing classification
error. If 500 runs were carried out, the estimate of the spread would have been
more robust and it is expected that the maximum spread would also show a linear
relation with classification accuracy. However that was beyond our computational
capacities.
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Figure 19 Variation of the spread as a function of the number of runs for the three distributaries and 5
km sections. The spread stabilizes after 13 runs for classification accuracy at 69 % classification
accuracy.

@ Hosd Control 7 71/7 y———
UNIVERSITY OF TWENTE. gy ——



Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

6. Discussion

In the previous section, we looked at the hydrodynamic effects due to different error
sources related to vegetation roughness in floodplains. This is the first study to
assess the uncertainty from floodplain roughness parameterization in a 2D model,
with the error sources broken down into three different sources. The study allows
ranking of the relative importance of the three uncertainty sources on resulting
uncertainty in flood levels. In general, the effects on flood levels are relatively large
when compared to the accuracy required for the hydraulic boundary conditions in
the Netherlands. For landscaping measures the effect should be less than 2 mm rise
in water level at the river axis and less than 5 m*/s change in discharge distribution
over the bifurcation points. However, one should view the results presented here in
the context in which numerical river models are commonly applied in flood defense
studies. The hydraulic roughness in these models is typically calibrated using
historical flood events. Next, the design water levels are estimated by extrapolating
the calibrated roughness parameterizations to high discharge situations. The
uncertainty range that is presented in the current study corresponds to the situation
where a river model is built up from available roughness parameterizations, and that
no additional calibration steps are applied. Therefore, the uncertainty range
presented here can be drastically reduced if calibration steps are included in the
model construction procedure. In a follow-up study we will focus on obtaining
uncertainty bounds around flood water levels and discharge redistribution if
calibration steps are also applied.

The pivot point for the methodology is the validation of the ecotope map presented
in Knotters et al. (2008) and Knotters and Brus (conditionally accepted). The overall
classification accuracy was low, 69 % at ecotope group level, but has been disputed
due to differences in support and discernability of the different ecotopes in the field.
The classification error, based on the current map purity table, led to a large spread
in water levels. However, other studies of vegetation classification, showed higher
accuracies based on automated classification algorithms (Van der Sande et al., 2003;
Geerling et al., 2007; Straatsma and Baptist, 2008). It was expected that a manual
delineation and classification of floodplain vegetation would results in a higher
classification accuracy. The large effect of the classification error on the water levels
and discharge distribution points at the need for an undisputed and complete quality
assessment of the ecotope map. Given the limitations, the uncertainty should be
interpreted as a maximum.

In the present study we linked a 69 % classification accuracy to a maximum spread in
water levels is 0.20, 0.19 and 0.29 m for the different river sections. For a higher
classification accuracy the variation in water levels reduced to 0.05, 0.07, and 0.12 m
at a 95 % classification accuracy. Based on this relation a political choice can be made
about the accepted amount of uncertainty that the river manager is willing to allow
for the water levels. This uncertainty in water levels can then be translated into a
required classification accuracy. A tangible benchmark for classification accuracy that
is substantiated by research would be a stimulation for the remote sensing
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community to provide the optimal method to reach this goal. Primary aim of any
method should be to increase the classification accuracy.

The within class variation in four classes that was applied randomly to the roughness
files resulted in a cm variation in water levels. This is a rather small effect compared
to classification errors. However, in assigning the vegetation structural
characteristics only little field data was available for most classes. Preferably, a
complete database would ground the choices for the lookup table and the within
class variation. Alternatively, ALS data can provide vegetation structural
characteristics directly (Cobby et al., 2001; Straatsma and Middelkoop, 2007). Such
methods remove the within class variation, and replaces it with a known prediction
error, which could be the base for a subsequent sensivity analysis. The downside is
the cost of ALS, and the need for such a new method can only be warranted with
increased classification accuracy. The current uncertainty assessment may help in
setting benchmarks for the desired accuracy. However, we showed that classification
accuracy is the dominant source of uncertainty, the uncertainty due to the within
class variation is an order of magnitude smaller than for classification error. Still high
confidence is placed on the accuracy of the vegetation structural values in the
lookup table. When there is a bias in these values, the water levels could change
much more than based on the present assessment.

Scale error is the uncertainty that would result from a mapping exercise at a larger
scale. It proves that the uncertainty can be reduced to a large extent if the map
would be made with smaller polygons, resulting from the larger scale map. In
practice, this is unlikely as even at a larger scale, many of the meadows would still be
mapped as a single large polygon, as little spatial variation is present in the area due
to the land management, such as mowing. In the map validation, this should be
taken into account, otherwise large polygons would be equally easily recoded into
another vegetation type as small polygons. The interpreter has more information
available to make the classification for larger polygons than for smaller polygons.
Therefore it is likely that the classification accuracy is higher for larger polygons.
During a map validation, the dependence between polygon size and classification
accuracy should therefore be established.

The habitual parameter to calibrate a hydrodynamic model is the roughness of the
main channel. This study shows the possible range in water levels that result from
assuming that the floodplain roughness is not correct. In theory, it would be possible
to calibrate a flow model on different ecotope distributions as well in a probabilistic
manner. Given a discrepancy between model outcome and measured values of
water level, or flow velocities, different ecotope distributions can be tested against
the measured values. The obvious disadvantage is that no direction for searching can
be defined beforehand, making the calibration process more time consuming.

The complex system of hydrodynamics that we try to capture in a model has many
uncertainties (location, level, and nature, sensu Walker et al. (Walker et al., 2003)).
In this study, we quantified the effects of spatial variability of vegetation roughness.
Within the ongoing project of uncertainty reduction within Flood Control 2015 other
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aspects are captured, such as morphological changes at the bifurcation points,
design discharge and operational discharge prediction. The uncertainties of these
other sources should be compared in a final study.

The quantification of the uncertainty in water levels and discharge distribution will
help to make more realistic decisions as the error bands are substantiated. These are
still relative differences and not absolute accuracies of the model output after
calibration, but it may serve as a first step. It can also influence the assessment of
the height of the embankments as insight is given in the variability of the outcome of
the flow models at design discharge. Moreover, the error bands may serve as an
incentive to quantify the desired accuracy in the vegetation structural
characteristics. This means that an upper limit can be put on the variation in water
levels that is accepted from errors in roughness.
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7. Conclusions and recommendations.

In this study, the variation in water levels has been studied resulting from three error
sources: (1) classification error, (2) within class variation, and (3) scale error. We
conclude that:

1.

The uncertainty ranges presented in the current study represent maximal values,
corresponding to a model that is not calibrated on historical flood events.
Accuracies are being improved drastically during calibration of the model.
Classification accuracy is the dominant source of uncertainty, within class
variation provides the smallest addition to the overall uncertainty.

The classification error at polygon level leads to a maximum spread in the
predicted water levels per river kilometer of 0.20, 0.19 and 0.29 m for Upper
Rhine-Waal, Pannerdensch Kanaal-Nederrijn-Lek and the lJssel river, respectively.
Largest effects are found in the lJssel river and the Pannerdensch Kanaal. These
values are valid at the current reported classification accuracy of 69 % at ecotope
group level.

There is an inverse relationship between the classification accuracy and the
uncertainty in the water levels. The median of the spread shows a linear relation
between classification accuracy and uncertainty in water levels. The maximum
spread per distributary is more sensitive to outliers and shows a sharp decrease
between 90 an 95 % classification accuracy.

The within class variation leads to a maximum spread in water levels of 0.01,
0.015, and 0.02 m for Upper Rhine- Waal, Pannerdensch Kanaal-Nederrijn-Lek
and the lJssel river respectively.

The scale error leads to a maximum spread in water level of 0.02, 0.03 and 0.035
m for the Upper Rhine- Waal, Pannerdensch Kanaal-Nederrijn-Lek and the IJssel
river respectively. These values are an order of magnitude lower then what was
found for the classification error, demonstrating the need to unambiguously link
map purities to a spatial scale.

The spread in the discharge distribution at the Pannerdensche Kop and llsselkop
bifurcation point is maximum 104 and 114 m>/s respectively for classification
error. Effects of within class variation and scale error is ten and five times
smaller.

Priority should be given to increasing the classification accuracy as this generates
the largest error.

The suitable number of runs for a probabilistic assessment of classification
accuracy might be fifteen when considering river-reach sections. More runs seem
necessary if a more local assessment is carried out.

With this study, we explored the relationship between vegetation parameterization
and the effects on predicted water levels and identified the relative importance of
three floodplain roughness uncertainty sources. The obtained flood level uncertainty
ranges represent maximal values as no calibration steps are incorporated in the
procedure. Follow-up studies will focus on the importance of model calibration in
suppressing uncertainties of simulated values.
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Based on these results we recommend to:

1. Establish the relationship between polygon size and classification accuracy

2. Rank the sources of uncertainty, including the uncertainty due to the choice of
roughness model.

3. Determine the absolute uncertainty at the design discharge due to uncertain
floodplain roughness.

4. Link the uncertainty in floodplain roughness to operational flood forecasting:
a) Based on the measured discharge and the 1 to 4 day forecast, the relation
should be established between discharge and uncertainty
b) Using the forecasted water levels, an additional error band is computed based
on the uncertainty in floodplain roughness. This will show the relative
importance of the floodplain roughness with respect to the uncertainty in the
forecasted discharge.
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Appendix A: Names of the ecotopes and associated Baseline 4
roughness codes

Ecotope code

Description

Roughness
code baseline
4

Roughness code description

HA-1 Highwater free agriculture 121 Agricultural land

HA-2 Highwater free builtup area 114 Paved / Builtup area

HB-1 Highwater free natural forest 1244 Natural forest

HB-2 Highwater free shrubs 1233 Shrubs

HB-3 Highwater free production forest 1242 Production forest

HG-1 Highwater free natural grassland 1202 Natural meadows

HG-1-2 Highwater free grassland (natural or production) 1202 Production / natural meadows

HG-2 Highwater free production grassland 1201 Production meadows

HM-1 Highwater free reeds 1807 Reeds and other helophytes

HR-1 Highwater free herbaceous vegetation 1212 Herbaceous vegetation

H-REST Highwater free temporarily bare 1250 Rest

1.1 Dynamic sweet to brackish shallow water 106 Shallow water

1.3 Slightly dynamic sweet to brackish shallow water 106 Shallow water

1.1 Gravel bars 111 Bare river bar

1.2 Sweet sand bars 111 Bare river bar

11.2-3 Sweet sand bars/ sweet mud banks 111 Bare river bar

1.3 Sweet mud banks 111 Bare river bar

11.4-5 Mid to highly dynamic brackish and salty bars 111 Bare river bar

1.2 Highly dynamic hard substrate influenced by sweet to brackish water 113 Paved / Builtup area

1.2-3 Low dynamic hard substrate influenced by sweet to brackish water 113 Paved / Builtup area

.4 Low dynamic hard substrate influenced by brackish water 113 Paved / Builtup area

1.8 Low dynamic hard substrate on the outside berm influenced by salty water 113 Paved / Builtup area

Iv.1 Species poor helophytes in shallow sweet water 1807 Reeds and other helophytes

IV.3-IV.8 Species poor helophytes swamp 1224 Bulrush / other helophytes

V.7 Brackish helophyte culture 1807 Reeds and other helophytes

1V.8-9 Species poor helophytes swamp/Species rich reed swamp 1807 Reeds and other helophytes

IX.a Agriculture on the shoreline 121 Agricultural land

OK-1 Unvegetated natural levee 1250 Bare levee

0-UA-1 Natural levee or floodplain agriculture 121 Agricultural land

0-UA-2 Natural levee or floodplain builtup area 114 Paved / Builtup area

0-UB-1 Natural levee or floodplain forest 1245 Natural forest

0-UB-2 Natural levee or floodplain shrubs 1231 Shrubs

0-UB-3 Natural levee or floodplain production forest 1242 Production forest

0-UG-1 Natural levee or floodplain grass land 1202 Natural grassland

0-UG-1-2 Natural levee or floodplain grass land (natural or production) 1202 Production / natural meadows

0-UG-2 Natural levee or floodplain production grassland 1201 Production meadows

0-UK-1 Natural levee or floodplain unvegetated 1250 Bare levee

0-UR-1 Natural levee or floodplain herbaceous vegetation 1212 Herbaceous vegetation

O-U-REST Natural levee or floodplain temporarily bare 1250 Rest

R Temporarily bare 1250 Rest

REST Temporarily bare 1250 Rest

REST-O Temporarily bare 1250 Rest

REST-O-T Temporarily bare 1250 Rest

REST-T Temporarily bare high water free 1250 Rest

RNM Moderately deep side channel 105 Side channel

RnMz-h Moderately deep side channel 105 Side channel

RnOz-h Moderately deep side channel 105 Side channel

RvD (Very) deep 106 River accompanying water

RvDz-k-h (Very) deep 106 River accompanying water

IF':\/IF[()VZI-\;I(;-k-h (Very) deep / moderately deep 106 River accompanying water

RvM Moderately deep water 106 River accompanying water

RvMz-k-h Moderately deep water 106 River accompanying water

RvO Shallow water 106 River accompanying water

RvOz-k-h Shallow water 106 River accompanying water

RwD (Very) deep water 106 River accompanying water

RwM Moderately deep water 106 River accompanying water

RwMz-h Moderately deep water 106 River accompanying water

RwO Shallow water 106 River accompanying water
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Ecotope code

Description

Roughness
code baseline
4

Roughness code description

RwOz-h Shallow water 106 River accompanying water

RzD Deep main channel 102 Main channel

RzDz-h Deep main channel 102 Main channel

RzM Moderately deep main channel 102 Main channel

RzMz-h Moderately deep main channel 102 Main channel

RzO Shallow main channel 102 Main channel

RzOz-h Shallow main channel 102 Main channel

UA-1 Floodplain agriculture 121 Agricultural land

UA-2 Floodplain builtup area 114 Paved / Builtup area

UB-1 Floodplain forest 1245 Natural forest

UB-2 Floodplain shrubs 1231 Shrubs

UB-3 Floodplain production forest 1242 Production forest

UG-1 Floodplain grass land 1202 Natural grassland

UG-1-2 Floodplain grass land (natural or production) 1202 Production / natural meadows

UG-2 Floodplain production grass land 1201 Production meadows

UG-HA-2 Floodplain production grass land / Highwater free production grass land 114 Production meadow / builtup

U-HG-2 Floodplain production grass land / Highwater free builtup area 1201 Production meadow

UM-1 Natural levee or floodplain reed 1807 Reeds and other helophytes

UR-1 Floodplain herbaceous vegetation 1212 Herbaceous vegetation

U-REST Floodplain temporarily bare 1250 Rest

V.1-2 Floodplain swamp 1804 Herbaceous vegetation

V.2 Species poor reed swamp 1804 Reeds and other helophytes

V.2/UR-1-2 Species poor reed swamp/floodplain natural grass land/floodplain production 1202 Herbaceous vegetation

grass land

V.4/UR-1 Species poor, stucture rich floodplain herbaceous vegetation 1212 Herbaceous vegetation

V1.2 Softwood shrubs 1231 Shrubs

VI.2-3 Softwood shrubs or pioneer softwood forest 1231 Shrubs

V.4 Softwood forest 1245 Natural forest

VI.5 Floodplain forest 1242 Natural forest

VI.7 Floodplain willow production forest 1232 Willow production forest

VI8 Production forest on shoreline 1242 Production forest

Vi.g Production / natural grass land 1202 Production / natural meadows

Vl.nb Natural forest 1245 Natural forest

Vl.pb Production forest 1242 Production forest

Vil.1 Swampy inundation grass land 1202 Natural grassland

VII.1-2 Swampy inundation grass land / structure rich grass land 1202 Natural grassland

VII.1-2-3 Swampy inundation grass land / structure rich grass land/ production grass land 1202 Production / natural meadows

VII.1-3 Swampy inundation grass land / structure rich grass land/ production grass land 1202 Production / natural meadows

Vil.2 Structure rich grass land 1202 Natural meadows

VI3 Production grass land 1201 Production meadow
Flood Control  ; » —— 46

UNIVERSITY OF TWENTE. —— e



Relation between accuracy of floodplain roughness parameterization and uncertainty in 2D hydrodynamic models

Appendix B Adapted roughness characterization file for

vegetation roughness
codes 100-300 Unvegetated floodplain land cover

codes 1200-1400: Emergent and submerged vegetation and

codes 1800-1900: Combinations of ecotopes

# CODE 101-300 : Ruwheids formulering volgens de formule van White-Colebrook

#r_code : de ruwheids code

t#a : k-Nikuradse (normaal of eb) (0.0001 - 0.20 - 100.)
#hb : k-Nikuradse (vloed) (0.0001 - 0.20 - 100.)

#e : geen betekenis

#d : geen betekenis

#

r_code= 101 a= 0.20 # default waarde

r_code= 102 a= 0.15 # diepe bedding

r_code = 103 a= 0.15 # ondiepe bedding

r_code= 104 a= 0.15 # strang

r_code= 105 a= 0.20 # nevengeul

r_code = 106 a= 0.05 # plas/haven/slikkige oever
r_code= 111 a= 0.15 # kribvakstrand/zandplaat/grindplaat
r_code= 112 a= 0.40 # ruwe oever

r_code= 113 a= 0.30 # steenbekleding

r_code= 114 a= 0.60 # bebouwd/verhard terrein
r_code= 115 a= 1.00 # bebouwd terrein

r_code= 116 a= 0.20 # verhard terrein

r_code= 121 a= 0.20 # akker

r_code= 122 a= 0.25 # strooisel

r_code= 131 a= 0.63 # vaste laag Nijmegen

r_code= 132 a= 0.34 # vaste laag St. Andries

r_code= 133 a= 0.68 # bodem kribben Erlecom
r_code= 141 a= 0.10 # ketelmeer oost

r_code = 142 a= 0.10 # ketelmeer west

r_code = 143 a= 0.10 # vossemeer

# Additional codes (structuuraanpassing)

r_code = 200 a= 0.09 # kribvakstrand/zandplaat/grindplaat
r_code= 201 a= 0.12 # kribvakstrand/zandplaat/grindplaat
r_code = 202 a= 0.195 # kribvakstrand/zandplaat/grindplaat
r_code= 203 a= 0.24 # kribvakstrand/zandplaat/grindplaat
r_code= 204 a= 0.24 # ruwe oever

r_code= 205 a= 0.32 # ruwe oever

r_code= 206 a= 0.52 # ruwe oever

r_code= 207 a= 0.64 # ruwe oever

r_code= 208 a= 0.18 # steenbekleding

r_code = 209 a= 0.24 # steenbekleding

r_code= 210 a= 0.39 # steenbekleding

r_code= 211 a= 0.48 # steenbekleding

r_code= 212 a= 0.36 # bebouwd/verhard terrein
r_code= 213 a= 0.48 # bebouwd/verhard terrein
r_code= 214 a= 0.78 # bebouwd/verhard terrein
r_code= 215 a= 0.96 # bebouwd/verhard terrein
r_code = 216 a= 0.60 # bebouwd terrein

r_code= 217 a= 0.80 # bebouwd terrein

r_code= 218 a= 1.30 # bebouwd terrein

r_code= 219 a= 1.60 # bebouwd terrein

r_code= 220 a= 0.12 # verhard terrein

r_code= 221 a= 0.16 # verhard terrein

r_code= 222 a= 0.26 # verhard terrein

r_code= 223 a= 0.32 # verhard terrein

r_code= 224 a= 0.12 # akker

r_code= 225 a= 0.16 # akker

r_code= 226 a= 0.26 # akker

r_code= 227 a= 0.32 # akker

r_code= 228 a= 0.15 # strooisel

r_code= 229 a= 0.20 # strooisel

r_code = 230 a= 0.325 # strooisel

r_code= 231 a= 0.40 # strooisel

# CODE 1201-1400 : Ruwheids formulering voor door- en overstroomde vegetatie
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#r_code : de ruwheids code

# a: de vegetatie hoogte (0.001 - 0.2 - 50.)

# b : de vegetatie dichtheid (0.0001 - 0.2 - 100.)

# ¢ : drag coefficient (0.1 - 1.8 - 10.)

#d : k-Nikuradse (onderlaag begroeiing) (0.001 - 0.2 - 100.)

#

r_code=1201a=0.06 b=45.c=1.8d=0.1# productiegrasland

r_code =1202a=0.10 b =12. c=1.8 d = 0.1 # natuuurlijk gras/hooiland
r_code=1203a=0.20b=15.c=1.8d=0.1# verruigd grasland
r_code=1211a=0.30b=3.c=1.8d=0.1#akkerdistelruigte
r_code=1212a=0.56b=0.23¢c=1.8d =0.1# droge ruigte
r_code=1213a=0.50b=0.56c=1.8d =0.1# dauwbraamruigte
r_code=1214a=0.95b=0.13c=1.8d =0.1 # wilgenroosje ruigte
r_code=1215a=2.00b=0.16 c=1.8d = 0.1 # rietruigte
r_code=1221a=0.35b=0.25c=1.8d =0.1 # natte ruigte homogeen
r_code=1222a=0.30b=1.2c=1.8d=0.1#zegge homogeen

r_code =1223a=1.00b=0.4c=1.8d=0.1#rietgras homogeen
r_code=1224a=0.50b=1.2c=1.8d=0.1#biezen homogeen
r_code=1225a=1.50b=0.35¢c=1.8d =0.1# lisdodde homogeen
r_code=1226a=2.50b=0.37c=1.8d=0.1#riet homogeen
r_code=1231a=6.00b=0.13c=1.5d= 0.4 # zachthoutstruweel
r_code=1232a=3.00b=0.041c=1.5d=0.4 # griend
r_code=1233a=5.00b=0.17 c=1.5d = 0.4 # doornstruweel

r_code =1241a=10.00b =0.011c=1.5d =0.3 # productiebos hardhout
r_code =1242a=10.00b =0.010c=1.5d = 0.3 # productiebos zachthout
r_code =1243a=10.00b =0.016 c=1.5d = 0.3 # productiebos naaldhout
r_code = 1244 a=10.00 b =0.023 c = 1.5 d = 0.4 # hardhoutooibos

r_code =1245a=10.00 b =0.028 c = 1.5 d = 0.6 # zachthoutooibos
r_code=1246a=3.00b=0.024c=1.5d =0.2 # boomgaard laagstam
r_code=1247a=6.00b=0.01c=1.5d=0.2 # boomgaard hoogstam
r_code =1250a=0.15b=0.15c = 1.8 d = 0.1 # pioniervegetatie

#

# new codes FC2015 structuuraanpassing
r_code=1249a=0.11b=24.5¢c=1.8d=0.1# Production meadow
r_code=1251a=0.03b=19.727 c=1.8d = 0.1 # Production meadow
r_code=1252a=0.06b=9.591c=1.8d=0.1# Production meadow
r_code=1253a=0.03b=12.909c=1.8d=0.1#Production meadow
r_code =12542a=0.95b=0.199 c = 1.8 d = 0.1 # Natural grass and hayland
r_code=1255a=0.43b=0.158 c=1.8d = 0.1 # Natural grass and hayland
r_code=1256a=0.6 b =0.035c=1.8d=0.1# Natural grass and hayland
r_code=1257a=0.35b=0.035c=1.8d =0.1# Natural grass and hayland
r_code=1258a=0.89b=0.067 c=1.8d =0.1# Dry herbaceous vegetation
r_code=1259a=0.59b=0.128 c=1.8d = 0.1 # Dry herbaceous vegetation
r_code=1260a=0.81b=0.034c=1.8d=0.1# Dry herbaceous vegetation
r_code=1261a=0.44b=0.021c=1.8d =0.1# Dry herbaceous vegetation
r_code=1262a=2b=0.8c=1.8d=0.1#Reed-grass
r_code=1263a=0.5b=0.8c=1.8d=0.1#Reed-grass
r_code=1264a=2b=0.2c=1.8d=0.1#Reed-grass
r_code=1265a=0.5b=0.2c=1.8d=0.1#Reed-grass
r_code=1266a=3.5b=0.74c=1.8d=0.1#Reed
r_code=1267a=1.25b=0.74c=1.8d =0.1 # Reed
r_code=1268a=3.5b=0.185¢c=1.8d =0.1 # Reed
r_code=1269a=1.25b=0.185c=1.8d =0.1# Reed
r_code=1270a=4.59b=0.177 c=1.5d = 0.4 # Softwood shrubs
r_code=1271a=2.7b =0.318 c=1.5d = 0.4 # Softwood shrubs

r_code =1272a=9.08b=0.066c=1.5d = 0.4 # Softwood shrubs
r_code=1273a=5.33b=0.042 c=1.5d = 0.4 # Softwood shrubs
r_code=1274a=6b=0.082 c=1.5d=0.4# Willow plantation
r_code=1275a=1.5b=0.082c=1.5d = 0.4 # Willow plantation

r_code =1276 a=6b =0.021 ¢ = 1.5 d = 0.4 # Willow plantation
r_code=1277a=1.5b=0.021c=1.5d =0.4 # Willow plantation
r_code=1278a=10b =0.34 c=1.5d = 0.4 # Thorny shrubs

r_code =1279a=2.5b=0.34c=1.5d=0.4 # Thorny shrubs
r_code=1280a=10b =0.085c=1.5d = 0.4 # Thorny shrubs
r_code=1281a=2.5b=0.085c=1.5d=0.4# Thorny shrubs
r_code=1282a=10b=0.112 ¢ = 1.5 d = 0.3 # Softwood production forest
r_code=1283a=10b =0.056 c = 1.5 d = 0.3 # Softwood production forest
r_code=1284a=10b=0.014 c = 1.5d = 0.3 # Softwood production forest
r_code =1285a=10b =0.007 c = 1.5 d = 0.3 # Softwood production forest
r_code=1286a=10b=0.098 c = 1.5d = 0.4 # Hardwood forest
r_code=1287a=10b =0.04 c=1.5d = 0.4 # Hardwood forest
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r_code=1288a=10b=0.026 c=1.5d = 0.4 # Hardwood forest
r_code=1289a=10b=0.011c=1.5d = 0.4 # Hardwood forest
r_code=1290a=10b =0.155c=1.5d = 0.6 # Softwood forest
r_code=1291a=10b =0.067 c=1.5d = 0.6 # Softwood forest
r_code=1292a=10b =0.036 c=1.5d = 0.6 # Softwood forest
r_code=1293a=10b =0.018 c = 1.5 d = 0.6 # Softwood forest
r_code=1294a=0.14b=0.3c=1.8d=0.1# Pioneer vegetation
r_code=1295a=0.07b=0.3c=1.8d=0.1# Pioneer vegetation
r_code =1296a=0.04 b=0.075c=1.8d =0.1 # Pioneer vegetation
r_code = 1297 a=0.01 b =0.075c=1.8d = 0.1 # Pioneer vegetation
#

5.

#

# CODE 1801-1900 : Ruwheids combinatie voor r_codes van 101-600 en 1201-1300
#r_code : de ruwheids code

#a:der_code van de eerste ruwheid (1 - 1221 - 1300)

#b:der_code van de tweede ruwheid (1 - 106 - 1900)

# ¢ : het percentage van de eerste r_code (0.001 - 0.75 - 0.999)

#d : het percentage van de tweede r_code (0.001 - 0.25 - 0.999)

#

r_code =1801a=1221b =106 c=0.75d = 0.25 # natte ruigte met 25% water
r_code = 1802 a=1245b =1801 c = 0.05 d = 0.95 # 5% zachthoutooibos en 95%
# natte ruigte met 25% water

r_code =1803 a=1222b =122 ¢c=0.75d = 0.25 # zegge met 25% strooisel
r_code =1804 a=1223b =106 c=0.75d = 0.25 # rietgras met 25% water
r_code =1805a=1224b =106 c=0.75d = 0.25 # biezen met 25% water
r_code = 1806 a = 1225 b = 106 ¢ = 0.75 d = 0.25 # lisdodde met 25% water
r_code =1807a=1226b =122 c=0.75d = 0.25 # riet met 25% strooisel

#

# combinaties uit de vegetatie opname van DON 2004

r_code =1811a=1250b = 1245 ¢ = 0.95 d = 0.05 # pioniervegetatie met

# 5% zachthoutooibos

r_code =1812a=1202 b =1245 c =0.80 d = 0.20 # natuurlijkgrasland met
#20% zachthoutooibos

r_code = 1813 a=1203 b = 1231 ¢ =0.80 d = 0.20 # verruigdgrasland met

# 20% zachthoutstruweel

r_code=1814a=1223 b =1231c=0.95d =0.05 # rietgras homogeen met

# 5% zachthoutstruweel

r_code=1815a=1226b =1231c=0.70d = 0.30 # riet homogeen met

#30% zachthoutstruweel

r_code=1816a=1231b =1245 c =0.80 d = 0.20 # zachthoutstruweel met

# 20% zachthoutooibos

r_code =1817a=1221b =1245 c=0.95d = 0.05 # natte ruigte homogeen met
# 5% zachthoutooibos

r_code =1818 a=1221b =1231c=0.70 d = 0.30 # natte ruigte homogeen met
# 30% zachthoutstruweel

r_code=1819a=1212b =1231¢c=0.90d = 0.10 # droge ruigte met

# 10% zachthoutstruweel

#

# combinaties FC2015 (structuuraanpassing) codes 1804 en 1807
r_code=1820a=1262b =106 c=0.75d = 0.25 # rietgras met 25% water
r_code =1821a=1263b =106 c=0.75d = 0.25 # rietgras met 25% water
r_code =1822a=1264b =106 c=0.75d = 0.25 # rietgras met 25% water
r_code =1823a=1265b =106 c=0.75d = 0.25 # rietgras met 25% water
r_code =1830a=1266b =122 c=0.75d = 0.25 # riet met 25% strooisel
r_code=1831a=1267b=122c=0.75d =0.25 # riet met 25% strooisel
r_code=1832a=1268b =122 c=0.75d = 0.25 # riet met 25% strooisel
r_code=1833a=1269b =122 c=0.75d = 0.25 # riet met 25% strooisel
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