Exercise. Landslide susceptibility assessment using statistical method

Input data

Active1:=iff(((Activity="a")or(Activity="r"))and(Part="s"),1,0) \longrightarrow 109 landslides fulfill this criteria

Raster map Active1 (with value 1,0,?).

Raster map "Active (with value 1,0).

Step 3: Calculating weight values

In the table below you are able to see that the class with more relations with landslides is "60-90".

Table "Slope_cl" - ILWIS						×	
File Edit Columns Records View Help							
	Areaslopetot	Areaslopeact	Areaslopeact_aggregate	Densclass	Dclas	Weight	
0 - 5	4173424	3986	3986	0.0010	0.0010	-2.7213	
5 - 10	2723958	5521	5521	0.0020	0.0020	-2.0281	
10 - 15	1952714	10854	10854	0.0056	0.0056	-0.9985	
15 - 20	1502075	13786	13786	0.0092	0.0092	-0.5021	
20 - 25	1086549	24235	24235	0.0223	0.0223	0.3833	
25 - 30	854335	28284	28284	0.0331	0.0331	0.7782	
30 - 40	1073296	55408	55408	0.0516	0.0516	1.2222	
40 - 50	450340	43088	43088	0.0957	0.0957	1.8399	
50 - 60	147443	22346	22346	0.1516	0.1516	2.3000	
60 - 90	35866	5938	5938	0.1656	0.1656	2.3883	2
					[
4						►	
							11.

Step 4: Creating the weight maps

Here is described how evaluate the weight of the lithology. The procedure is the same used for the slope.

Now we have to evaluate the weight for each class.

P

Now you can create the attribute map from the weight of the lithology and then combined with the Weight map of the slope.

🔜 Attribute Map o	Raster Map	×		
Raster Map	Eithology	•		
Table	itho_cl	•		
Attribute	👔 Weight 💌			
Ranges from -5.0240 to 1.8839				
Output Raster Map	Wlithology			
Domain	value	•		
Value Range	-5.0240 1.8839]		
Precision	0.0001			
Description:				
Map will use 4 bytes per pixel				
Show	Define Cancel	Help		

• The weights for the two maps can be added with the formula:

Weight1=Wslope_cl+WLithology

 Display the map Weight1 and use the pixel information window in order to read the information from the maps Slope_cl, Wslopecl, Lithology, WLithology and Weight1. (See below).

Pixel Information - ILWIS				
File Edit Options Help				
		A		
++Coordinate	(477019.80,1558268.36)			
Slope_cl	15 - 20			
Wslope_cl	-0.5021			
Lithology	Krc			
1 Age	Cretaceous			
Description	Sedimentary rocks			
Lithology	Hetereogeneous mix of limestone, shales,	and :		
WLithology	-5.0239			
Weight1	-5.5260			
		-		
Customize the Pixel Information Window				

Histogram of the total weight map.

Domain "Susceptibilty".

You can establish the boundary of the domain looking at the histogram and considering also the distribution of the value into these ranges. This is only an example but you can decide to use others values that you hold as appropriate.

For experienced ILWIS users:

Attribute Map of Raster Map	Try to include the old landslide in the hazard map.
Raster Map	
Table	
Attribute	• <u>Create an attribute map of the Old scarp of the landslide</u> . In the table
Minimum: 0 Maximum: 1	landslide id type the following formula:
Output Raster Map DId_scarp	
Domain value 💌 👱	Old:=Iff((Activity="Stable")and(Part="Scarp"),1,0)
Value Range	Now create an attribute map of Old. Go to <i>operations</i> , raster
Precsion 1.0	operations, attribute man and select in the raster man landslide id
Description:	in the attribute table landslide id, and the column Old See the
Manuillung 1 hute per sius	in the attribute table landslide_id, and the couldn't Old. See the
	Image on the left.
Show Define Cancel Help	 Now we want to assign the value "0" for the area undefined.
	In the command line of II WIS type the following formula:
	Old = iff(isundef(Old scarp) 0 Old scarp)
We are going to	old_=In(Isunder(Old_scarp),0,0ld_scarp)
accurate that for the	
assume that for the	The last step is combining the information of the old scarp with the
areas classified as	hazard map. Type the formula:
"low_hazard", but	Finaliff((Old-1)and(Hazard-"low bazard") "moderate bazard"
affected by landslides	line
in the past, the hazard	nazara)
could be moderate	
could be modelate.	

Another method more rigorous is to consider from the beginning also the old landslide (when you evaluate the density of landslide per class and in the total area). You can do that directly in the script.

Step 7: Calculating success rate.

The graph of success rate should have this aspect.

More explanation is needed how the script works

