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ABSTRACT

Based on several layers of spatial map patterns, multivariate regression methods have
been developed for the construction of landslide hazard maps. The method proposed in
this paper assumes that future landslides can be predicted by the statistical relationships
established between the past landslides and the spatial data set of map patterns. The
application of multivariate regression techniques for delineating landslide hazard areas
runs into two critical problems using GIS (geographic information systems): (i) the need
to handle thematic data; and (ii) the sample unit for the observations. To overcome the
first problem related to the thematic data, favourability function approaches or dummy
variable techniques can be used.

This paper deals with the second problem related to the sample units. In this situation,
the unique condition subareas are defined where each subarea contains a unique
combination of the map patterns. Weighted least squares techniques are proposed for the
zonation of landslide hazard using those unique condition subareas. The traditional
pixel-based multivariate regression model becomes a special case of the proposed
weighted regression model based on the unique condition subareas. This model can be
directly applied to vector-based GIS data without the need of rasterization.

A case study from a region in central Colombia is used to illustrate the methodologies
discussed in this paper. To evaluate the results adequately, it was pretended that the time
of the study was the year 1960 and that all the spatial data available in 1960 were
compiled including the distribution of the past landslides occurred prior to that year. The
statistical analyses performed are based on these pre-1960 data about rapid debris
avalanches. The prediction was then compared with the distribution of the landslides
which occurred during the period 1960-1980.
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1. Introduction

Landslides are natural geologic processes that contribute significantly to shape the
landscape of the Earth. Landslides become hazardous processes when they interfere with
human activities. Often human activities such as deforestation and urban expansion, in
fact, accelerate the process of landslides. This problem is especially serious in
developing countries where environmental protection and management are harder to
sustain. For exarmple, over 95% of all disaster and fatalities related to landslides occur in
developing countries (Hansen, 1984), and up to 0.5% of gross national product of these
countries have been lost by landslides (Fournier D'Albe, 1976). In 1990, the General
Assembly of the United Nations declared the decade 1990-2000 as the International
Decade for Natural Disaster Reduction. Annual economic fosses due to landslides are
estimated to be in the order of two to five billions US dollars (Schuster, 1994).

Landslides are usually triggered by events such as extreme rainfall, earthquakes,
volcanic eruptions, and land-use-changes. The prediction of future landslides in
landslides-prone areas is an important aspect for future Jand use planning. Landslide
hazard zonation aims at delineating potential areas for the occurrences of future
landslides by using geoscience data such as soil types, slope angle and other
geomorphologic features in the area of study. In this paper we discuss a regression
model for landslide hazard zonation under the following two assumptions: (i) that the
characteristics of the past landslides in the study area can be described by the input
spatial geoscience data; and (ii) that the future landslides will occur under similar
conditions in which the past landslides took place.

The use of multivariate regression models for landslide hazard zonation and prediction
has mainly been developed in Italy by Carrara (1983, 1988) and his colleagues (Carrara
et al., 1992). In their earlier applications (Carrara 1983; 1988), a square grid is first
overlaid on a study area, and the size of grid was determined so that the total number of
grid cells was reasonably small, generally not more than a few thousands. The square
cell becomes the sample unit for the regression analysis. Therefore, for each square cell,
one observation is made for each layer. Similar cell-based multivariate regression
models were developed for the prediction of mineral potential areas based on several
layers of map data (Chung, 1978; Chung and Agterberg, 1980; and Chung, 1983).

If the sample unit covers a large area (e.g., large rectangular cell of 100 m x 100 m or
larger), it becomes a difficult task to properly represent a large area by one observation
for each layer, because the observation of the cell may not properly represent
geomorphologic meaning of the cell. A way to avoid the difficulty is to make the size of
the grid spacing small (e.g., sample units of 12.5 m x 12.5 m was used in the Colombian
example) so that the each grid cell covers a small area on the ground. As a size of the
grid spacing gets smaller, it gets easier for one observation to represent the cell, but the
number of grid cells becomes larger. Often, the number of the sample units becomes too

large for regression analysis.
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To shun the difficulty, Carrara and his collaborators (Carrara et al., 1991) have proposed
the use of morphometric units as sample units. The advantage of using morphometric
units is that they can be delineated automatically on the basis of a digital elevation
model (DEM). The mean size of those morphometric units can also be adjusted to the
average size of the landslides occurring in a study area. The main disadvantage of the
morphometric units is that the overall conditions may be very heterogeneous within such
units. The morphometric units are also irregularly shaped and sized. With the statistical
techniques used by Carrara er al. (1992) it is possible to say whether a unit as such is
stable or not. Within a unit which may still be in the order of hectars, however, no
differentiation in hazard can be made.

We deal with this problem in this contribution by proposing a new weighted regression
model based unique condition subareas. As in Appendix A, it can be shown that the
traditional cell-based multivariate regression model becomes a special case of the
proposed weighted regression. model based on the unique condition subareas. This
unique condition subarea-based model can be directly applied to vector-based GIS data
without the need of rasterization.

Another difficulty in the application of regression analysis to that kind of spatial input is
the handling of thematic data such as digitized maps representing bedrock lithologies
and land uses. Traditionally, this problem was unraveled by generating a series of
dummy binary variables to represent the presence or absence of the various map units in
cells (Chung, 1983; Chung and Agterberg, 1980; and Carrara, 1983, 1988). Instead of
the dummy. variable approach, we can make use of the favourability functions proposed
by Chung and Fabbri (1993). The use of the favourability function approaches for the
zonation of the landslide hazard are shown in Chung and Leclerc (1994).

Wang and Unwin (1992) have proposed the log-linear model for the prediction of
landslide hazard. To apply the log-linear models (Christensen, 1990) proposed by Wang
and Unwin (1992), it must be assumed that the cell (or something similar to that) is a
sample unit. Let us consider the m+1 dimensional contingency table containing all the
possible combinations of the thematic classifications of the m input layers and the
landslide layer. At each slot in the table containing a combination, we count the number
of cells which have that combination of thematic classes. In the example used in Wang
and Unwin (1992), only three layers were used. Two layers consisted of three classes
each and one layer consisted of only two classes. Their three-dimensional 3 x 3 x 2
contingency table contained 18 slots (two slots contained no observations (see Tab. 3 of
Wang and Unwin, 1992). The data from Colombia used in this paper contain eight input
layers including the distribution map of the past landslides. The eight-dimensional table
contains. 388,800 slots and each slot represents one of 388,800 possible combinations of
thematic classes. In the table, however, only 4728 (the same as the number of unique
condition subareas assuming that 12.5 m x 12.5 m cell is used) contain one or more
cells, and the remaining 384,072 slots contain no cells. Because of the large number of
empty slots, the log-linear model based on the m+1 dimensional contingency table can
not be utilized for analysis of these types of spatial data.
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2. Study area

The catchment of the Rio Chinchina, located on the western slope of the central Andean
mountain range (Cordillera Central) in Colombia, near the Nevado del Ruiz Volcano
was used as a test area for various landslide hazard zonation techniques (van Westen et
al., 1993). A part of this catchment with an area of 68 km” was used as the training area
for the application of different quantitative techniques. Fig. 1 illustrates the distribution
of landslides occurred prior to 1960, whereas the distribution of landslides occurred
between 1960 and 1980 is shown in Fig. 2.
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Figure 1. Distribution of pre-1960 rapid debris avalanches (termed derrumbes in Spanish),
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Figure 2. Distribution of 1960-1980 rapid debris avalanches (termed derrumbes in Spanish),
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The severity of natural hazard in the study area combined with extensive industrial and
agricultural activity and a high population density, has caused considerable damage and
loss of lifes in the past. The area is susceptible to mass movements, earthquakes, and
volcanic hazards. The geology of the study area has been reviewed by van Westen

(1993).

Most of the lithological units have a marked north-south directionality, which is related
to the Romeral fault pattern. Paleozoic schists, quartzites, and marbles were uplifted
during the Upper Palaeozoicum as result of Late Hercynian orogenesis. These rock are
intruded by a number of intermediate and acidic batholites, stocks and dikes of Jurassic
and Cretaceous age. Tectonic uplift of the area started near the end of the Cretaceous
and continued throughout the Tertiary into the Quaternary. The major tectonic uplift, in
which the two fault systems of Romeral and Palestina played an important role, took
place during the Late Cretaceous and Early Tertiary.

Most of the rocks experienced intensive metamorphism, and intrusives related to the
Romeral fault zone occurred locally. Practically all rocks have faulted contacts. The later
stages of tectonic uplift were accompanied by important volcanic activity so that flows
unconformably overlie the Paleozoic rocks. During Late Miocene and Early Pliocene
large volume of sediments related to volcanic activity were deposited throughout the
area. Most of these materials were later removed by subsequent erosion. Volcanic
activity continued during Pleistocene, with the formation of lava flows, now mostly
restricted to presently existing valleys. Below the maximum limits of the lava flows the
valleys were filled with debris flows and pyroclastic flows. During periods of glaciation
the increased ice volume in higher parts of the area generated large debris flows.
Another very important effect of Pleistocene and Olocene volcanism is the deposition of
a thick blanket of ash over the terrain. The ash sequences vary in thickness and
composition, depending on the distance from the volcanoes and the amount of erosion
since deposition. These ash deposits are of great importance in the occurrence of mass
movements. Contacts between the relatively permeable ashes and the underlying, less-
permeable, weathering soils often serve as the failure surface for landslides.

The study area is located in a zone of important seismic activity, in which earthquakes
with magnitude 6 or larger on the Richter scale have occurred with an approximate
return period of 15 years. At various locations displacement in ash sequences was
observed, indicating Quaternary fault activity. The relationship between the faults and
mass movements is, however, more due to their width and amount of milonitization and
deformation than due to their seismic activity, In the main Romeral fault an area up to
500 m wide is affected.

Geomorphologically, the region represents a typical Andean environment: an active
mountain chain in the wet equatorial zone, characterized by deep weathering, strong
Pliocene uplift and associated deep fluvial incision, mass movement problems, and
active volcanism at higher elevations interfering with Pleistocene glaciation. With the
exception of the terraces, the geomorphological zones in the area are oriented north-
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south as a consequence of the tectonic framework, lithology and altitude. Five general
geomorpho-logical zones can be distinguished:

1.

Rounded hills between the Cauca and the Romeral fault zone. Mass movements are
not abundant in this region. Fossilized landslides are found along terrace edges.
Active landslides occur on the terrace slopes.

. Romeral fault zone. The area between Chinchina and Manizales is characterized by a

number of fault-related noth/south-oriented valleys and ridges with steep slopes. The
relationship between the faults and the drainage pattern is very clear: the Rio
Chinchina changes its course four times between Manizales and La Manuela, making
turns of 90 degrees. Landslide problems can be severe, expecially in fault zones,
where the bedrock material is highly deformed. The most common type of mass
movement is soil slip or soil avalanche.

. Dissected Tertiary planation surface. The area between the Romeral zone and west of

the Tertiary lava deposits is characterized by remnants of a Tertiary planation surface
of Late Eocene-Early Oligocene age. The area has an almost continuous cover of ash,
with uniform sequences of silty sand and lapilli, and is characterized by the
occurrence of large flow slides, which have shown little differentiation in size or
activity since the 1940s. The steep slopes of the major valleys, and the fault scarps,
have by far the highest frequency of active surficial landslides.

. Volcanic complex. The highest part of the study area consists of a series of lava flow

levels, among which the upper part has been shaped by glacial erosion. From an
altitude of 2300 m to the maximum glacial limit, the terrain is characterized by very
steep slopes, covered by original Andean forest, with a high density of surficial
debris avalanches. On these slopes gulley erosion and solifluction are the most
common denudational processes.

. Terraces. A large number of different terrace levels can be observed throughout the

area. They are quite homogeneous in composition and may occur at different levels
due to differential uplifi. Most terraces are composed of debris flow material and
alluvial material. They differ with respect to the degree of weathering and ash cover.

After the 1985 eruption of the Nevado del Ruiz a great amount of research was done to
determine the volcanic history of the area, as a basis for a better volcanic hazard map
(van Westen, 1993, p. 41). On the basis of studies of stratigraphic columns and
radiometric dating a total of 24 important eruptions have been identified for the last
6247 years. The following hazards are associated with volcanic eruptions: lava flows,
pyroclastic flows, lateral blasts, pyroclastic falls and lahars (debris flow of pyroclastic
material, incorporating rock fragments, eroded alluvial deposits, trees, ice, and water,
triggered by a volcanic eruption).

The geological map and the slope map of the study area are shown in Fig. 3 and Fig. 4,
respectively.
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Figure 3. Geological map of the Colombian landslide hazard study area. Legend: 1) an:iss. 2)
Schists. 3) Volcanic. 4) Gabbro. 5) Metasediment. 6) Alluvial. 7) Mix Debris. 8) Weathered
Debris. 9) Lake Deposit. 10) Lahar Deposit. 11) Flow Deposit. 12) Pyroclastic Flow, 13)
Andesitic. 14) Tertiary Sediments.
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Figure 4. Slope map of the Colombian landslide hazard study area.
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Figure 5. Geomorphological map of the Colombian landslide hazard study area.

From West to Fast three main terrain complexes as shown in Fig. 5, can be
differentiated in this test area: (i) the western hills, with gentle slope, mainly underlain
by schists, with a relatively thick cover of volcanic ashes, and with rotational slides as
the most predominant mass movement feature; (i) debris flow terraces, located in a
graben structure in the central part of the area; and (iii) Romeral fault zone, with steep
slopes in metamorphic rocks and shallow ash cover, located within one of the major
active fault-zones of Colombia, characterized by the frequent occurrences of rapid debris
avalanches. In addition to these three maps, four layers were used for the analysis. All
seven input layers and their corresponding classes are contained in Tab. 1.

3. Representation of data

The input data for landslide hazard zonation usually consists of several layers of spatial
information digitized from maps. The types of the spatial input layers considered here
are illustrated in Tab. 1. Some layers represent continuous measurements such as slope
angles and distances, while other layers represent non-scaled thematic data such as
bedrock lithology units and land use classes. We will refer non-scaled thematic data as
"thematic classification" data where an observed categorical pixel value does not have
numeric meaning, but it only represents a thematic class.
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Table 1. Data layers and classes used for analysis.

MAP CLASSES

Geology « gneissic intrusive »schists + volcanic and metasedimentary

« gabbro and diorite *alluvial sediments

« flow materials and alluvial and ashes :

+weathered debris flow materials +lake deposits *lahar deposits
» pyroclastic flow deposits

- mix of pyroclastic and debris flow

- andesitic intrusive =tertiary sediments

Geomorphology Complexes » Western hills +terrace
»Romeral fault zone

Slope Intervals +0-9° +10-19° «20-29" +30-39° +40-49° +50-59° +60-69°
+70-79° +80-90°

Landuse «traditional farming system technified farming system

- modern intermediate farming system e other crops «construction
sbare »grass »shrubs «forest

Distance to Roads «< 25 meters #25-50 m »>50m

Distance to Valley Heads +< 25 meters »25-50m «>50m

Distance to Faults +< 50 meters *50-99 m «100-149 m = 150-199 m +200-249 m
+>250m

The map information captured in digital form are stored in either raster or vector format
(Aronoff, 1989; Chung and Fabbri, 1993). We are here assuming that the digital data are
stored according to the raster model, because it is easier (i) to illustrate the methodology
proposed; and (ii) to compare the techniques with the traditional cell-based regression
technique. As in traditional cell-based regression procedure, raster data are obtained by
overlaying a square grid over each map, although the spacing of the grid tends to be
small such as 10 m or 30 m. Each cell is now called a pixel (picture element) and each
map is represented by a rectangular matrix of numbers in which each number indicates
the class membership of a pixel that is in one-to-one correspondence with a small area
on the map. In the study area in Colombia, each map consists of 779 x 561 number
matrix, each pixel representing a 12.5 m x 12.5 m area. The value of the pixel in a layer
(e.g., the slope image) represents the slope angle and the pixel value in another layer
(e.g., the geology image) for the corresponding small area on the ground, indicates the
class of the bedrock lithology.

Even for a continuous measurement such as slope angle, it is necessary, in practice, to
quantize the data, usually dividing the angles into a number of classes instead of the
actually observed slope angle for the pixel. For example, we divided the slope angle in
the Colombian study into the following 10 classes: class #0: no observation is available

or unmapped area; class #1: 0 < slope < 10; class #2: 10 < slope < 20; -+ ; class #9: 80 <
slope < 90. Figs. 1, 2 and 3 show three of the seven maps used as input in this study. The
value k, ranging from 0 to 9, is used to represent the pixels which belongs to class #k as
shown in Fig. 4 in a simplified version. In this example, we convert a map layer
containing a continuous measurement into the ten-class thematic map. As it was done
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for the Colombian study, it can be assumed that every layer represents a thematic map
which contains a discrete number of thematic classes.

4. Preparation of the data for statistical analysis

When the data are stored in the raster format, a pixel is a natural choice of the sample
unit for the statistical analysis. The study area in Colombia consists of 779 x 561 (=
437,019) pixels and each pixel represents 12.5m x 12.5m square area in the ground.
However, if a smaller pixel of the size 6.25m x 6.25m was used for the Colombia study
area, 1,748,076 (= 437,019 x 4) pixels were needed to cover the area. Let us suppose
that we have a digitized map containing the distribution of the past landslides, in
addition to m input thematic maps in a study area. The data base consists of m input

layers and n pixels to cover the entire study area. At the i-th pixel, we have, fori=1, ---
* n’}

(Y5 X, Xi)s 4.1

where Y; denotes the presence or the absence of the landslide at the i-th pixel, and X1,
.., X, represent m input layers at the i-th pixel.

Because Xij represents a thematic class of the i-th pixel in the j-th layer, the numeric
value Xii can not be used directly in regression analysis. To avoid the difficulty of the

thematic data, a commonly used technique is to generate a binary variable (called
dummy variable) for each thematic class (Chung and Agterberg, 1980; Carrara, 1988) to
indicate the presence or absence of that class at each pixel. The use of the dummy
variable model here is identical to the linear model approach in the Analysis of
Variances (Searle, 1971). Suppose that we have hj thematic classes in the j-th layer (j =

1, -+, m). Then, at the i-th pixel, instead of one observation Xii , we generate h; binary
variables, B..

i’ ? “ijhy? ijh
are equal to 0. Fig. 6J illustrates graphically how the dummy binary variables were
generated for a regression model using two layers, geomorphological map (Fig. 5) and
geological map (Fig. 3) and the distribution map (Fig. 1) of the pre-1960 landslides in
the Colombian data.

where one of the Biﬂ, -+, B, is equal to 1 and all the others
3

Assuming that all m layers are representing thematic classes, instead of expression (4.1),

we have, at each pixel i, fori=1, -, n,

(Y3 By s Bi]h{’ ’Bijl’ ’Bijhj’ s B Bimhm)' 4.2)

In the Colombian data set, 48 binary "dummy" variables were obtained, although only
eight layers, including the distribution of the past landslides, were introduced. For 12.5
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m x 12.5 m pixel size, the expression (4.2) generates the matrix of the size, 437,019 X 48
which was subjected to multivariate regression analysis. For 6.25m x 6.25m pugelg,
1,748,076 x 48 matrix was required for the statistical analysis. In practice, however, it 1s
difficult to use such a large matrix for the analysis, i.e., it is impractical to use the pixel
as a sample unit for multivariate analysis because the number of pixels is usually too

large.

Input Maps

) geomorphology geology landslides

etc forevery pixels

Figure 6. Graphical illustration of generating binary dummy variables.

Consider all the pixels for which (B, , - , B -, B

s ilhl’ T B

—_ - LB,

B o) and/or (X, -+, X, ) are identical. Such sets of all the pixels where the observed
m

values of the m input layers are identical are termed the "unique condition subareas”.
The whole map area can be subdivided into a small number (small relatively to the total
number of pixels) of unique condition subareas which has a unique combination of (X,
e, le) and/or (Bi”’ e Bi]hl’ e, Bijl’ e, Bijhi’ e, Bim[’ e, Bimhm)'

Given an input map, the number of unique condition subareas is relatively independent
of the pixel size. While the number of pixels increases exponentially with the increase in
resolution, given the same input map, the increase in the number of unique condition
subareas will simply reflect the presence of the finer details not representable at a given
resolution. In fact, the pixel-based or vector-based representaion is completely irrelevant

to divide the area into a set of unique condition subareas.

In the Colombian data set, only 4728 unique condition subareas were obtained, in
contrast to the 437,019 pixels covering the study area. Some of the 4728 unique
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condition subareas were very small and consisted of only 1 pixel, whereas some of the
large subareas contained more than 8000 pixels. In particular, 2280 only among the
4728 unique condition subareas contained more than 10 pixels.

Suppose that we have q unique condition subareas, and consider a t-th unique condition
subarea. Let ng be the total number of the pixels in the t-th subarea and let k¢ (< ng ) be

the number of pixels effected by the past landslides. Then at the t-th unique condition
subarea, we have, fort=1, ---, q,

(kt > I Btll’ s Btlhl’ ’Btji’ T Btjhj’ s Btmp , Btmhm)- 4.3)

In the Colombian data, it was this matrix of size 4728 x 49 that was subjected to a new
procedure of weighted regression models.

5. Quantitative prediction model

The first step toward the construction of a quantitative prediction model is to determine
the sample unit where the observations of the s input layers and of the landslides are
made. The estimation of the unknown parameters depends on the sample unit. Two
sample units, the pixel and the unique condition subarea were introduced in the previous
section.

5.1 ANALYTIC (NOT STATISTICAL) MODEL

The next step for a quantitative prediction model is to postulate the landslides as a
function of the s input layers, (L; Zw TN ZS):

L=f(dl"“7dk;zla'”azs)a (5.1)

where L represents the occurrence of the landslides, the function f(.) specifies a
quantitative equation as a prediction function of L. f() usually contains several

unknown parameters, dj, -+, dk, and these parameters are estimated from the input
data such that the estimated parameters satisfy certain analytically “optimal” properties.

For example, suppose that we have the observations for n sample units,
(Li;Z“,-~-,Zis)fori=1,~-,n, (5.2)

where L; represents the occurrences of the landslides in the i-th unit, and Zij indicates
the observation of the i-th unit in the j-th layer. Then the equation (5.1) is rewritten, for
each i-th unit, as,
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Li=fd, ,d;Z; JZ)fori=1,--, 0 (5.3
We may obtain the estimators, a},‘--, Hk for dl, e dk such that
n J— o —
2 | fi-leis the minimum where L ;= f(d,, -, d,; Zi!, L Z) fori=1, -+, n, and

=1
the estimators, d,, -, d, are termed Lj-estimators (Rao, 1977). Or we may obtain the

n
~ ~ = 2, .
estimators, d,,---, d,, ford,, ---, d, such that 2 (Lj - Ly is the minimum where
i=1
Li=f(d, -, Ek;Z“, v, Z)fori=1,---, n,and the d, -, d, are termed as L-
estimators.

The idea is to obtain the estimators, d,, =+, d, ; or 51,’ -, d, ford,, ---, d,_such that

they minimize the differences between the estimator 1—‘1 or ii and the unknown true

model L foralli=1, ---,n.

The advantages of the analytic model are that: (1) no statistical assumption related to the
occurrences of the landslides as random variables with the respective distribution
functions, is needed; and (2) the interpretation of the estimators is simple (all we are

trying to do is to find d,, -, d, or 5;, e ak such that the differences between L; or

f,i and L; are as small as possible for all i = 1, --- , n). The disadvantages of the model

are, however, that: (3) there is no way to test whether the estimators are "good"; and (4)
no inference is possible. The estimators can not be used outside the input layers (L ;

Ziy, i) fori=1, - n.

5.2. STATISTICAL MODEL

The first step to construct a statistical prediction model is to assume that the occurrences
of landslides are the random variables and the "expected" landslides (Roussas, 1973) can

be postulated as a function of the s input layers, (L; Zl, e, ZS). The model then can be
written as:
L=fd, ,d;Z, " ,Z)+¢, (5.4)

where L represents a random variable for the occurrences of the landslides, f(.) specifies
a quantitative equation, d , ---, d, are the unknown parameters, and € is an error random

variable with the "expected" value E(g) = 0. The unknown parameters, dv e dk, are
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estimated from the input data such that the estimated parameters satisfy certain
statistical “optimal” properties.
For example, suppose that we have the observations, (L{’ Zﬂ, ey Zig) for each of the n

samples fori =1, --- , n where L, represents the random variable for the occurrences of
the landslides in the i-th unit, and Zij indicates the observation of the i-th unit in the j-th
layer. Then the equation (3.3) is rewritten, for each i-th unit, as,

Lizf(dl, ,dk; Z,, -, Z)+egfori=1,- ,n 5.5
In this example as it was done in the analytic model, we may obtain the estimators d,,

P n —— P
-, d, for d1’ SR dk such that 2 E(L;i-L4 )2 is the minimum and E(L )= L, fori=

i=1
1, <=+, n, where "E(.)" is the "expected value" (Roussas, 1973) and f:i =f(d, -, d.:
Z

MR
squares estimators (Rao, 1973).

, Zis) fori=1, -+ , n, and the estimators, E,, -+, d, are termed the mean

The idea is to obtain the estimators, a,, N Ek for dv e dk such that they minimize
the "expected” differences between the estimator —I:s and the unknown true model L, for
alli=1, - ,n

The advantages of the statistical model are that: (1) the estimators can be tested; and (2)
statistical inference is possible. The estimators can be used outside the sample units

L%, .2 fori=1,-,n. The disadvantages of the model are, however, that:

(3) statistical assumptions related to the occurrences of the landslides as random
variables with the relative distribution functions are needed; and (4) statistical and
physical interpretations of the estimators and optimality properties are difficult to obtain.

5.3 PREDICTION MODEL

When we find such "optimal" estimators, d,, --- , d,, regardless of whether we deal
with an analytic or statistical model, for any given values of the s input layers at a unit,

@, Z), the prediction for L is given by:

o1’

i0=f(a,, . ak;Zol’”"Zos)' (5.6)
It is also important to note that even under identical models and from identical input
data, the estimators for the parameters can be drastically different depending upon how

the “optimal” properties are defined. Under certain conditions, the computational
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procedures and numerical results may be identical for the analytic and statistical models,
but the interpretations of the results will be very different.

6. Multivariate regression analysis

Consider the landslides and the s input parameters,(L ; Z, -+, Z) as discussed in (5.1)
and (5.3). As argumented in the previous Section 5, regression models can be interpreted
either as analytic or statistical models, but we will deal with regression analysis as a
statistical model only. We specify a linear function:

L=d,+d Z +--+dZ +¢e, 6.1)

where (dg , dy, -+~ , dg ) are s+1 unknown parameters to be estimated from the input

data (Draper and Smith, 1981). Several techniques related to the linear model in (6.1)
were applied to the Colombian data set.

6.1 MODEL 1 - STANDARD MODEL

Consider a 437,019 x 48 matrix as in (4.2). At each pixel 1, we have,

B - ,B.,,B

ithy P B o By ) ©6.2)

(5 By ijhy T Pime imhy,

where Y; represents the presence (1) or the absence (0) of the past landslides at the i-th
pixel and Bijk represents the presence (1) or the absence (0) of the k-th thematic class of

the j-th layer at the i-th pixel. All seven layers and all the corresponding thematic classes
are listed in Tab. 1.

In each layer, one variable which had the least correlation with the past landslides was
excluded from the model to avoid the perfect collinearity among the dummy binary
variables. The excluded seven classes were: (i) "mixed old debris” class for the
Lithology layer; (ii) class "2" representing 10-20 degrees for the Slope-Angle layer; (iii)
“Romeral Fault" class for the Geomorphology layer; (iv) "technical coffee growing”
class for the Landuses layer; (v) class "3" representing "Distance farther than 50 m from
the Roads" for the Road layer; (vi) class "3" representing "Distance farther than 50 m
from Valley Heads" for the Valley Heads layer; and (vii) class "5" representing
"Distance farther than 250 m from the Faults" for the Faults layer. In addition
"unmapped area" in the Geomorphology layer is excluded because the identical class is
also shown in the Lithology layer. The exclusion of the classes did not mean that the
evidence that they provided was not being used in the model: it simply meant that
collinearity of data was avoided.

After excluding these eight variables, we had a 437,019 x 40 matrix,
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(Yi ; B,

1

P By (6.3)

where we assumed that the B, 's are reindexed for notational simplicity. Among the 40

variables, the first variable for the occurrences of the landslides was used as the
"dependent” or "response” variable and the remaining 39 variables were "independent”
or "predictor" variables in the linear regression model in (6.1).

The linear model postulated for each i-th pixel, was

Y,=d,+d B, +--+d B +¢. (6.4)
Using the data in (6.3) we obtained the LS estimators, H,, e Hk shown in Tab. 2 for
the unknown parameters dg, -+~ , d; . Under certain conditions (Draper and Smith, 1981)

including that the variances of g; are all equal:

Var(g;) = Var(Y;) =Cfori= 1,2, -, n, (6.5)

where C is a constant, and the LS estimators have statistical "optimal" properties. The
condition of the equal variances of g/s (the equal variances of Y;'s) implies that the
“reliabilities” of Y;'s are identical or each sample unit provides an identical amount of

information to estimate the unknown parameters. The predicted values for the
probability of the occurrences of the landslides at each pixel using the estimators shown
in Tab. 2 are shown in Fig. 7a.

Note that it was pretended that the time of the study was the year 1960 and all the spatial
data used here were pre-1960. The estimators in Tab. 2 are based on these pre-1960 data.
Because all the variables in the model are binary variables representing presences or
absences of the corresponding variables, the interpretation of the regression coefficients
in Tab. 2 is relatively simple. For example, the negative coefficients indicate that the
presence of the corresponding variables is related to safe areas, while the presence of the
variables with the positive coefficients implies the possible areas for landslide hazards.

All the variables with the estimated coefficients near zero have very little effect on the
prediction of possible areas of landslide hazards. Among all the variables, the binary
variable representing the class of Slope: 70-79 (estimated coefficient is 0.07945) is the
most effected single indicator for the landslide hazards, while the variable representing
the lithological unit, volcanic and metasedimentary (estimated coefficient is -0.02018),
is the best single indicator for the least dangerous area for the landslide hazards.
Contrary to the usual notion, the areas with Slope: 80-90 (estimated coefficient is -
0.00344) appear safe areas for landslide hazards, because such areas perhaps do not
contain any debris or soils except for bedrocks. On other hand, the flat areas with Slope:
0-9 (estimated coefficient is 0.00831) have a positive coefficient indicating possible
areas for landslide hazards. Obviously such estimated coefficients are not properly
interpretable and it is one of the deficiencies of the regression models.
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Table 2. Regression coefficients estimated for the models,

ESTIMATOR COEFFICENT | ESTIMATOR COEF FICENT
Constant term 1.55155E-02 | Slope: 60-69° 1.56512E-02
gneissic intrusive 4.00725E-03 | Slope: 70-79° 7.94524E-02
Schists -6.44134E-03 | Slope: 80-90° -3.43960E-03
volcanic and metasedimentary -2.01823E-02 | traditional farming -1.43843E-02
gabbro and diorite -1.60107E-02 | modern intermediate farming -9.42330E-04
, alluvial sediments -4.54183E-03 | other crops -2.65025E-04
flow materials, alluvial and ashes -8.95750E-03 | construction 5.72468E-03
weathered debris flow materials -6.89581E-03 | bare -1.26819E-02
lake deposits -3.37607E-03 | grass 3.12856E-03
lahar deposits -9.03179E-03 | shrubs -3.36146E-03
pyroclastic flow deposits -8.10535E-03 | forest 9.35692E-05
andesitic intrusive -5.77758E-03 | Roads: <25 m 2.96225E-03
tertiary sediments 7.61305E-03 | Roads: 25-50 m 2.20617E-02
Geomorp.: Western hills 2.22365E-02 | Valley: <25m 1.04442E-02
Geomorp.: terrace -1.81741E-02 | Valley: 25-50 m 3.82563E-04
Slope: 0-9° 8.30965E-03 | Fault: <50 m -4.16950E-04
Slope: 20-29° -7.28955E-03 | Fault: 50-99 m 2.89060E-03
Slope: 30-39° -7.06489E-03 | Fault: 100-149 m 1.83681E-03
Slope: 40-49° 9.68498E-03 | Fault: 150-199 m 8.44423E-04
Slope: 50-59° 1.61332E-02 | Fault: 200-249 m 4.30893E-03

Although the model contains such flaws, the prediction map not only covers the past
landslides before 1960 well, but also it adequately predicts the 1960-1980 landslides, as
shown in the last column “Pixel-Based & 1/n weight” of Tab. 3. In Tab. 3, the whole
study area is divided into five classes depending on the regression scores. Five percents
the pixels of the highest scores is classified as “very high”, and the 5, 10 and 25 percents
of the pixels of the next highest scores are classified as “high”, “medium” and “low”,
repectively. For example, from Tab. 3, the areas predicted as “medium” to “very high”
occupies 25% of the whole area, but the predicted areas contain 51.5% of all the
landslides occurred during the next 20 years, 1960-1980.

Table 3. Success rate of 1960-1980 landslides predictions using the model proposed with three
different weights. Fig. 8 shows this table in graphic form.

HAZARD CUMMULATIVE CUMMULATIVE MAPPED
AREA (%) 1960-80 LANDSLIDES (%)
No Weight Pixel-Based & 1/n weight
very high 5 9.2 13.2
high 10 215 25.8
medium 25 45.5 51.5
fow 50 76.0 82.5

very low 100 100.0 100.0
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Figure 7. Predition map of weighted regression model based on 4728x40 matrix in (6.7) using
(a) 4, as a weight; (b) no weight. The prediction map shown in (a) is identical to the output from

the pixel-based regression model in (6.4) using 437,019x40 matrix in (6.3).
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The main flaw of the technique, however, is the requirement of the rasterization of the
data before the analysis. This method is also computationally heavy, in addition to the
requirement of a large storage disk space (over 40 MB for 12.5m x 12.5m pixels). If the
pixels of the size 6.25m x 6.25m were used instead, 1,748,076 x 48 matrix were
subjected to the analysis. In order to overcome this difficulty, we are proposing the
following weighted least squares model based on the unique condition subareas which
was discussed in (4.2) and the results from the proposed model are identical to this
model.

6.2 MODEL 2 - UNIQUE CONDITION SUBAREA MODEL

Model 2.1 - OLS (Ordinary Least Squares) model

Instead of considering a 437,019 x 48 matrix as it was done in (6.2), let us consider the
4728 x 49 matrix shown in (4.2) based on the unique condition subareas,
(kpn,B ., Bum,’ s Bujl’ Bujhj’ s B ’Bumhm)' (6.6)

As carried out in Model 1, we exclude the eight collineated variables from (6.6) and
reindex the remaining variables. We have the 4728 x 41 matrix,

(k,n,B,,,B). 6.7)

Among the 41 variables at each unique condition subarea, the ratio, denoted by R, of
the first two variables (the number of pixels affected by the past landslides divided by
the total number of pixels in the unique condition subarea) is used as the "dependent”
or "response” variable. As in Model 1, the remaining 39 variables are used as
"independent” or "predictor” variables in the regression analysis.

The linear model postulated is: for each u-th unique condition subarea,

R =B,+B, B, ++B B +¢ . 6.8)
Using the data in (6.7) we obtain the LS estimators, B¢, -+ , P for the unknown
parameters {30, e, Br. As discussed in (6.5), the LS estimators have an "optimal"

property under the assumption that
Var(g ) = Cforu=1,2, .-, q, (6.9

where C is a constant and the predicted values for the probability of the occurrences of
the landslides at each pixel are shown in Fig. 7. Although it predicts the past landslides
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before 1960 well as shown Tab. 3, it does poorly for the 1960-1980 landslides. The
prediction pattern shown in Fig. 7b is different from the pattern in Fig. 7a obtained from
Model 1. Fig. 8 illustrates the prediction performances between these two models.

~~~~~ No Weight
1/ n Weight = Pixel-Based
~==~ 1/n? Weight

Landslides Occurred 1960-1980 (%)
g

¥ g Ao
0 1 20 30 40 50 6 0 80 50 100

Hazard Potential Area Derived
by the Models (%)

Figure 8. Prediction performance of weighted regression models. The prediction was built using
pre-1960 data and it was compared with the landslides between 1960-1980. Tab. 3 contains the
numbers used for this graph.

Model 2.2 - WLS (Weighted Least Squares) model

For the LS estimators of the Model in (6.8) under the assumption of (6.9), we have that
the condition (6.9) implies that every unique condition subarea has the same weight or
significance regardless of the sizes of the subareas. In other words, a unique condition
subarea provides an equal significance to determine the LS estimators based on (6.9)
whether it contains one pixel only or 8000 pixels. It is one of the reasons why the LS
estimators based on (6.9) are not as effective as the estimators from (6.5).

The LS estimators from (6.5) for the linear model in (6.4) are obtained using 437,019
pixel data in (6.3). There each pixel had the same significance to compute the LS
estimators, When we use the unique condition subarea data in (6.7) to estimate the

unknown parameters, BO, AR Br in (6.8), each sample unit, which is a unique condition

subarea, should not be treated as having an equal significance, because it does not
provide an equal information or “reliabiliity”. The larger is the size of the subarea, the
"more likely reliable” it is or/and “more information” it provides than the smaller ones.
For example, let us compare two unique condition subareas where one contains only one
pixel and the other contains 8000 pixels. Suppose that both subareas are completely
covered by the past landslides. Of course, both unique conditions appear to be hazardous
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environments for the landslides. We should consider the unique condition of the subarea
containing 8000 pixels, however, more serious than that of the one pixel subarea. It
implies that the data from the 8000 pixel unique condition subarea is “more reliable” or
provides “more information” than that from the one pixel subarea.

It also suggests that the condition in (6.9) should be modified to:
Var(gy) = g(ny) foru=1,2, ..., q, 6.10)

where ny is the total number of pixels in the unique condition subarea u discussed in

(6.7) and g(.) is a function. Under the condition in (6.10) which states that the variance
is a function of the total number of pixels in the unique condition subarea, the LS
estimators do not have the "optimal” properties.

Under (6.10), the "optimal” estimators for B, --- , B, in (6.7) are the weighted least

squares (WLS) estimators. The WLS estimators depend on the function g(.) in (6.10).
When g(n,) = C for all u's, then the WLS estimators are identical to the LS estimators

under the condition in (6.9).
As discussed in Appendix A, it can be shown that if we set the weighting function, g(n )

= %u for all u’s, then the WLS estimators are identical to the LS estimators from (6.7)

based on all the n pixels. In other words, the LS estimators from the linear model in
(6.4) based on the 437,019 x 40 matrix in (6.3) are identical to the WLS estimators from
the linear model in (6.8) based on the 4728 x 41 matrix in (6.7) using the weights of the
subareas, g(n ) = %u . Therefore the corresponding predicted values for the probabilities
of the occurrences of the landslides at each pixel are identical for both these two models.
Figure 3.a shows the prediction pattern. If we were to use the vector format, rather than
the raster format, to capture the digital data for the spatial information and we obtained
the unique condition subareas through vector operators, we would use the weighting

function g(n ) = %«u where wy is the size of the u-th unique condition subarea, instead
1
of g(n) = /ay -

One interpretation of the weight function, g(n ) = %U is that the “reliability” of the ratio
between the observed number of occurrences and the total number of pixels in the u-th
unique condition subarea is inversely proportional to the size of the subarea, because the
weighting function g(n ) is the variance of the ratio.

7. Discussion and concluding remarks

Several considerations can now be made about the multivariate regression approaches
presented in this contribution. Some of the immediately beneficial aspects of regression
analysis of integrated multilayered spatial data are:
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e to adequately test the regression model, we have constructed the model based on
pre-1960 data and the prediction were empirically compared with the distribution of
the landslides which occurred during 1960-1980. This illustrates that regression is
indeed useful for landslide hazard zonation as demonstrated for mineral exploration
(Chung, 1983);

e the traditional pixel-based regression which requires vector-to-raster conversion is
superseded by regressing unique condition subareas or sub-polygons, thereby
minimizing processing time and data storage. Pixel-based regression is a special
case of the proposed weighted regression;

e Regardless the pixel-size, the number of sample units for the regression model is
relatively constant and small, and hence it is simple to implement the technique in a
personal computer;

» the regresssion model proposed can easily be adapted to other types of tessellation
of space, such as the morphometric units proposed by Carrara ef al. (1991).

In this study, all experiments and applications dealt with one particular type of
landslides: the rapid debris avalanches (derrumbes). Beside the application of regression
to other types of landlsides, it would be beneficial to develop query and visualization
tools to bring the geologist/geomorphologist or the hazard assessor into a more familiar
interactive environment which could include 3-D representations (see color Plate 2) and
animation.

The following is a list of possible developments out of the regression approach:

o the addition of the capability to query the spatial data base for interpreting the
prediction of each subarea or of each pixel;

s to allow to reproject the results of regresssion in the space of scanned aerial
photographs so that the photo-interpreter might start seeing features that might be
left unnoticed (also enhanced images of aerial photos, digital elevatlon models,
spaceborne TM, SPOT, ERS-1, etc., should be used);

e to allow to transform risk into hazard by considering the presence of man and of
settlements in the spatial database;

to represent landslide processes both in space and in time. Although we have not
discussed the “time concept” in this contribution, the concept is a necessary condition
for predicting “future” landslides such as the landslides occurring within a predefined
period of time. To study such landslides, however, the distribution map of the past
landslides that was used in the Colombian data set is not adequate. This is due to the fact
that the distribution of the past landslides did not identify the time of all the occurrence
of lanslide phenomena. To study such “time” related landslides we should at least have
the distribution of the past landslides within predefined time periods. Only in such a
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situation we may be able to develop new techniques to deal with such time-dependent
sliding phenomena.

This approach overcomes the problems encountered in pixel-based regresssion,
therefore, it can be implemented on any personal computer. Regression, however, is a
data-driven approach which cannot incorporate expert opinion in the analysis. For
applications in which expertees and subjectivity are also inputs to predictive processes,
methods such as Bayesian approaches are more appropriate (Chung and Fabbri, 1993).
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Appendix A

We illustrate that the pixel-based regression model is a special case the weighted regression
model based on the unique condition subarea by looking at a simple case, because a general
case is a notational nightmare.

In addition to the distribution map of the occurrences of landslides in a given study area,
consider two layers in which the first layer censists of three classes, A, B and C and the second
layer contains two classes, D and E only. Suppose that the study area consists of 100 pixels. At
each pixel i, the following four dummy binary variables, B, Bi, Bis and By, for the five classes
in two layers, were generated. Let:

Y; represents the presence (1) or the absence (0) of the occurrence of the landslide,
B; represents the presence (1) or the absence (0) of the class A in the first layer,
Bj, represents the presence (1) or the absence (0) of the class B in the first layer,
B3 represents the presence (1) or the absence (0) of the class D in the second layer,
By, represents the presence (1) or the absence (0) of the both class C in the first layer and

E in the second layer.

As discussed in the text, two separate binary variables for the class C and class E were not used
to avoid the collinearlity (Draper and Smith, 1981). In this appendix, one more binary variable
By, was added into the model, although the similar operations were not carried out in the
Colombian study because the large numbers of classes and the layers.
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As in (6.3), we have the following 100 x 6 matrix: For

(Y;;1,B,,B,,B,.B,) i=1,2,"",n(=100), (A.D)
where “1” is for the constant term in the regression médel.
The linear model in (6.4) for each i-th pixel is written

Yi=d0+dan+d2Bi2+d3Bi3+d4Bi4+ £ (A2)

where the five unknown parameters (do, d,, dz, da’ d 4) will be estimated from the 100 x 6 matrix

in (A.1). It can be shown (Draper and Smith, 1981) that the LS estiamtors
(d,,d,,d,,d,,d, )ofthe (dg, dy, d, ds, dg ) are:

d, n n, n, n, ng) (m
d, n, n, 0O =n, O m,
az =| ng 0 ny ng O o My (A.3)
d, n, 0. Ny o0, 0 mp
d n 0 0 0 ng Mey

.

where:
n = 100: the total number of pixels,
na: the number of pixels in the class A in the first layer,
ng: the number of pixels in the class B in the first layer,
np: the number of pixels in the class D in the second layer,
nap: the number of pixels in the both class A and D,
ngp: the number of pixels in the both class B and D,
ncg: the number of pixels in the both class C and E,
m: the total number of the occurrences of the landslides,
my: the number of the occurrences in the class A in the first layer,
mg: the number of the occurrences in the class B in the first layer,
mp: the number of the occurrences in the class D in the second layer,
mcg: the number of the occurrences in the both class C and E.

Now consider the unique condition subareas in the study area. we have at most following six
unique condition subareas:

AD: the subarea overlapped by both A in the first layer and D in the second layer,
AE: the subarea overlapped by both A in the first layer and E in the second layer,
BD: the subarea overlapped by both B in the first layer and D in the second layer,
BE: the subarea overlapped by both B in the first layer and E in the second layer,
CD: the subarea overlapped by both C in the first layer and D in the second layer,
CE: the subarea overlapped by both C in the first layer and E in the second layer.

Similar to (6.7), we have the following 6 x 7 matrix from the above six unique condition
subareas:
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( Yi ; 1, Bix’ Biz’ Bi3’ Bi4 )’
(mpp,mp; L, 1, 0, 1, 0),
(mAg s Nap > 1, 1, 0, O, 0 ),
(mgp,nmpp; 1, 0, 1, 1, 0, (A.4)
(mpg.ngs; 1, 0, 1, 0, 0},
(mep,nep; L 0, 0, 1, 0),
(mcg , ncg 3 1, 0, 0, 0, 1)

where m, represents the number of the occurrences and n, represents the number of pixels in the
u-th unique condition subarea.

For each u-th unique condition subarea, let R, be the ratio between m, and n,. ie., the ratio
between the number of occurrences and the number of pixel in each subarea. The regression
model at each u-th subarea is:

Ru=a.0-;-aIBul~{-:-,12]3!&+‘zt3Bu3+a4Bu4+8u (A.5)

where the five unknown parameters (aO, a,a,a,a 4) will be estimated from the 6 x 7 matrix in
(A.4). Let us assume that

Var(e)=g0)= /h, A6)

where ny is the total number of pixels in the unique condition subarea. The weighted LS
estimators (@,,d,,4d,,4d,,a, ) which have many "optimal" statistical properties for
(8,,4,,a,,8,,4a, )in(A5) are obtained (Draper and Smith, 1981):
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and hence, the WLS estimators, ( @, ,8, ,8,,d,,a, ) from the unique condition subarea-
based data in (A.4) are:

o n n, B0y O Dneg m
a, n, n, 0 n, O m,
8 |=| 0y 0 mny my O e My | | (A7)
ay n, N DNy, 0 O My,

They are the exactly identical to the LS estimators, (ao R a, , 52 , HS , 34 ) in (A.3) from the
pixel-based data in (A.1).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

