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Recognition and classification of landslides is a critical requirement in pre- and post-disaster hazard analysis.
This has been primarily done through field mapping or manual image interpretation. However, image
interpretation can also be done semi-automatically by creating a routine in object-based classification using
the spectral, spatial and morphometric properties of landslides, and by incorporating expert knowledge. This
is a difficult task since a fresh landslide has spectral properties that are nearly identical to those of other
natural objects, such as river sand and rocky outcrops, and they also do not have unique shapes. This paper
investigates the use of a combination of spectral, shape and contextual information to detect landslides. The
algorithm is tested with a 5.8 m multispectral data from Resourcesat-1 and a 10 m digital terrain model
generated from 2.5 m Cartosat-1 imagery for an area in the rugged Himalayas in India. It uses objects derived
from the segmentation of a multispectral image as classifying units for object-oriented analysis. Spectral
information together with shape and morphometric characteristics was used initially to separate landslides
from false positives. Objects recognised as landslides were subsequently classified based on material type
and movement as debris slides, debris flows and rock slides, using adjacency and morphometric criteria.
They were further classified for their failure mechanism using terrain curvature. The procedure was
developed for a training catchment and then applied without further modification on an independent
catchment. A total of five landslide types were detected by this method with 76.4% recognition and 69.1%
classification accuracies. This method detects landslides relatively quickly, and hence has the potential to aid
risk analysis, disaster management and decision making processes in the aftermath of an earthquake or an
extreme rainfall event.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Landslides are amajor natural hazard, causing significant damage to
properties, lives and engineering projects in all mountainous areas in
the world. According to a recent world report, approximately four
million people were affected by landslides in 2006 (OFDA/CRED, 2006).
Landslide hazard and risk management begins with comprehensive
landslide detection/mapping, which serves as a basis to understand
their spatial and temporal occurrences (Carrara and Merenda, 1976;
Guzzetti et al., 2000; Brardinoni et al., 2003). Detection of landslides
includes recognition and classification (Mantovani et al., 1996),
frequently done using the systematic classification of landslides based
on type of material and type of movement proposed by Varnes (1978).
In Varnes' classification, the types of material are rock, debris and earth,

with falls, topples, slides, spreads and flows constituting movement
types (Cruden andVarnes, 1996). The classification proposed by Varnes,
and consistentwith the UNESCOWorking Party on theWorld Landslide
Inventory (UNESCO-WP/WLI, 1993), is essentially a field basedmethod,
conceptualised and illustrated using block diagrams, without reference
to their surrounding morphometry and contextual relationship.
However, Earth observation data are increasingly used for landslide
mapping, with automatic methods being preferable over manual
approaches for obtaining quicker results over a large area, whereby
the use of spectral, spatial, morphometric and contextual properties is
essential to their success (Barlow et al., 2006; Borghuis et al., 2007). A
comprehensive characterisation of landslides from an automatic
detection perspective is required for the extraction of fast and accurate
results that will help decision makers in implementing disaster
management strategies.

Visual interpretation of aerial photographs, combined with field
investigations, remained the major source for landslide inventory
map preparation until recently (Kääb, 2002; Casson et al., 2003; van
Westen and Lulie Getahun, 2003). Although aerial photographs
accurately depict details of a landslide, they are often not available
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in a timely manner for the majority of landslide prone areas in the
world. Satellite imagery has become an alternative data source since it
allows a more economic assessment of larger landslide affected areas,
as well as a synoptic appreciation of the context within which land-
slides occur, especially in terms of land cover dynamics. Limited
initially by low spatial resolution, early studies focused on pure de-
tection of large landslides. However, recent studies have increasingly
made use of very high resolution imagery (e.g. QuickBird, Ikonos,
WorldView-1, Cartosat-1 and 2, SPOT-5 and ALOS-PRISM) for landslide
mapping, and the number of operational sensors with similar
characteristics is growing year by year (van Westen et al., 2008).
Other remote sensing approaches of landslide inventory mapping,
though infrequent, include shaded relief images produced from Light
Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR)
interferometry based digital elevation models (DEMs) (Singhroy et al.,
1998; Van Den Eeckhaut et al., 2007).

Preparation of landslide inventory maps using automatic methods
has been attempted by previous researchers. Borghuis et al. (2007)
showed how unsupervised classification could detect 63% of all
landslides mapped manually. Other familiar automatic methods of
landslide mapping are change detection and image fusion. Nichol and
Wong (2005) showed the use of change detection technique to
successfully differentiate landslides from spectrally similar features
such as bare rock and soil. However, the automatic methods described
above are pixel-basedmethods, and pixels are ill-suited to represent a
geomorphic process such as a landslide. Therefore, the output gives
‘salt and pepper’ appearance, and are mostly not verifiable on the
ground. These methods also rely only on the spectral signature, a
property not unique for landslides. In addition to spectral signature,
landslide diagnostic features can include vegetation, slope angle,
slope morphology, drainage, tension cracks, presence of man-made
features such as retaining walls, or artificial surface drainage. Previous
researchers have attempted to quantify some of these landslide
diagnostic features. Pike (1988) calculated the geometric signature
from a DEM for a set of topographic variables that separates a land-
slide from its surroundings. Similarly, Iwahashi and Pike (2007) used
slope gradient, terrain texture and local convexity derived from a DEM
for automatic classification of topography. Previous works have also
shown that an integration of remote sensing data and DEM de-
rivatives produces a better result than the standalone approach
(McDermid and Franklin, 1994; Florinsky, 1998). Object-oriented
analysis (OOA), a platform for integration of different types of data
(spectral, elevation and thematic), has already proven its ability for
successful automatic classification of landforms (Dragut and Blaschke,
2006; van Asselen and Seijmonsbergen, 2006). It has a potential to
detect landslides automatically in a better way than the pixel-based
methods, by incorporating amultitude of landslide diagnostic features.

Object-oriented image classification is a knowledge driven
method, whereby spectral, morphometric and contextual landslide
diagnostic features can be integrated based on expert knowledge to
accurately detect landslides (Barlow et al., 2003, 2006). Since land-
slides occur in diverse geomorphic settings, it is crucial to address a
landslide as an object embedded in its surroundings. Image seg-
mentation, a mandatory step prior to OOA does this by grouping
spectrally homogenous pixels into an object (Baatz and Schape, 2000).
The significant advantage of OOA is the realistic outputs that can be
easily verified on the ground. However, to make effective use of OOA,
we need a comprehensive understanding of all potentially useful
landslide characteristics, and specifically from a segmentation-based
perspective. We also need to update and synthesize the criteria for the
detection of landslides as per Varnes' classification scheme, using
newer means of landslide inventory preparation, such as high
resolution satellite data and DEMs. There have been limited attempts
to detect landslides using OOA (e.g. Barlow et al., 2006). However,
while they differentiated landslide types such as debris slides, debris
flows and rock slides using OOA, their characterisation of different

landslide types is essentially data driven by considering a very limited
set of parameters. In another recent study, Moine et al. (2009) used
shape, spectral, texture and neighbourhood features, but no mor-
phometric parameters, to detect landslides from aerial and satellite
images using OOA. This clearly shows that the potential of OOA for
automatic landslide detection has so far not been fully exploited.
Using geomorphometry tools implemented in modern GIS softwares,
and with the possibility of extracting many spectral, spatial and some
morphometric parameters in image processing softwares, landslide
characterisation can be done efficiently in comparison to tools avail-
able to previous researchers (e.g. Pike, 1988; McDermid and Franklin,
1994; Barlow et al., 2006), also creating possibilities for less data
driven approaches.

The purpose of this paper is to update and synthesize the diag-
nostic features for semi-automatic detection (recognition and
classification) of landslides, to provide an effective basis for re-
searchers to develop object-based landslide mapping routines. The
potential of spectral landslide diagnostic features such as normalised
difference vegetation index (NDVI), shape features such as length/
width ratios, asymmetry, texture, and morphometric features such as
slope, terrain curvature and flow direction, derived from high
resolution satellite data and a DEM, respectively, is discussed in this
paper. OOA is effectively a combination of segmentation to derive
image primitives, and their subsequent classification based on char-
acteristics calculated from the extracted objects. This paper focuses
primarily on object classification. In a separate study we address the
segmentation and achievement of complex landslide shapes. Seg-
mentation and extraction of spectral and texture characteristics were
carried out using Definiens Developer software, while ArcGIS was
used to derive additional morphometric indices. A complex analysis
routine was then built in Definiens Developer to test how well all
available spectral, textural, morphometric and contextual information
can be used to detect landslides unambiguously. We test this routine
in part of the High Himalayas that suffers extensively from landslides,
and where efficient remote sensing data based techniques provide a
real potential for improved landslide hazard and risk analysis.

2. Landslide characterisation from satellite data and a DEM

Characterisation of landslides and development of a knowledge
base for their automatic detection are briefly discussed here. Image
characteristics used for visual interpretation of landslides are equally
important to the success of an automatic detection technique. Some of
them, such as vegetation, drainage and morphology, were discussed
by Soeters and van Westen (1996). The spectral characteristics based
on digital number (DN) or NDVI values have been used by previous
researchers for pixel-based methods of automatic detection of land-
slides (Nichol and Wong, 2005; Tarantino et al., 2007). To classify
landslide types using object-based methods, Barlow et al. (2006)
developed landslide diagnostic features using textural characteristics.
However, they omitted one important parameter, morphometry,
which is critical to distinguish commonly occurring landslide types:
debris slides, debris flows and rock slides. Similarly, Moine et al.
(2009) translated qualitative expert knowledge into quantitative
criteria for characterising landslides using shape, spectral, texture and
adjacency features. Although both studies made important contribu-
tions to object-based automatic detection landslides, failure mecha-
nisms such as translational or rotational and their diagnostic features
were not included. According to Varnes (1978), it is an important
aspect of landslide studies when considering future hazard and
ground stability analysis. Therefore, we discuss the following types of
landslides based on their frequency of occurrence, and importance to
landslide risk assessment. The discussion is illustrated with schematic
block diagrams with emphasis on contextual and morphometric
properties of landslide types (Fig. 1).
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2.1. Translational rock slide

Movement of rock down the slope along a planar or undulating
surface of rupture (Cruden and Varnes, 1996). The value of terrain
curvature is very low, sometimes close to zero. The source area is in a
rock outcrop and slope is generally steep (Fig. 1a).

2.2. Rotational rock slide

Movement of rock down the slope along a curved and upwardly
concave surface of rupture (Cruden and Varnes, 1996). It shows
abrupt change in slope morphology, i.e. concavity in the zone of
depletion and convexity in the zone of accumulation. The slope may
be step-like due to backward tilting of slope facets (Soeters and van
Westen, 1996). The crown shape is arcuate and located on or adjacent
to the bed rock (Fig. 1b).

2.3. Debris flow

Spatially continuous movement of debris saturated with water
(Cruden and Varnes, 1996). It generally has a moderate slope and
large run-out, and a scouring effect is observed along the run-out path
(Fig. 1c). The transition between slides to flows is gradual and de-
pends onwater content. Therefore, debris slides are characterised by a

limited run-out length. The source area can be in a deep zone of
weathering, or topographic surface with large overburden depth.

2.4. Shallow translational rock slide

These landslides are surfacial in nature and normally associated
with first or second order drainage. They have generally very small
width in comparison to length (Fig. 1d). Therefore, the length/width
ratio is high and distance of the median line to the landslide periphery
is very low.

3. Materials and methods

3.1. Study area

The Himalayas are one of the global hotspots for landslide hazard
(Nadim et al., 2006). An area covering 81 km2 in parts of the
Mandakini river catchment in the High Himalayas around Okhimath
town in the Uttarakhand state of India was selected for this study
(Fig. 2). The extent of the study area was restricted to the watershed
boundary. Although direct economic damage in this area is not as high
as elsewhere in the world, the limited number of transport corridors,
vital life lines for 208,000 people are frequently disrupted by
landslides, seriously affecting the livelihoods and development of

Fig. 1. Schematic block diagrams of landslide types. a) translational rock slide, b) rotational rock slide, c) debris flow, d) shallow translational rock slide. Debris slide is not shown
separately since it has characteristics similar to debris flow, except less run-out.
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the people. Identification of landslide events and their types can be of
use for more comprehensive landslide risk modeling and mitigation.

The Madhyamaheshwar river is a major tributary to the Mandakini
river in this area. The elevation ranges between 867 and 2626 m with a
high relative relief. Glacial landforms dominate this region, but are
frequently modified by fluvial action. Some of the glacial landforms (e.g.
moraines and solifluction lobes) with relatively gentle slopes have been
converted into terraces for cultivation. Lithological units exposed in this
area are granite gneisses, quartzite–sericite schist, quartzite, garnetiferous
mica schist, marble and occasional basic intrusives (Rawat and Rawat,
1998). The foliations dip atmoderate angles inNE toNNWdirections. The
main central thrust (MCT) dipping N to NE directions is the cause of neo-
tectonic activity in this region, and has caused significant shearing of the
rocks, rendering them vulnerable to landslides. The soil in this area is
transported and composed of sub-angular rock fragments with a high
proportion of sandy to sandy–siltymatrix. However, small patches of silty
and clayey soil, remnants of glacial deposit, are also present (Rawat and
Rawat, 1998). The NE and SW parts of the study area are covered by
evergreen oak forest.

This areaoffers agoodopportunity to test theapplicabilityof the semi-
automatic detection technique, not only because of the occurrence of
major andminor landslides, but also due to presence of different types of
landslides associatedwith a variety of land covers. In August 1998, a total
of 466 landslides triggered due to rainfall killed 103 people and damaged
47 villages in theMandakini valley alone (Naithani, 2002). Some of these
landslides were new, while others are as much as a century old but
permanently active. The study area was divided into two parts, using a
watershed divide, into the Madhyamaheshwar sub-catchment (28 km2)
and the Mandakini catchment (53 km2). A landslide recognition and
classification algorithm was developed for the Madhyamaheshwar sub-
catchment and subsequently tested for the Mandakini catchment.

3.2. Data sources

3.2.1. Satellite data
Steerable sensors and an increasing number of operational satel-

lites have led to satellite data increasingly replacing aerial photo-

graphs for landslide studies. Multispectral data acquired on 16 April
2004 by Linear Imaging Self-scanning System IV (LISS-IV) sensor
onboard the Indian Remote Sensing Satellite (IRS) P6 (also known as
Resourcesat-1) were used for extracting the spectral diagnostic
features. These data have been shown to be useful for mapping of
major and minor landslides after the Kashmir earthquake in October,
2005 (Vinod Kumar et al., 2006). They have 5.8 m spatial resolution
and three spectral bands viz. green (0.52 to 0.59 µm), red (0.62 to
0.68 µm) and near infra-red (0.76 to 0.86 µm). The Resourcesat-1
LISS-IV image was orthorectified using the 10 m DEM created from a
2.5 m resolution stereoscopic Cartosat-1 data acquired on 06 April
2006. The multispectral image was used to calculate the spectral
characteristics of landslides, such as NDVI and brightness.

3.2.2. DEM
Cartosat-1 carries two cameras, Pan-Aft and Pan-Fore with −5°

and +26° view angles, respectively, and the data are provided with
rational polynomial coefficients (RPCs) for block triangulation. High
DEM accuracy is crucial for correctly quantifying the topographic
parameters (Dewitte and Demoulin, 2005; Dragut and Blaschke,
2006). We used ground control points obtained from differential GPS
(DGPS) surveys, to improve the orientation result of the RPC model
during block/scene triangulation of Cartosat-1 data (Sadasiva Rao
et al., 2006; Baltsavias et al., 2008), and could achieve a vertical root
mean square error (RMSE) of 2.31 m. DEMs extracted automatically
fromaerial photographs/satellite images occasionally contain spurious
spikes and pits (Kerle, 2002), although recent technical developments
in photogrammetric processing, such as one implemented in the SAT-
PP approach (Zhang and Gruen, 2006) used in our work, have reduced
this problem. Photogrammetrically derived DEMs also reflect surface
features such as vegetation and man-made objects, making them
effectively digital surface models (DSMs). We used DEM editing tools
in Leica Photogrammetric Suite (LPS) for manual height correction of
isolated trees, while Erdas Imagine Stereo Analyst was used to
estimate the average height of the scattered vegetation patches.
Subsequently, the height of the vegetation patches was subtracted
from the DSM to create a DEM. Elevation values from other potential

Fig. 2. Location map of the study area shown with a 3D perspective view. The white dotted line separates the Madhyamaheshwar sub-catchment in the north from the Mandakini
catchment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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erroneous areas, such as shadows, were also correctedmanually using
breaklines. Finally, the DEM was hydrologically corrected using the
FILL function of ArcGIS, and then derivatives such as slope, terrain
curvature, hillshade and flow direction were calculated. These
derivatives along with the DEM were used as input layers for OOA.

3.3. Segmentation technique

An important step before characterising diagnostic attributes
of features of interest, such as landslides, is the creation of objects/
segments that alone or in a group demarcate the boundary of the
given feature. This is done using image segmentation, which is a
process of dividing the image into objects or regions based on the
homogeneity of the pixel values. Image segmentation can be done in
different ways, using techniques such as density slicing, and split and
merge (Kerle and de Leeuw, 2009). Our analysis was carried out in the
Definiens Developer software environment, which has different types
of algorithms for the image segmentation, multiresolution, quadtree
and chessboard being the most efficient ones (Definiens, 2007). These
algorithms can be combined effectively to obtain realistic and ac-
curately classified outputs.

Landslides pose a particular challenge to segmentation, as land
cover variability (e.g. partial vegetation), and illumination variations
as a function of terrain characteristics, often result in spectrally
diverse features. It is not practical to attempt outlining landslides as
single segments, and some post-segmentation merging or multi-scale
processing is needed also due to the typical size variability of land-
slides in an image. In this study, we initially attempted multire-
solution segmentation, a process controlled by scale, shape, colour,
compactness and smoothness parameters (Baatz and Schape, 2000;
Definiens, 2007), for delineating landslide candidate objects. After the
assignment of a landslide class to qualified objects, we merged them
for refinement of landslide object boundaries using a chessboard
segmentation technique. OOA supports combining explicit and
implicit feature identification, meaning that we can look for features
for which unambiguous discriminators are known (explicit), but also
remove background features that are not of interest (implicit),
iteratively approaching an appropriate label of the sought features,
such as landslides (Kerle and de Leeuw, 2009). Research on op-
timizing the use of OOA to achieve proper landslide segmentation,
particularly with a spatial cluster analysis and multi-step segmenta-
tion technique, is carried out in a separate study. Once objects are
appropriately outlined, Definiens Developer calculates a vast number
of parameters for each derived object, such as layer mean, shape,
texture, and relationship, based on the available data layers, to be used
as class discriminators in OOA. In Definiens Developer, these attributes
of image objects are referred to as object features (Definiens, 2007).

3.4. Approach for landslide recognition and classification

The approach for recognition and classification of landslides is
mainly derived from the knowledge developed by experts for de-
tection of landslides during image interpretation. It, therefore, mimics
the cognitive approach a landslide expert would employ in visual
image analysis. Fig. 3 shows the methodology adopted for the semi-
automatic detection of landslides. The approach for landslide
recognition and classification is described in the following three steps.

3.4.1. Identification of landslide candidates (Step 1)
Bare rock or debris is exposed after a landslide event, giving a

bright appearance to landslide affected areas in an image, although at
times mixed with remaining or dislodged vegetation. This character-
istic of a fresh landslide is very well captured by the remote sensing
data and is used as a first criterion for recognition during visual image
interpretation. This change to the land cover can be best represented
in terms of NDVI, which is sensitive to low levels of vegetation cover.

NDVI has been successfully used by previous workers (Barlow et al.,
2006; Schneevoigt et al., 2008) to discriminate landslides from veg-
etated features. Therefore, we used NDVI as a first criterion to identify
landslide candidates, and separate them from other areas such as
forest land, orchards and crop land.

3.4.2. Separation of landslides from false positives (Step 2)
Since NDVI is used as a cut-off criterion, objects with similar or

lower NDVI values, such as rock outcrops, roads, water bodies and
river beds, are likely to be misclassified as landslides. In this step,
these false positives are sequentially eliminated from the landslide
class by integrating their spectral, morphometric and contextual in-
formation in OOA. Potential landslide false positives and the knowl-
edge base for their classification are provided in Table 1, and the
implementation of these criteria in Definiens Developer for OOA is
described in Section 4.2.

3.4.3. Identification of landslide types (Step 3)
The classification of landslides based on material and types of

movement (Cruden and Varnes, 1996) was developed using the
adjacency condition for source area. Morphometric criteria, quantified
from Varnes' definition and local field knowledge, were used to
classify landslides according to their failure mechanism. Shape cri-
teria, such as length/width ratio and asymmetry (Barlow et al., 2006),
were found to be useful for classifying shallow landslides. The knowl-
edge base developed for classification of landslides from a semi-
automatic detection perspective is explained in Table 2, and their
implementation in Definiens Developer for OOA is described in
Section 4.3.

4. Results

4.1. Extraction of landslide candidate objects

We carried out multiresolution image segmentation in Definiens
Developer using Resourcesat-1 LISS-IV multispectral data for extract-
ing landslide candidates. This process can be guided through the use
of scale and shape parameters, the former being used to constrain
maximum allowed heterogeneity in a segment. Given the natural
landslide size and form variability, there is no single set of seg-
mentation parameters that can delineate all landslide candidates
accurately. Fig. 4 illustrates how sensitive the results are to parameter
changes. In principle over-segmentation is preferred to under-seg-
mentation, as later merging is possible, but small image features
subsumed into a larger segment cannot be resolved later on. There-
fore, a small scale factor, although leading to a large number of objects
(Fig. 4b), was necessary to depict the relevant spectral, spatial and
contextual properties of landslides.

Even though multiresolution segmentation initially produced
sufficiently accurate landslide defining objects for analysis, they
were occasionally found to contain impurities such as barren lands
and small patches of vegetation. These landslide impurities were
detected and removed by a resegmentation process, explained in
Section 4.2.

4.2. Landslide recognition

An NDVI of 0.18, a value close to the statistical mode of the image
NDVI, was found to be useful for discriminating landslide candidates
from vegetation cover. From the landslide candidate class all false
positives were sequentially eliminated using the criteria provided
in Table 1, ultimately only retaining landslides. The classification
sequence and the object features with their values used to classify the
false positives are provided in Fig. 5. False positives such as shadow,
river water bodies and roads, whose classification needs special at-
tention, are explained below.
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Even though detection of shadow areas using the low brightness
values from multispectral data is possible to some extent, a hillshade
image is more reliable since other potential sources of low brightness
such as water bodies and weathered rocks can be avoided. A hillshade
image can be generated from a DEM, and it shows the surface
illumination for a given position of sun by calculating the illumination
values for each cell of the DEM. The position of sun, i.e. elevation and

azimuth, on the date of acquisition of multispectral image is provided
by the data vendor in the file header.

Detection of water bodies, particularly the river water, was found
to be difficult using the NIR band due to partial absorption of electro-
magnetic radiation (EMR). This is because river water in the
mountains flows at a high speed carrying suspended sediment load
and mostly big boulders on the river bed are exposed above water

Fig. 3. Generalised methodology flowchart for semi-automatic detection of landslides using object-based methods.

Table 1
Landslide false positives and their logical classification criteria.

False positives Criteria

Shadow Hillshade, a hypothetical image created from a DEM for shadow condition using the sun position at the time of acquisition of the
multispectral image, gives better information of shadow areas than lower DN values in the multispectral image.

Water body Spectral information from the near infra-red (NIR) band, which shows lower values due to absorption of electro-magnetic
radiation (EMR) by water. Topographic information, such as very gentle slope and adjacency to high order drainage carrying
perennial flow of water, is also useful.

River sand High brightness, gentle slope and low relief. Contextual information, such as adjacency to water bodies, is useful. Relief is used to
differentiate it from debris flow, which also shows gentle slope, but high relief as the source area is in the mountains.

Built-up area Large standard deviation values with neighbours (Navulur, 2007), typical texture due to the building pattern and gentle slope.
Non-rocky (e.g. agricultural land) Low to moderate slope, low to moderate NDVI and typical texture due to the terraced pattern of topography.
Rocky (barren land) Moderate slope (between 30° to 45°) and medium brightness.
Rocky (escarpment) Steep slope (N45°) and medium brightness.
Road Orientation is across the general flow direction. Contextual information such as high contrast to neighbours, e.g. roads within a

forest in the mountains, is helpful.
Quarry High brightness, and anomalous local depression due to excavation obtained from an up-to-date DEM. Contextual information,

such as sudden truncation of road, is also useful.
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level, prohibiting complete absorption of EMR. Also, when a river
flows in a deep gorge it is either covered by trees or topographic
shadow. We, therefore, used the DEM to automatically derive the
stream network and ordered them using the Strahler method
(Strahler, 1965). This was used as an input thematic layer during
OOA. In the study area, stream order 5th and beyond shows perennial
flow of water. Therefore, only candidate objects intersecting such high
order streams were assigned river water bodies class (Fig. 6).
However, deep water bodies such as lakes were detected using low
NIR values.

Moderate to gentle slopes in the study area are often converted to
terraces for agricultural activity (Fig. 7). These terraces are parallel to
contours, and width of such terraces is largely uniform. This feature of
the terrace offers a unique texture in the image and can thus serve as a
diagnostic feature. The frequency of combination of grey levels, i.e.
texture in an image, is calculated using grey level co-occurrence
matrix (GLCM), and in Definiens Developer software GLCM values are
calculated using Haralick's method (Haralick et al., 1973). Mean GLCM
of the red band discriminates the terrace pattern clearly and was thus
used in combination with slope and NDVI to classify agricultural land
in OOA (Fig. 5).

Flow direction is the direction of steepest descent, and roads are
oriented perpendicular to flow (Fig. 8). Flow direction was derived
from the DEM in ArcGIS using the Dinf (infinity direction) approach,

which calculates the flow in all possible directions and assigns a value
in radians counter clockwise from east between 0 and 2π, based on
steepest slope on a triangular facet (Tarboton, 1997). The relatively
orthogonal relationship between the flow direction and the main
direction (longest axis direction) of false positives, combined with
high length/width ratio was found to be extremely helpful for iden-
tification of roads (Fig. 8). Candidate objects with a main direction
relatively parallel to the flow direction are classified as landslides.

Finally, a clean-up operation was performed to eliminate non-
landslide areas occupying either all or parts of an object. First, an
object, part of which was not landslide, was resegmented using a
chessboard segmentation technique (Definiens, 2007) to produce
small objects in a regular grid (Fig. 9a). Some of these small objects
correspond to vegetation patches or rocky barren land, which could
not be classified using the criteria discussed so far (Fig. 5), being part
of a larger object. However, since now the object size is reduced, they
were correctly classified using the same criteria as explained in Fig. 5.
This left the objects fully misclassified as landslides to be eliminated
(labels ‘C’ and ‘D’ in Fig. 9b). Definiens Developer provides an
opportunity to search for additional criteria based on knowledge of
the terrain, to refine the results. A careful observation of the image
shows that the false positives were mostly river sands, either found
along a tributary river (lower order stream) that flows seasonally, or
in relatively high slope areas, which, therefore, could not be classified

Table 2
Landslide types and their logical classification criteria.

Landslide type Criteria

Shallow translational rock slide Source area is in rocky land with shallow depth, and relatively narrow and elongated shape.
Debris slide Source area is in a weathered zone or thickly covered soil, moderate slope and low length.
Debris flow Source area is in a weathered zone or thickly covered soil and moderate slope, but has a long run-out zone.
Rotational rock slide Source area is in rocky land with steep slopes, and terrain curvature is concave upward.
Translational rock slide Source area is in rocky land with moderate slope and planar terrain curvature.

Fig. 4. Multiresolution segmentation of a Resourcesat-1 LISS-IV multispectral image. a) with scale parameter 30, the left and right flanks of the landslide (highlighted with dotted
ellipse) are not correctly represented by image objects (with black outline). b) with scale parameter 10, objects are fully part of the landslide. Shape of 0.1 and compactness of 0.9 was
used for both.
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due to non-fulfilment of the river sand criteria defined in Fig. 5. This
issue was addressed using a merge option for the objects to redefine
the object feature value, and by adding an asymmetry (ratio of the
lengths of minor and major axes of an ellipse approximation of the
object) condition to the original river sand criteria. Low relative relief
of the objects calculated from the DEM was also useful in identifying
river sands, particularly to differentiate it from debris flow deposits,
which have a high relative relief due to the location of its source area
at a high altitude in the valley (Fig. 5). Similarly, some other isolated
misclassified landslides were classified as agricultural and rocky
barren lands by refining their previous criteria. Thus only landslides
were retained, ready to be classified based on type of material, type of
movement and failure mechanism.

4.3. Landslide classification

To apply diagnostic criteria for landslide classification, the small
grids that resulted from chessboard segmentation (Fig. 9a) were
merged (Fig. 9b). The recognised landslides were then classified by
following a two-step approach. In the first step, the type of material
was assigned to each landslide using contextual information, e.g.
landslides adjacent to rocky land were classified as rock slides.
Definiens Developer provides an opportunity to implement this
knowledge (Table 2) by using ‘relative border to’ object feature
(Fig. 10). The type of movement was assigned using shape criteria
(Barlow et al., 2006), with landslides categorised as debris slides,
debris flows or rock slides. Rock slides with shallow depth, which is
inferred based on the narrow and elongated shape of the objects, were

Fig. 5. Quantitative classification criteria for false positives. It also shows the sequence in which false positives were detected with top being attempted first. For acronyms, refer to text.

Fig. 6. Image object (yellow outline) identified as river water body using an
automatically derived stream network. The numbers show the stream order. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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classified as shallow translational rock slides due to their prevalence
in the study area and implication on future hazard analysis.

Classification of landslides based on the mechanism of failure, i.e.
rotational or translational, requires segmentation and classification
based on terrain curvature (Table 2). Therefore, in the second step,
objects classified as debris slide and rock slide were resegmented by

multiresolution segmentation technique using the terrain curvature
data instead of the multispectral data as done previously. Segmen-
tation using curvature has an advantage that resulting objects reflect
variation in concavity, convexity or planarity. Highly concave rupture
surfaces thus indicate rotational failure, while planar rupture surfaces
represent translational failure (Cruden and Varnes, 1996). The objects

Fig. 7. Field photograph of a typical agricultural terrace.

Fig. 8. Relationship between landslide and road object axes with reference to general flow direction.
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with mean curvature values less than −1, and between −1 to +1
are classified as rotational and translational rock slides, respectively
(Fig. 10).

The algorithm (segmentation, recognition and classification)
developed for the training area, i.e. the Madhyamaheshwar sub-
catchment, was subsequently applied to theMandakini catchment. All
detected landslides were exported as a GIS layer for accuracy as-
sessment. Fig. 11 shows the landslides recognised in the whole study
area, varying in size between 774 and 291,591 m2.

4.4. Accuracy assessment

In total 73 landslideswere detected semi-automatically in the entire
area. Accuracy assessmentwas carried out by comparing those against a
manually prepared landslide inventory map. A detailed landslide in-
ventory of the Okhimath area, including the watersheds analysed here,
was prepared by Rawat and Rawat (1998) andNaithani (2002) after the
occurrence of catastrophic landslides in August 1998. However, the
inventory was not available in polygon shapes since they inventoried
landslides by referring to the nearest village names. We used this

information and carried out a stereoscopic analysis of satellite data to
prepare a landslide inventory map. The manually drawn landslide
polygons were verified during detailed field investigation.

The accuracy of semi-automatically detected landslides was ad-
dressed on three levels: (i) number of correct recognition, (ii) correct
classification of landslide types (Table 3), and (iii) correct detection of
landslide extent (Table 4).

5. Discussion

Landslide mapping by field investigations is a challenging task in
vast and inaccessible mountainous terrain. Visual interpretation of
remote sensing data is time consuming, and thus also not ideal,
particularly for disaster management and decision making activities,
where timely results are valued most. So far there have only been a
few attempts at automating the mapping of landslides by pixel-based
methods (Nichol and Wong, 2005), which likely fail as DN values
alone do not characterise geomorphic processes such as landslide
(McDermid and Franklin, 1994). Recently, Barlow et al. (2006) and
Moine et al. (2009) started to investigate how landslides can be
treated as objects in a contextual analysis. Barlow et al. (2006)
achieved good detection accuracy by only considering landslides that
are quite large (N10,000 m2). Also, failure mechanisms, such as
rotational and translational, are not addressed by them. However,
Moine et al. (2009) could recognise small landslides, essentially using
high resolution earth observation data, but did not use a DEM,
eventually ruling out the possibilities of classifying landslide types.
Use of expert knowledge to characterise landslides is crucial for semi-
automatic detection in OOA. This was addressed partly by Moine et al.
(2009), whereas Barlow et al. (2006) used supervised classification
with object samples to classify landslide candidates. Therefore, a
proper characterisation of landslide types is required for OOA. In
this study we extracted objects from segmentation of high reso-
lution (5.8 m) Resourcesat-1 LISS-IV multispectral data and a 10 m
Cartosat-1 derived DEM, and characterised major landslide types as
per Varnes' classification scheme.

A multi-step segmentation approach was followed to recognise
and classify landslides accurately. Expert knowledge was quantified
using spectral characteristics of the objects such as layer mean and
brightness, morphometric characteristics such as flow direction, slope
and curvature, shape characteristics such as asymmetry and the

Fig. 9. Resegmentation and merging of objects. a) chessboard segmentation to create small objects to eliminate small patches of vegetation or barren land (C and D in b) within
bigger landslide objects. b) classification and removal of smaller patches and subsequent merging of the remaining gridded objects to a single landslide object for application of
adjacency condition required for classification of landslides.

Fig. 10. Quantitative classification criteria for landslide types. It also shows the
sequence in which the landslides were classified with top being attempted first.
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length/width ratio, textural characteristics such as GLCM (Haralick
et al., 1973), and contextual information such as adjacency and
containment, to classify a total of nine false positive classes (Fig. 5). A

stream network automatically derived from a DEM was helpful in
delineating river water body with ambiguous spectral properties.
GLCM texture and orthogonal relationship between flow and main

Fig. 11. Landslides semi-automatically detected for the whole study area (black polygons). Three insets show the extent of major landslides detected automatically. Landslides
mapped manually by visual image interpretation are shown in the background for comparison. Intersection of line symbols shows agreement.
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directions of objects were useful for classification of agricultural
terraces and roads, respectively. Classification of false positives into
non-rocky and rocky lands was useful in classifying landslides based
on material type. This study thus considers generic indicators based
on expert knowledge to characterise landslides. However, the
quantification of specific characteristic features may have to be
adjusted, when our algorithm is applied to other areas or used with
other image data types.

Merging and resegmentation in Definiens Developer during OOA
provided an ideal solution for detecting not only landslides of
complex shape and size, but also landslides with multiple failure
mechanisms, e.g. rotational and translational, within a landslide body.
Multiresolution segmentation used for the creation of landslide
candidate objects, and subsequent chessboard segmentation, suc-
cessfully eliminated smaller patches of vegetation or barren land,
which later proved essential for refinement of landslide boundaries.
Segmentation of landslide objects using terrain curvature data was
able to classify landslides based on their failure mechanism.

We achieved 76.4% recognition and 69.1% classification accuracies
for the whole study area in terms of number of landslides (Table 3).
The recognition and classification accuracies achieved for the extent of
landslides are 69.9% and 69.5%, respectively, and 23.6% of the total
number of landslides and 3.7% of corresponding extent could not be
recognised (Table 4). Shallow translational rock slides were recog-
nised and classified with lower accuracy than other four types
(Table 3). The reason for non-detection of 11 shallow translational
rock slides was incorrect delineation of appropriate objects in the
segmentation routine, due to their narrow shape and occurrence
within spectrally identical land cover units, such as rocky land. Even

though the number of identified debris slides was too high (17), their
extent is small. These wrongly classified debris slides are actually
parts of agricultural land, showing amixed spectral response owing to
their partial conversion to built-up area.

The smallest landslide correctly detected by our algorithm is
774 m2. However, to understand the detection capability of our
algorithm in relation to landslide size, we applied the landslide
frequency–size distribution analysis, a proven technique for landslide
inventory assessment (Malamud et al., 2004). Manually (55) and
automatically (42) recognised landslides were plotted against their
frequencies (Fig. 12). Since the range of landslide size is very high, we
selected a logarithmic class interval (x-axis). As the class interval is
not constant, we also normalised the frequency with their respective
class interval to calculate the probability density (Malamud et al.,
2004) and plotted it on the y-axis. Both trend lines showed good
statistical correlations, meaning that the data resolution and algo-
rithm are sufficient to accurately recognise the most commonly
occurring landslide sizes.

6. Conclusions

In this study landslides were semi-automatically recognised and
classified as per Varnes' classification scheme. Landslide diagnostic
features typically used by experts during visual image interpretation
were used for the characterisation. These characteristic features were
updated from an automatic detection perspective, and then efficiently
synthesized using OOA for recognition and classification of landslides.

The algorithm was developed in Definiens Developer software
using only two primary data sources, high resolution satellite data and
a DEM. It comprised 45 individual routines, such as segmentation,
merging and classification, which are automatically executed in the
assigned sequence. Other parameters used, such as NDVI, slope, flow
direction, hillshade, terrain curvature and stream network were
derived automatically using algorithms available in basic GIS and
image processing softwares. Landslide candidate objects, once
identified in the segmentation routine were separated from vegeta-
tion by an NDVI threshold. Nine false positive classes were effectively
removed by efficient use of DEM derivatives combined with spectral
information. For the entire study area, we achieved 76.4% landslide
recognition accuracy in five different landslide classes in a terrain
featuring spectrally identical land use/cover units. It must also be
noted that correct visual identification of these types based on image
data alone would be very challenging and would also require the
incorporation of elevation information. For example, the smallest

Table 3
Accuracy assessment for the number of landslides.

Landslide detection

Manually Automatically

LCRC LCRWC TLCR LNR LOR

Shallow translational rock slide 31 16 4 20 11 2
Debris flow 1 1 0 1 0 0
Debris slide 4 3 0 3 1 17
Rotational rock slide 6 6 0 6 0 3
Translational rock slide 13 12 0 12 1 9
Total number of landslides 55 38 4 42 13 31
% 69.1 7.3 76.4 23.6 56.4

LCRC: Landslides correctly recognised and classified, LCRWC: Landslides correctly recognised
but wrongly classified, TLCR: Total landslides correctly recognised (LCRC+LCRWC),
LNR: Landslides not recognised (i.e. error of omission), LOR: Landslides over recognised
(i.e. error of commission).

Table 4
Accuracy assessment for the extent (km2) of landslides.

Landslide detection

Manually Automatically

LCRC LCRWC TLCR LNR LOR

Shallow translational rock slide 0.220 0.103 0.005 0.108 0.039 0.007
Debris flow 0.387 0.292 0 0.292 0 0
Debris slide 0.052 0.029 0 0.029 0.003 0.043
Rotational rock slide 0.162 0.098 0 0.098 0 0.035
Translational rock slide 0.379 0.312 0 0.312 0.003 0.026
Total extent of landslide 1.200 0.834 0.005 0.839 0.045 0.111
% 69.5 0.4 69.9 3.7 9.2

LCRC: Landslides correctly recognised and classified, LCRWC: Landslides correctly recognised
but wrongly classified, TLCR: Total landslides correctly recognised (LCRC+LCRWC),
LNR: Landslides not recognised (i.e. error of omission), LOR: Landslides over recognised
(i.e. error of commission). Fig. 12. Relationship between landslide area and frequency.
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automatically detected landslide (774 m2) was missed in the visual
stereo interpretation, and only verified with higher resolution Google
Earth imagery. Another significant achievement of this study is
detection of complex failure mechanismwithin large landslides. Since
the algorithm uses NDVI in the beginning to identify landslide can-
didates, the result of the OOA, in principle, will be accurate if the post-
landslide satellite imagery and DEM are used. Therefore, our method
has the potential to produce quick results after an earthquake or an
extreme rainfall event. Also, since the algorithm could distinguish
between rotational and translational slides, future hazard analysis
and immediate ground control measures can be planned efficiently
(Varnes, 1978).

The objective here was to evaluate to what extent landslides, once
outlined in a (possibly iterative or multi-stage) segmentation routine,
can be correctly detected, using an OOA. The challenge of segmenting
complex landslide shapes, which are frequently distorted as a result of
sensor and viewing characteristics, and which become indistinct
when shadows overlap or contrast is low, will be addressed in a
separate study. The algorithm developed here is available on our
website (www.itc.nl/OOA-group), and we welcome testing of the
approach with other data types and in other areas.
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