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A quantitative model for landslide hazard assessment on natural slopes is presented for a transportation
corridor of the Nilgiri Hills in southern India. The data required for the hazard assessment were mostly
obtained from historical records. For the hazard modeling, a landslide inventory map was prepared from
technical reports and maintenance records for a road and a railroad, available for a 21 year period from 1987
to 2007. Most landslides are shallow translational debris slides and debris flow slides triggered by rainfall. On
natural slopes landslides occurred as first-time failures.
A logistic regression model was used to determine the spatial probability of landslides for each pixel by taking
the source area of the existing landslides as dependent, and slope angle, aspect, regolith thickness and land
use as independent variables. The temporal probability of landslides was estimated indirectly using the
exceedance probability of the rainfall threshold required to trigger landslides for the first time on natural
slopes. The probability of landslide size was estimated as frequency percentage of landslide volume, a proxy
for landslide magnitude, and the percentage values were then expressed as probability. By assuming
independence among the three probabilities, a quantitative estimate of a landslide hazard was obtained as the
joint probability of landslide volume, of landslide occurrence in an established time period and of spatial
probability of a landslide initiation. The models were validated using the rainfall and landslide events that
occurred during 2008 and 2009.
Total 12 specific landslide hazard maps were generated considering six time periods (1, 3, 5, 15, 25 and
50 years), and two landslide volumes (volume exceeding 1000 m3 and 10,000 m3).
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1. Introduction

Landslide hazard is defined as the probability of occurrence of a
potentially damaging landslide within a specified period of time and
within a given area (Varnes, 1984). According to the guidelines given
by JTC-1, the Joint Technical Committee on landslides and Engineered
Slopes (Fell et al., 2008), a quantitative landslide hazard map at a
catchment scale should include their classification, volume (or area),
location and velocity of potential landslides, and probability of their
occurrence.

For landslides on natural slopes, the JTC-1 guidelines recom-
mended using hazard descriptor as the annual probability of active
landsliding for individual landslides and the number of landslides per
unit area for small landslides on natural slopes. The JTC-1 guidelines
also recommend carrying out hazard assessment according to the
landslide type and magnitude. Due to the lack of well established
classification systems for landslide magnitude (Guzzetti et al., 2002),
some researchers have used landslide area or volume as a proxy for
magnitude for certain landslide types such as slides or flows (Guzzetti
et al., 2005). In probabilistic terms, Guzzetti et al. (2005) included
landslide area, which is considered a proxy for landslidemagnitude, in
the hazard assessment and calculated hazard as the joint probability
of landslide size (area), of landslide occurrence in an established time
period and of landslide spatial occurrence given the local environ-
mental setting. The probabilistic model fulfils the definition of
landslide hazard given by Varnes (1984), amended by Guzzetti et al.
(1999) to include the magnitude of the landslide. Although one could
argue this expression of landslide hazard as it assumes that the spatial
probability, temporal probability and size probability are indepen-
dent, it is currently the best applicable method for landslide hazard
assessment at a medium scale (1:25,000–1:50,000). Other probabi-
listic methods that are based on process based modeling, experience
serious problems with parameterization, which makes their applica-
tion problematic over larger areas, especially in a heterogeneous
terrain setting (Kuriakose et al., 2009a).

For estimating the susceptibility, or spatial probability of landslide
occurrence, numerous models are available that have been

http://dx.doi.org/10.1016/j.enggeo.2010.09.005
mailto:jaiswal@itc.nl
http://dx.doi.org/10.1016/j.enggeo.2010.09.005
http://www.sciencedirect.com/science/journal/00137952


237P. Jaiswal et al. / Engineering Geology 116 (2010) 236–250
successfully used (e.g., Soeters and van Westen, 1996; Chung and
Fabbri, 1999; Guzzetti et al., 2005; Lee and Pradhan, 2006). On the
contrary, the number of publications on landslide hazard assessment
at the catchment scale is still rather modest, due to the difficulty to
add the temporal dimension to susceptibility maps at this scale. But,
recently few progresses have been made to produce real hazard maps
by incorporating temporal probability (e.g., Zezere et al., 2004;
Guzzetti et al., 2005; Harp et al., 2009).

The temporal probability of landslides can be estimated from past
landslide records using a Poisson or Binomial distribution model
assuming that the rate of occurrence of landslides would remain the
same (e.g., Lips and Wieczorek, 1990; Coe et al., 2000; Guzzetti et al.,
2002, 2005). The model provides the probability of getting one or
more landslides at any given time. The statistics involved are simple
and results are easy to implement, but the main limitation is that it
requires a sufficiently complete landslide inventory of multiple
periods to compute probability. Also methods based on recurrences
of past landslides are valid for the repetitive events and do not hold
true for the unique ones (Guzzetti et al., 1999; Cascini et al., 2005).
Furthermore, the temporal probability based on the mean rate of
slope failures provides probability values to areas (e.g., a slope unit)
that have experienced landslides and the areas with no record of past
slope failures are classified as hazard free. Some researchers have used
the frequency of occurrence of landslide triggers to estimate the
temporal probability of landslides (e.g., Crozier, 1999; Chleborad et al.,
2006). The advantage of this method is that it does not require a
complete multi-temporal landslide inventory but, it is necessary here
to establish reliable relations between the trigger, its magnitude and
the occurrence of landslides. The method helps to model the temporal
probability of first-time slope failures by determining the magnitude
of trigger that has resulted in a slope to fail for the first time (Jaiswal
and van Westen, 2009). Since the frequency of the trigger itself does
not provide information on the spatial distribution of potential
landslides, it has to be combined with landslide susceptibility to
produce a landslide hazard map (Corominas and Moya, 2008). One
way to overcome this and provide a combined spatial and temporal
probability would be to carry out a statistical analysis using a
substantially complete event-based landslide inventory, an inventory
of landslides caused by the same triggering event, and use the return
period of the trigger as the temporal probability (e.g., Glade, 2001).
However, complete event-based landslide inventories are difficult to
obtain either through traditional photo-interpretation techniques,
with the common problem of linking them to particular dates of
occurrence (van Westen et al., 2006) or from historical landslide
records, which often report only those landslides that have caused
damage (Guzzetti et al., 1994; Chau et al., 2004; Devoli et al., 2007).

In this paper, we propose a landslide probabilistic model to
quantify hazard of first-time slope failures on natural slopes using the
frequency of the landslide trigger. We calculated landslide hazard as
the joint probability of landslide size (volume), of landslide
occurrence in an established time period and of landslide spatial
occurrence given the local environmental setting, based on an earlier
work presented by Guzzetti et al. (2005). The required data for hazard
analysis were obtained from the historical records available for the
study area.

2. The study area

The study area is a transportation corridor in part of the Nilgiri Hills,
in the western Tamilnadu region of southern India (Figure 1). The area
covers 22 km2 and forms a part of the Coonoor river basin with Tiger
Hill–Kori Betta Ridge to the North and Coonoor River to the South.

Geologically, the area exposes charnockite rocks and garnetifer-
rous quartzofelspathic gneisses belonging to the Charnockite Group of
Archaean age (Seshagiri and Badrinarayanan, 1982). These are
overlain by soil and laterite. The charnockite is also garnetiferous
and outcrops are well exposed along cut slopes of the road, railroad
and landslide scarps. The regional strike of the foliation is ranging
from ENE–WSW to E–W directions with moderate to steep dips. The
sub-tropical climate and intense physical and chemical weathering
have resulted in a thick yellowish to reddish brown soil. The regolith
thickness varies from less than a meter to 20 m, as observed in cut
slopes along the road and railroad.

Tea plantations form the main land use type, and on the steeper
slopes there are many patches of forest. The settlements are very few
and sparse, and only Burliyar and Katteri are the two major
commercial and residential settlements along the road whereas
other residential units are within tea estates.

The area experiences rainfall in two periods: April to July and
September to December, of which November is the wettest month.
During the period from 2002 to 2006, the annual rainfall in the area
ranged from 836 mm to 3165 mm, with an average value of 1724 mm
and a standard deviation of 330 mm. The average annual rainfall is
lowest around Carolina area (974 mm) and highest around Katteri
farm (2231 mm) (Figure 2).

3. Landslide inventory

An inventory map for landslides on natural slopes was prepared
from the historical records and field observation. The historical
records include technical reports on landslide investigations under-
taken in the study area during a 21 year period from 1987 to 2007. The
technical reports provided a detailed description of landslide location,
detail maps and field photographs of some of the landslides, and other
parameters such as landslide morphometery, date of occurrence,
volume, etc. The historical records were thoroughly studied and
relevant information pertaining to landslides in the area was
compiled. After compilation, field work was carried out to locate the
landslides on the basis of description given in the reports. The data on
landslide volume was used to infer the size of landslides and the
morphological signatures left by landslides on slopes such as barren
slopes, scarp faces, etc. were used to identify the shape of landslides.
The morphological parameters (landslide scar length, width and
depth) were plotted after carefully measuring them in the field using
a meter tape. For landslides located on inaccessible slopes the
morphological parameters were plotted based on the field observa-
tion, image interpretation and description given in technical reports.
The availability of detailed maps and field photographs of some
landslides on natural slopes facilitated in identifying the shape of
landslide scars and run-out areas. The volume and area of mapped
landslides was recalculated by multiplying the morphological
parameters.

After identifying the exact location of landslides on hill slopes, they
were thenmappedon a 1:10,000 scale topographicmap. Their initiation
(source) and run-out areawere separatelymarked. The landslideswere
digitized in a GIS environment. The coordinates were obtained through
GIS and other details were attached as an attribute table.

Substantially complete information from technical reports was
available only for landslides triggered by a rainfall event on14
November 2006. All landslides triggered by this event were
systematically recorded, including those affecting cut slopes. In
2007, we carried out a field work and updated the 2006 inventory,
and also included landslides that have occurred in uninhabited areas.

Fig. 3 shows the distribution of mapped landslides on natural
slopes. A total of 31 landslides have been identified, which are either
classified as translational debris slides (Figure 4A) or debris flow
slides (Figure 4B–D). All occurred as first-time failures, and were
triggered by rainfall. The landslides in natural slopes are generally
small in size (with a landslide source area ranging from 60 to
15,000 m2), but known to have resulted in numerous casualties and
losses to properties, including houses, tea plants and horticulture. In
1993, a large debris flow slide at Marapallam (Figure 4B) killed more



Fig. 1. Locationmap of the study area. Black triangles indicate spot height (inmeters) above themean sea level. Black circles are the location of rain gauge stations: 1— Carolina (Car),
2 — Coonoor (Coo), 3 — Glandale (Gla), 4 — Runneymede (Run), 5 — Katteri farm (Kat), 6 — Tiger Hill (Tig), 7 — Singara upper division (SinUD), 8 — Singara lower division (SinLD),
9 — Hillgrove (Hil), 10 — Burliyar (Bur), 11 — Adderley (Add), 12 — Kallar farm (Kal), and 13 — Mutteri (Mut).

Fig. 2. Annual rainfall values at different rain gauges. The names of the rain gauge stations are shown in abbreviated form on the x-axis (see description of Figure 1 for the full name).
‘Car’ is located to the western and ‘Mut’ in the eastern boundary of the study area.
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Fig. 3. Location of landslide source and run-out areas on natural slopes. Sections I, II, III and IV are the areas used for determining rainfall thresholds.
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than 50 people, and destroyed 18 houses and one mosque (Balachan-
dranet al., 1996). On14November 2006, a debrisflowslide east of Kallar
farm (Figure 4D) destroyed part of the horticulture property. Fig. 4C
shows the crown portion of the debris flow slide near Kallar farm.

During the period 1987 to 2007, rainfall has triggered landslides on
seven occasions on natural slopes. For example, on 14 November 2006
about 150 mm of rainfall in 3 h has triggered 166 landslides around
Burliyar. The 2006 rainfall event has triggered landslides both on
natural slopes and on cut slopes along the transportation lines.
Fig. 4. Examples of landslides on natural slopes in the study area. Landslides are debris
4. Method for landslide hazard assessment

A quantitative landslide hazard assessment on natural slopes
requires the estimation of three basic parameters (Figure 5):

(1) the magnitude probability (PM),: indicating the probability that
the landslide might be of a given size,

(2) the temporal probability (PT): indicating the annual probability
of occurrence of triggering events that generate landslides, and
slides (A) and debris flow slides (B–D) triggered by rainfall as first-time failures.

image of Fig.�3
image of Fig.�4


Fig. 5. Parameters and process adopted for the quantitative assessment of landslide hazard.
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(3) the spatial probability (PS): indicating the relative spatial
probability of occurrence of landslides of a given type.

Using the above probabilities, the landslide hazard on natural
slopes can be estimated as the joint probability of the landslide size, of
the landslide occurrence in an established time period and of the
landslide spatial occurrence (Guzzetti et al., 2005). It is assumed that
the above three probabilities are mutually independent and the
landslide hazard (HL), i.e., the joint probability is:

HL = PM × PT × PS ð1Þ
The assumption that the three probabilities in Eq. (1) are mutually

independent may not hold always and everywhere. Small triggering
events will result in another landslide magnitude distribution than a
large triggering event, and also the locations where landslides will
occur may be substantially different. However, the assumption is
accepted here as the best approach given the lack of a better approach
that can be used under the given circumstances of data availability
and characteristics of the study area. In areas where a complete
landslide inventory is available (e.g., inventory available for Hong
Kong Island) attempts have been made to zone landslide hazard
directly using the number of landslides per year per mapping unit
(Chau et al., 2004). However, such method requires a complete multi-
temporal landslide inventory, which is seldom available.

The assessment of landslide hazard on cut slopes will be taken up
separately because the mechanism and processes involved in

image of Fig.�5
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initiating slope failures on cut slopes are different than on the natural
slopes. Slope failures on cut slopes are mainly due to the effect of
anthropogenic interference, which makes slopes conducive for land-
slides to initiate.

5. Probability of landslide size (volume)

To ascertain the probability of the landslide volume, we selected
166 landslides triggered by the November 2006 landslide event
because of the availability of a substantially complete record. We use
the term ‘landslide event’ for those days for which one or more
landslides were triggered by rainfall. For the analysis, we used the
volume estimated at the source of landslides. Out of the 166 landslides
triggered by the 2006 event, 18 occurred on natural slopes and the
rest on cut slopes. Most landslides on natural slopes had a volume less
than 1000 m3 and occurred on steep slopes (Figure 4A). Only 4
landslides had a volume larger than 1000 m3.

To ascertain the probability, we first studied the probability
density distribution of landslide volume of the 166 landslides
obtained using the equation given in Malamud et al. (2004). The
probability density p(VL) is expressed as:

p VLð Þ = 1
NLT

δNL

δVL
ð2Þ

where δNL is the number of landslides with volumes between VL and
VL+δVL, andNLT is the total number of landslides.

Fig. 6 shows the probability density distribution of the landslide
volume. The observed probability density distribution shows distinct
flattening of the curve (roll-over) for failure volumes of less than
200 m3.

In most studies, the relationship of the landslide size and
frequency is observed to have a power law distribution over two
orders of landslide size with a flattening of curve at the lower size
(e.g., Stark and Hovius, 2001; Guthrie and Evans, 2004; Malamud et
al., 2004). Researchers have studied the frequency distribution using
different types of landslide inventories, as mentioned in Picarelli et al.
(2005). These examples include inventories containing landslides for
an undefined long period of time prior to a mapping timeline,
inventories of landslides within a defined time interval, inventories
containing continuous records of landslide occurrence within a region
or along transportation corridors, and inventories of landslides
Fig. 6. Probability density distribution of landslide volume of 2006 and 2009 events.
occurring in a very short period of time after a triggering event such
as an earthquake or rainstorm. Some researchers (e.g., Guthrie and
Evans, 2004) believe that the flattening of the curve at the lower
landslide size is ‘natural’ and reflects slope stability processes whereas
others (e.g., Chau et al., 2004; Malamud et al., 2004; Catani et al.,
2005) relate it to the incompleteness of the inventory. Brardinoni and
Church (2004) have shown an increase in the frequency of small
landslides when the photo-interpreted inventory was integrated with
an intensive field based inventory.

The actual frequency distribution of landslide size, thus remains
unclear in literature and also in the study area due to the lack of
complete records for other events and the unavailability of an
established model for landslide size and frequency for the Nilgiri
Hills. In this study, we computed the probability of landslide volume
as cumulative frequency percentage using the landslide event of
November 2006 and the percentage values are expressed as
probability. The probability that a landslide exceeds a volume of
1000 m3 and 10,000 m3 is estimated as 0.07 and 0.01, respectively.
Wewill use these probability values as the components for estimation
of the landslide hazard.

We have selected only two volume categories for landslides
because of the fact that casualties and property losses (e.g., buildings
or land use) are generally caused by landslides with relatively large
failure volumes.

6. Temporal probabilities of landslides

The proposed model for quantitative landslide hazard requires an
estimate of the temporal probability of landslides. The temporal
probability was estimated indirectly using the exceedance probability
of a rainfall threshold required to trigger landslides for the first time
on natural slopes. The threshold is the minimum amount of rainfall
needed to trigger landslides.

The availability of daily rainfall records and dates of landslide
events allowed establishing threshold values for landslides on natural
slopes. Daily rainfall data were collected from 13 rain gauges
belonging to tea estates, the horticulture department and the railway
office. The distribution of the rain gauges is shown in Fig. 1. All gauges
are of the non-automated tipping bucket type, with daily recording of
the readings in the morning.

Five events that occurred during the period between 1992 and
2006 in the months from October to December were used to manually
draw an envelope curve adopting themethod given in Jaiswal and van
Westen (2009). For the threshold analysis, we used a 5-day
antecedent rainfall (R5ad) for establishing the threshold. The 5-day
antecedent rainfall was found optimal for triggering landslides in the
study area (Jaiswal and van Westen, 2009). The threshold line is
represented by a linear mathematical equation (RT=210–0.54 R5ad).
The small slope (0.54) and high intercept (210) of the envelope curve
indicate that such events either require very high magnitude daily
rainfall or a very high amount of a five-day antecedent rainfall during
the monsoon to trigger landslides.

The temporal probability of threshold exceedance on natural
slopes, which also gives the probability of a landslide initiation {L}, for
different time periods is estimated in four different parts of the areas
as shown in Fig. 3 using the following probability model:

Pf R N RTð Þ∩Lg = PfR N RTgPfL jR N RTg ð3Þ

where RT is the threshold value of rainfall (R). The probability model,
Eq. (3), suggests that the probability of occurrence of both a rainfall
that exceeds the threshold {RNRT} and landslides {L} is equal to the
probability of {RNRT} multiplied by the probability of occurrence of
{L}, assuming that {RNRT} has already occurred. The probability
of {RNRT} can be obtained by determining the exceedance probability
of the rainfall threshold using a Poisson model and the probability of

image of Fig.�6
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{L RNRT} relies on the frequency of occurrence of landslides after the
threshold has been exceeded.

For each section, based on the past rate of RNRT, we obtained
threshold recurrence i.e., the expected time between successive
threshold exceedances. Knowing the mean recurrence interval of
threshold in each section (from 1992 to 2006), and adopting a Poisson
probability model, we computed the probability of the threshold
being exceeded [P{RNRT}] in different years (i.e., 1, 3, 5, 15, 25 and
50 years) in each section. Due to the possible incompleteness of the
landslide data, we have taken the value of {L RNRT} in Eq. (3) as 0.73,
which is the same as the one estimated for the entire railway route
having the similar threshold equation (Jaiswal and van Westen,
2009). Since events triggering landslides on natural slopes require
very high daily and antecedent rainfall, we assume that under the
given high rainfall condition the likelihood of triggering landslides is
also high, such as those estimated for the entire railway route. Using
Eq. (3) we finally estimated temporal probability of landslide events
for different time periods.

Table 1 shows the temporal probability in the four sections for
different time periods, from 1 to 50 years. The results indicate that
Sections I and III, and Sections II and IV have the same mean
recurrence interval of the threshold and thus the temporal probability
is also similar. The probability of one ormore landslide events to occur
in one to 50 years time varies from 0.13 to 0.73 in different sections.
Sections I and III show a relatively high temporal probability of
exceedance and they also have maximum incidences of recorded
landslides. After 25 years all sections will have the maximum
probability of exceedance of rainfall threshold [P{RNRT}=1] and
thus have the highest probability of experiencing one or more
landslide events (0.73).
7. Spatial probabilities of landslides

The spatial probability of landslides can be estimated using a
variety of statistical techniques. Some of the commonly used
techniques include logistic regression analysis (e.g., Atkinson and
Massari, 1998; Ohlmacher and Davis, 2003; Suzen and Doyuran, 2004;
Nefeslioglu et al., 2008), discriminant analysis (e.g., Baeza and
Corominas, 2001; Carrara et al., 2003; Guzzetti et al., 2005),
conditional analysis (e.g., Clerici et al., 2002), and weight of evidence
(e.g., van Westen et al., 2003; Neuhauser and Terhorst, 2007). The
above statistical techniques are usually based on two assumptions:
first, that areas which have experienced landslides in the past are
likely to experience them in the future and secondly, that areas with a
similar set of geo-environmental conditions as that of the failed areas
are also likely to fail in the future (Guzzetti et al., 1999; Fell et al.,
2008). This means that the quantitative estimates of the spatial
location of future landslide sources depend on the detailed informa-
tion on the distribution of past landslides and a set of thematic
variables such as slope angle, aspect, lithology, etc. that has initiated
these landslides. The second assumption facilitates in predicting the
geographical location of future landslides in passive areas (i.e., areas
presently devoid of landslides) provided the geo-environmental
Table 1
Temporal probability of landslide events (threshold equation: RT=210– 0.54 R5ad).

Area Sections RNRT
a Temporal probability for different

periods (in years)

1 3 5 15 25 50

East of Burliyar I 11 0.37 0.65 0.71 0.73 0.73 0.73
Around Hillgrove II 3 0.13 0.33 0.46 0.69 0.73 0.73
Around Marapallam III 11 0.37 0.65 0.71 0.73 0.73 0.73
West of Runneymede IV 3 0.13 0.33 0.46 0.69 0.73 0.73

a RT is the threshold value of rainfall R.
conditions remain the same. The above assumptions have been
successfully used for statistically quantifying landslide susceptibility
at a basin scale.

7.1. Selection and classification of preparatory factors

For susceptibility mapping, the selection of preparatory factors
depends on the scale of analysis, the characteristics of the study area,
the landslide type, the failure mechanisms and the priori knowledge
of the main causes of landslides (Guzzetti et al., 1999; Glade and
Crozier, 2005). It is essential to select those factors that bear a clear
physical relationship with mass movement in the study area,
otherwise the statistical analysis produce results that may be
unreliable (Guzzetti et al., 1999). A systematic overview of the
important preparatory factors required for susceptibility mapping in
different scales is given in van Westen et al. (2008).

For the susceptibility mapping, we selected preparatory factors
based on field observations, the characteristics of the mass move-
ments and the landslide causative factors reported in the earlier
studies of landslide susceptibility in the Nilgiri Hills. In the research
area, landslides are individually small in size initiating as a debris slide
and affect only the overburden soils and regolith. Failures are
common in areas where slopes are steep and contain thick regolith
cover (Figure 4A–C). From the field observations it is evident that
slope angle, landuse type and thickness of regolith are the key factors
that control mass movements in the area. Earlier reports on
landslides, including studies on the landslide analysis where about
300 landslides triggered in 1978 and 1979 were investigated, have
indicated slope angle, changes in the land use and thickness of
regolith as the main causative factors for the initiation of debris slides
and debris flow slides in the Nilgiri Hills (Seshagiri and Badrinar-
ayanan, 1982). The report did not include lithology and structure as
preparatory factors because they were observed to have no direct
influence in causing landslides except in the development of
overburden soils.

Based on the facts given in the earlier reports (Seshagiri and
Badrinarayanan, 1982) and the present condition ofmassmovements,
we selected four preparatory factors for the susceptibility modeling
and classified them into 37 factor classes, used as independent
variables: slope angle (13 classes), aspect (12 classes), land use (8
classes) and regolith thickness (4 classes). The dependent variable
includes source areas of the existing landslides on natural slopes that
occurred between 1987 and 2007 (Figure 3). A brief description of the
significance and mapping techniques for each factor is given below.

• Slope angle— the slope gradient greatly influences the susceptibility
of a slope to landsliding. In general landslide frequency increases
with the slope gradient until the maximum frequency is reached in
the 35–40° categories, followed by a decrease (Lee and Min, 2001;
Dai and Lee, 2002). The high frequency of failures with increasing
slopes may be attributed to reduce the shear strength in the
overburden mass. For the study area, the slope angle was derived
from a digitized topographic map with 10 m contour spacing that
was interpolated in a 10 m regular grid DTM using Arc GIS 9.3. The
slope map was reclassified into 13 classes with intervals of 5°. The
landslide distribution indicates that landslide frequency increases
with the slope angle until the maximum is reached in the 25°–30°
categories, followed by a decrease. About 80% of the landslides are
distributed between slope categories 15° to 40°. The areas with
more vertical slopes with outcropping bedrock were found to be
stable and not susceptible to landslides.

• Aspect — the aspect (direction) of a slope may also contribute to
landsliding. The moisture retention and vegetation are generally
reflected by the slope aspect, which may affect soil strength and
susceptibility to landslides. The slope aspect was also derived from
the DTM using Arc GIS 9.3 and the values were grouped into 12
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classes with intervals of 30°. The correlation of landslides and aspect
shows high failure percentages (N85%) between N120° and N210°,
which could be because most part of the study area lies on the
southern topographic slope of the Tiger Hill–Kori Betta Ridge.

• Land use — land use is the other important causative factor that can
influence landslides. Changes in the land use pattern such as
deforestation, or increase in the agricultural and constructional
activities make an area more susceptible to landslides. During 1978
and 1979most of the landslides (68.5%) occurred in the planted area
(tea and coffee) and only 16% within the forested areas (Seshagiri
and Badrinarayanan, 1982). In the study area, most of the steeper
slopes are under the forest and gentler slopes are used for tea
plantation. In the past 100 years not many changes in land use have
taken place in the area except near Katteri where several new
buildings have been constructed. The total area of the reserved
forest and tea estates has not been changed over time. The land use
map for the corridor area was prepared from the 1998 surveyed
1:25,000 scale topomap and Cartosat-1 stereo data (2.5 m resolu-
tion) of April 2007. Eight classes were obtained for the overlay of
preparatory factors i.e., forest, scrubs, tea plantation, tea mixed with
trees, coffee plantation, horticulture, barren areas and settlement.
The forest covers about 13 km2 (~60%) of the study area and its
correlation with landslides shows high failure percentages (N85%).

• Regolith thickness — the thickness of regolith is another important
preparatory factor for shallow landslides. In shallow landslides,
where the slip plane is the contact zone of rock and regolith, a thin
regolith cover increases the chance of landsliding due to the build-
up of pore pressure on the contact (Iverson, 2000; Zezere et al.,
2005). In the study area, a variation in the thickness of regolith was
observed to be very erratic. On the hill slopes the thickness was
found to vary significantly except near the Katteri area. The
thickness depends on a large variety of factors, one important
being the local variation in terrain morphology and therefore it is
extremely difficult to predict the regolith thickness over the large
areas. Ideally for thickness modeling a large number of observations
(such as drill holes, outcrops, or geophysical measurements) are
required. However, at a catchment scale this approach is difficult to
implement. Given the above mentioned limitations and difficulties
we used a point interpolation technique using the inverse distance
weighing method to obtain a regolith thickness map for the study
area. In a small catchment area of the Western Ghat of southern
India interpolation methods have been used successfully for
predicting soil depth (Kuriakose et al., 2009b). For interpolation,
the points were measured at 246 locations in the field as the
thickness of regolith cover exposed along the road, railroad, streams
and landslide scars. The selected point locations were distributed in
most parts of the study area, except towards the north where the
slopes are very gentle and covered by tea plantations. Using the geo-
statistical software ‘R’, the measured points were then used to build
up an empirical variogram, which was subjected to automatic fitting
using a spherical model. The resulting partial sill was 14.2 and
nugget of 13.1 with themaximum range of 573.3. These values were
used in the interpolation at 10 m interval and a regolith thickness
map was generated for the entire corridor area. The map was
classified into four classes (i.e., 0 m, 1–5 m, 5–10 m andN10 m). The
prediction of regolith thickness was better around areas where data
were taken and the accuracy was lower in areas located away from
the sample points. Since the density of sample points was high and
closely located in areas that are susceptible to landslides the
prediction of the regolith thickness was relatively better in these
areas.

7.2. Selection of mapping units and susceptibility model

After the selection of appropriate preparatory factors, the next step
is the selection of a mapping unit, which is the most basic, yet
important, component of any GIS based susceptibility analysis. The
commonly used units are grid cell (pixel) based, which is a regular
area of equal size or slope, which partition the territory into
hydrological regions bounded by the drainage and divide lines
(Carrara et al., 1992).

In reality, landslide processes are highly controlled by the slope
features of the terrain, namely drainage and divide lines (Carrara et al.,
1992) and therefore the slope units are best suited for hazard analysis.
But for selecting a mapping unit importance must be given to the type
of landslides in the area, mapping scale and scope of the work. In this
study, the area of individual landslide sources is small and slope units
covering relatively large surface area often do notmatchwith the local
geo-environmental setting bearing on slope instability. It is, therefore,
taking any mapping unit of a size much larger than the landslide itself
will result in an exaggeration of the area of actual landslide hazard.
One way to overcome this is to resize the slope units according to the
present landslide size by partitioning a river basin into nested
subdivisions, coarser for larger landslides and finer for smaller failures
(Guzzetti et al., 1999). But, for application purposes this approach is
not suitable for small and shallow landslides (Montgomery and
Dietrich, 1994). Furthermore, even with GIS it is still difficult to
manually digitize irregular mapping units of a very small size e.g., the
slope unit of area b100 m2. In this work, because of the small size of
the landslide source area, we selected pixels as the basic mapping unit
for the susceptibility modeling so that the smallest landslide can be
represented by a single pixel. As an additional advantage, a pixel-
based mapping unit can facilitate very fast computation and
processing of the raster data set in GIS. The 22 km2 study area was
converted into an equal-area grid by rasterizing the polygon map
using a 10 m×10 m pixel size.

For the susceptibility analysis, we used a logistic regression (LR)
model in ‘R-software’ for the classification of spatial probability. The
model helps in establishing a multivariate relation between a
dependent (landslide) and several independent variables, which are
the preparatory factors for landslides. In the LR model, the dependent
variable z is dichotomous, which is a binary value and it is TRUE if a
landslide is present and FALSE if it is absent, and independent
variables are either categorical or continuous. The model aims to
establish the probability that a mapping unit contains a landslide
(z=TRUE) given the set of independent variables (Atkinson and
Massari, 1998). The coefficients in the LR model are estimated using
the maximum-likelihood method or in other words, the coefficients
that make the observed results most ‘likely’ are selected. In the R-
software, the regression model is fitted using iteratively reweighted
least squaresmethod under the link function (link=logit). The model
uses Akaike's information criterion (AIC) to know the ‘goodness’ of
the model in response to added independent variables or to know
whether the model has gained anything by adding a variable
(Venables et al., 2007).

7.3. Estimation of spatial probability

The logistic regression analysis is well known to have been
designed to work on the dataset that are more or less equal in size
(Garcia-Ruiz et al., 2003; Nefeslioglu et al., 2008) but there are many
studies where the ratio of landslide presence (1)/landslide absence
(0) is taken as unequal proportions (e.g., Atkinson and Massari, 1998;
Guzzetti et al, 1999; Dai and Lee, 2002; Ohlmacher and Davis, 2003;
Ayalew and Yamagishi, 2005). Studies have shown that where
landslides are rare events i.e., if the mapping units with landslide
presence are thousands of times fewer than their absence (King and
Zeng, 2001), then taking unequal proportions of the ratio of landslide
presence/absence the model tends to sharply under predict the
probability of rare events (Garcia-Ruiz et al., 2003). Since, the
susceptibility map produced by a logistic regression technique is
directly controlled by the ratio of presence/absence of landslides in



Fig. 7. Receiver operator characteristic curve.

Table 2
Coefficients derived from logistic regression model.

Description of factor class Class code Coefficient

Intercept −5.7784

Slope 05°–10° SLOPEB 1.2570
10°–15° SLOPEC 1.7167
15°–20° SLOPED 2.9539
20°–25° SLOPEE 2.5274
25°–30° SLOPEF 2.6558
30°–35° SLOPEG 3.1236
35°–40° SLOPEH 3.5827
40°–45° SLOPEI 2.2458
45°–50° SLOPEJ 2.6026
50°–55° SLOPEK 4.2675
55°–60° SLOPEL 18.100
N60° SLOPEM −13.376

Aspect 31°–60° ASPB −0.6701
61°–90° ASPC −2.8454
91°–120° ASPD −2.4312
121°–150° ASPE −0.2060
151°–180° ASPF 0.2995
181°–210° ASPG −0.5400
211°–240° ASPH −0.4798
241°–270° ASPI −0.8326
271°–300° ASPJ −18.391

Land use Forest LANDB 1.8341
Settlement LANDC 1.6921
Barren LANDD −4.4342
Coffee LANDE −15.348
Horticulture LANDF 4.1669
Scrubs LANDG 1.5271
Tea with trees LANDH −16.300

Regolith thickness 1–5 m REGTHB 1.2169
5–10 m REGTHC 2.1330
10–20 m REGTHD 2.3162

AIC 1255
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the mapping units, any increase of mapping units free from landslides
tends to decrease the areas susceptible to landslides in the
susceptibility map. Contrary to this, the susceptible areas to landslides
increase with a decrease in the ratio of absence/presence of landslides
(Can et al., 2005). In this case study, the input dependent variable
(landslide source area) is also a rare event as it is represented by 646
pixels, which is thousands of times fewer than their absence.

Can et al. (2005) recommended the use of an equal proportion of
landslide presence/landslide absence if the event is considered rare.
His recommendation was based on the study performing a series of
sensitivity analyses using randomly selected different ratios of the
mapping units with the absence of landslides to the mapping units
including landslides. Following the above recommendation and the
fact that landslides are rare events, we selected an equal number of
pixels from the non landslide areas as samples representing the
absence of landslide against the 646 pixels representing the presence
of landslides. In this work we have used only one training dataset
because studies have shown that selecting different training sets,
randomly chosen from the landslide free areas, do not have much
effect on the performance of the model (Yesilnacar and Topal, 2005).

The preparatory factors (slope angle, aspect, land use and regolith
thickness) and landslide maps formed the input parameters for the
susceptibility modeling. All factor maps were converted into an equal-
area grid by rasterizing them using a 10 m×10 m pixel size. The
model was subjected to iterative modeling and at the initiation all the
37 factor classes (independent variables) were used. The model
performed best under the given 37 variables and showed the lowest
estimated AIC value (1255).

Judgment of the performance of the training dataset was based on
the Receiver Operating Characteristics (ROC) curve (Zweig and
Campbell, 1993). The ROC curve is a plot of the sensitivity (proportion
of true positives) of the model prediction against the complement of
its specificity (proportion of false positives), at a series of thresholds
for a positive outcome. Sensitivity is the probability that a mapping
unit with landslide is correctly classified, and is plotted on the y-axis
in an ROC curve; sensitivity is the false negative rate. Specificity is the
probability that a mapping unit with no-landslide is correctly
classified; 1 — specificity is the false positive rate and is taken along
the x-axis of the curve. The area under the curve represents the
probability that the landslide susceptibility value for a landslide
mapping unit calculated by the model will exceed the result for a
randomly chosen no-landslide mapping unit. The ROC curve for the
model developed is given in Fig. 7 and the area under the curve
obtained is 0.856, which gives an accuracy of ~86% for the training
model.

Table 2 shows the coefficients of different factor classes derived
from the logistic regression model. The positive and negative
coefficients respectively indicate the contribution of the variable
towards increasing and reducing the likelihood of landslides in the
mapping unit. As an example, almost all classes of slope and regolith
thickness, southerly facing slopes (aspect~151°–180°), forest and
scrubs favour the probability of the occurrence of landslides. To the
contrary, NE and SW facing slopes in a mapping unit are in favour of
its stability. The estimated coefficients from the model output were
used to compute the spatial probability value at each pixel.

Although the pixel-basedmapping unit facilitated easier and faster
computations of the susceptibility in GIS, however in reality a pixel
doesn't represent morphological changes in the ground. Landslide
processes, including the extent of source area and run-out of debris
flow are highly controlled by the slope features of the terrain (Carrara
et al., 1992). In fact, it is relatively easy to visualise and interpret maps
in the field if the results are shown within a slope feature bounded by
drainages and divide lines. This also helps to use the susceptibility
map for all practical purposes, including the integration of landslide
size larger than the size of a pixel. For this reason, we partitioned the
study area into 2234 slope units, which were identified and digitized
manually from the topographic map. Each slope unit contains an area
bounded by drainage lines, ridge line or breaks in slope. The average
area of a slope unit is about 9848 m2, corresponding to about 99 pixels
of 10 m×10 m. For each slope unit, we assigned a single susceptibility
(probability) value taken from the maximum distributed spatial
probability values of pixels within the slope unit.

Fig. 8 shows the spatial probability map after up-scaling the pixel-
based mapping unit to the slope facet-based mapping unit. The
susceptibility is expressed in terms of the estimated spatial probabil-
ity of a landslide occurring in a slope unit under the given geo-
environmental conditions. About 20% of the unit areas (4.3 km2) has
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Fig. 8. Landslide susceptibility map of the study area.
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an estimated probability of more than 0.6 and can be viewed as highly
susceptible to landslides.

The statistical method was able to classify the study area into
different susceptibility classes but the question remains how well the
model has performed in classifying the area? The quantitative
estimate of its performance was evaluated by using reliability tests,
such as error matrix and success rate curve.

The error matrix is a straightforward way of testing a model fit by
computing the percentage of cases (i.e., percentage of mapping units)
correctly classified by the susceptibility model. It requires a base map
containing known cases having known stable and unstable slopes. The
most commonly used cases are known landslides from the inventory
(Guzzetti et al., 2006), and a mapping unit is considered stable if it is
free of landslide and unstable if it contains a landslide. For the
susceptibility model, the mapping units are considered unstable if the
units have a probability value N0.6 and stable if the probability is
≤0.6.

Table 3 shows the results of the error matrix for the logistic
regression model shown in Fig. 8. The error matrix figures represent a
measure of the “overall goodness of fit” of the susceptibility model
(Guzzetti et al., 2006). The model has correctly classified about 74% of
the mapping units in either stable or unstable group. It has also
correctly classified about 70% of the unstable areas but misclassified
about 30% of the landslide units to the stable group. About 26% of the
mapping units that are now free of landslides were classified as
“unstable” by the model. These are the areas that have environmental
conditions typical of unstable slopes and could be the source of future
landslides.

The error matrix provides the estimate for model fit or “overall
goodness of fit” but does not provide a detailed description of themodel
performance of the different susceptibility classes. The model perfor-
mance was judged using a success rate curve proposed by Chung and
Fabbri (1999). The success rate curvewas obtained using landslides that
Table 3
Comparison betweenmapping units classified as stable or unstable by the LRmodel and
mapping units free of and containing landslides in the inventory map.

Predicted groups (model)

Stable group Unstable group

Actual Groups
(inventory)

Stable mapping units free of
landslides in the inventory

74% 26%

Unstable mapping units
containing of landslides in
the inventory

30% 70%

Overall percentage of mapping units correctly classified=74%.
were previously used in building the model. It was calculated by
ordering the pixels of a susceptibility map in a number of classes, from
high to low values. The success rate indicates how much percentage of
all landslides occurs in the classeswith the highest susceptibility values.
It measures the effectiveness of the model and is a useful indicator for
the quality of the map (van Westen et al., 2003).

The success rate curve (Figure 9) shows that 80% of all landslide
sources are predicted by 35% of the classes with the highest value in
the susceptibility map. Most of the landslides shown in the inventory
map are in areas classified as susceptible by the model, and only 10%
of the slope failures are in areas classified as not or weakly susceptible
(probability ≤0.40) by the model.

8. Landslide hazard assessment

After estimating the magnitude probability of landslide volume
(PM), the temporal probability (PT) of rainfall triggering landslide
Fig. 9. Continuous thin line shows success rate curve (model fit). The x-axis of the graph
shows the percentage of map with highest probability values and y-axis shows the
percentage of debris slide area in each susceptible classes. Dashed line shows model
prediction skills based on November 2009 landslide events.
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events (Table 1), and the spatial probability (PS) of landslides through
logistic regression analysis (Figure 8), they were combined by
estimating the joint probability using Eq. (1).

Fig. 10 shows examples of the obtained landslide hazard
assessment. The Figure portrays landslide hazard for slope units in
the north of Marapallam for six periods (1, 3, 5, 15, 25 and 50 years),
and for two landslide volumes (larger than 1000 m3 and 10,000 m3).
The joint probability in the Fig. 10 indicates that a slope unit will be
affected by future landslides that exceed a given volume, in a given
Fig. 10. Examples of landslide hazard maps for 6 periods, from 1 to 50 years, and for two lan
probabilities of landslide volume, of landslide temporal occurrence, and of landslide spatial
time, and due to the local environmental setting. A total of 12
landslide hazard maps were generated each representing a specific
scenario i.e., a specific time period and a landslide size.

9. Validation of models

All models used in the hazard analysis need to be validated for
their performance in forecasting landslides (Chung and Fabbri, 2003;
Fell et al., 2008). Validation can best be performed using landslides
dslide volumes, VL≥1000 m3 (A) and VL≥10,000 m3 (B). The probability gives the joint
occurrence.
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independent from the one used to obtain the susceptibility map
(Chung et al., 1995). The availability of information on landslide
events of November 2009 provided us an opportunity to validate the
models used in the assessment of landslide hazard in this case study.

A landslide inventory was prepared from the railway slip register
and landslide technical reports. Field mapping was carried out in
February 2010 to spatially map the recorded landslides. A total of 147
landslides were identified and mapped. The size (volume) of
landslides ranges from 2 to 3600 m3. Landslides are mostly debris
slides and debris flow slides that occurred on both cut slopes (136
slides) and on the natural slopes (11 slides). On cut slopes landslides
are mostly reactivated old slides and on natural slopes they occurred
as the first-time failures. Fig. 11 shows the spatial distribution of
landslides on natural slopes. Most landslides triggered around Katteri
andMarapallam area due to a very high rainfall that occurred between
8 and 10 November 2009. The three days cumulative rainfall was
recorded the highest in the Coonoor area (937 mm) and lowest in the
Kallar farm (202 mm). At some places torrent streams have resulted
in the overbank failures and debris flows.
9.1. Validation of a rainfall threshold model

For the validation of the threshold model we have followed the
method given in Jaiswal and van Westen (2009). Each rise in the
threshold curve indicates that either there is a sudden increase in the
magnitude of daily rainfall or there is a constant rise in five days
antecedent rainfall. The crossover of the threshold curve from
negative to positive values is taken as an indication of the conditions
favourable for landsliding. One or more landslide events are expected
before the positive curve decays to the zero threshold value.

Fig. 12 shows the performance of the threshold model (RT=210–
0.54 R5ad) for natural slopes during October to December 2009. In
Burliyar area, landslides occurred on 10 November when the rainfall
crosses the threshold value, whereas in Hillgrove and in Runneymede
landslides occurred on both 8 and 9 November when the threshold
was high. In the Kallar area, rainfall did not cross the threshold value
and therefore no landslide occurred in this part of the study area
(Figure 11). Similarly in 2008, the threshold did not exceed in any of
the rain gauges and no landslide occurred in the study area.

The thresholdmodel has performedwell and accurately forecasted
landslide events in 2009. The probability of a landslide event to occur
given the threshold exceedance P[L RNRT] is equal to 1 during 2008
and 2009, which indicates that the threshold model is capable of
accurately forecasting landslides on natural slopes.
Fig. 11. Spatial distribution of landslides
The probability of occurrence of one or more landslide events in a
3 year time period was estimated high (~0.65) in Sections I and III and
relatively low (~0.33) in Sections II and IV (Table 1). However, in 2009
rainfall triggered landslides in all sections, except in Section I. An
amount of rainfall similar to the 2009 events has never been recorded
during the period of analysis (1987 to 2007). Such a high rainfall is
actually a rare event in the study area. In the recent past, a very high
rainfall occurred in 1979 that resulted in floods and landslides around
the Coonoor area (Seshagiri and Badrinarayan, 1982).

9.2. Validation of probability of landslide size

For the validation of the probability of the landslide size, we
obtained the probability density distribution of the landslide volume
of 147 landslides of the 2009 event and compared the result with that
of the 2006 event. Fig. 6 shows the probability density distributions of
both 2006 and 2009 events. In 2009, the distribution shows distinct
roll-over for failure volumes of less than 10 m3 whereas 2006 event
shows flattening of the curve instead of a distinct roll-over for failure
volumes of less than 200 m3. However, in both the distribution the
linear portion of the curve (volume N200 m3 in 2006 and volume
N80 m3 in 2009) shows a power relationship with power law scaling
exponent as −1.7. In 2009 the probability of landslides exceeding
1000 m3 is 0.04, which is smaller than 2006. In fact in 2009 small
landslides (volume b100 m3) occurred in relatively large numbers in
comparison to 2006, because of the fact that most landslides in 2009
triggered within Sections III and IV (see Figure 3 for the section
boundaries), where slopes are relatively gentle and covered by tea
plantation.

9.3. Validation of landslide susceptibility model

For the analysis of the prediction rate we have used the model
proposed by Chung and Fabbri (2003). We computed the proportion
of the landslide area of 2009 events in each susceptibility class, and
showed the results using cumulative statistics. Fig. 9 shows the
percentage of the study area, ranked frommost to least susceptible (x-
axis), against the cumulative percentage of the area of the triggered
landslides in each susceptibility class (y-axis), represented by a
dashed black line.

The prediction rate curve (Figure 9) shows that the most
susceptible 20% of the study area contains 22.3% of the landslide
source area. This 20% of the susceptible areas also contain slopes that
are located east of the study area, where most of the high susceptible
slopes are located. The model was able to predict about 35% of the
on natural slopes triggered in 2009.
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Fig. 12. Validation of the threshold equation (RT=210–0.54 R5ad) for natural slopes. Positive values on the y-axis indicate threshold exceedance (RNRT).
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landslide areas as unstable group (spatial probability ≥0.6). Further,
the most susceptible 33% (spatial probability N0.4) of the study area
contains 65% of the landslide areas whilst 80% of the landslide areas
are predicted by the most susceptible 40% of the study area. Most of
the landslides shown in the inventory map (Figure 11) are in areas
classified as susceptible by themodel, and 16% of the slope failures are
in areas classified as low susceptible (probability ≤0.20) by the
model. The prediction of the model is low in high susceptible areas,
which is because of the fact that most landslides in 2009 occurred
around Katteri (western part of the study area), where slopes are
having a relatively low probability value. It is reasonable to accept that
if a landslide event triggers landslides in the eastern part of the study
area then the prediction rate could be much better.

The result shown in Fig. 9 provides a quantitative estimate of the
model prediction skill. As observed by others researchers (e.g. Chung
and Fabbri, 2003; Guzzetti et al., 2005) the prediction rate of a
susceptibility model is often lower than the success rate of the model.
In this validation test the prediction of the susceptibility model is also
slightly lower than the model fitting performance shown in Fig. 9
(continuous thin line).

10. Discussion and conclusions

Landslide hazard identification is often carried out with an aim to
scope the nature of the potential threat but it is equally useful to carry
out the hazard analysis independent of existing human constructs as
shown in this study. In later case, the obtained hazard can be used as a
powerful guide to future development decisions (Crozier and Glade,
2005). With the availability of information on ‘where’ and ‘when’ a
landslide is expected, expressed in terms of probabilities, land use
planning for future development for a specified time period, say
10 years or 50 years can be made.

The proposed method allowed us to determine quantitative
hazard of first-time slope failures in a data scare inventory. Since
the inventory is incomplete and the landslides are small and non-
repetitive (occurring as first-time failures) therefore the traditional
method of computing the frequency of slope failures based on the
recurrence of landslides was not applicable in this case. Rather the
historical records, with the availability of information on rainfall and
the date of occurrence of landslides, made the estimation of the
(temporal) probability of occurrence of landslides and the calculation
of hazard feasible, which was otherwise difficult.

The susceptibility model used to predict the spatial probability of
potential landslides is based on certain assumptions. It is assumed
that landslides will occur in future under the same conditions and
triggering factors that produced them in past. One has to take into
account that geo-environmental conditions of an area such as land use
or hydrological conditions may change due to human action.
Conditions may also change when the source of a landslide is
exhausted by earlier landsliding or the morphology of the slope is
changed and becomes stable (Guzzetti et al., 2005). However, we
would like to state that to some extent the assumption holds true for
the study area. The preparatory factors (e.g., aspect, slope and regolith
thickness) are not expected to change significantly in a short time
period, say in a 50 year time. Local morphological changes may occur
due to landsliding but this will not substantially affect the suscepti-
bility model because most landslides on natural slopes are first-time
failures. Also the land use has been rather static, and the total area of
the reserved forest and tea estates, which cover about 90% of the area,
have not changed for the past 100 years except for a limited human
interference near the Katteri area.

For the susceptibility modeling, we considered only four landslide
preparatory factors on the basis of field condition and the type of mass
movements present in the area. This selection was also from the
application point of view. In the Nilgiri area, if a building is to be
constructed then it is mandatory to obtain permission from the Geo-
technical office at Coonoor for landslide risk. Till now the office
follows the earlier work of the Geological Survey of India (Seshagiri
and Badrinarayanan, 1982) for evaluating landslide susceptibility. The
official physically inspects the building site, which can be smaller than
a pixel size used, and collects data on factors used in the model (e.g.,
slope, land use, etc.). The field data were then compared with the
susceptibility rating in order to evaluate the susceptibility of the slope
where the building is to be located. Given the working guidelines of
the Geo-technical office, we were also asked to prepare a suscepti-
bility model based on factors that can be easily measured in the field
so that the model can be implemented for planning purposes.
Therefore, we used limited factors for modeling susceptibility and
nevertheless through validation we have showed that the model is
capable of forecasting future slope failures.

The temporal probability of landslides was estimated indirectly
from landslide events using the mean rate of occurrence of the
threshold rainfall. In the Nilgiri area all landslides are rainfall induced
and occur mostly during October to December due to the retreating
monsoon. However, a very high rainfall occurring due to some local
phenomenamay affect the distribution of landslide events in the area,
similar to one observed in 2009. The temporal probability gives the
probability of occurrence of one or more landslide events in a
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particular area in a given time period. As expected the probability
increases with the increase in the length of the time period such that
the maximum value (0.73) is reached for a 25 year period. In more
than 25 years time it is always certain to have at least one landslide
event. Here the highest probability is 0.73 and not 1 because in earlier
studies (Jaiswal and van Westen, 2009) we have shown that all
rainfall exceeding threshold value do not trigger landslides rather the
success is only 0.73 i.e., 73% of cases the rainfall triggers landslides if
exceeded. Due to the possible gap in the record, we have taken 0.73 as
the success of the threshold model for triggering landslides on the
natural slopes.

For the threshold modeling we considered all landslide events
irrespective of the number and sizes of landslides they triggered. The
temporal model can be improved further if the threshold can be
generated separately for different landslide sizes and landslide
densities, but such an exercise requires a more detailed landslide
and rainfall inventory, and for a long time period. Substantially
complete event-based landslide inventories along with known dates
of landslide events are seldom available particularly for past dates.

Guzzetti et al. (1999) proposed to include landslide magnitude, as
a proxy for landslide destructiveness, in the hazard analysis to
complete the definition of hazard given by Varnes (1984). Destruc-
tiveness or damage caused by a landslide largely depends on the
volume of a displaced material, and the velocity and kinetic energy of
the flow. For a catchment scale study these parameters are extremely
difficult to obtain and to integrate in the hazard zoning. Information
on landslide volume is difficult to obtain if inventory is prepared from
remote sensing data, and therefore the landslide area is commonly
used as a proxy for landslide magnitude (Guzzetti et al., 2005). In this
study, the availability of data on volume from historical records has
facilitated using volume as a proxy for landslide magnitude, which is
the better measure of landslide destructiveness.

The assumption that the three probabilities i.e., the probabilities of
landslide volume, the temporal probability of landslide event and the
spatial probability of slope failures are independent is necessary to
make the multiplication of the three probabilities statistically feasible.
To some extent the assumption may hold true for this case study. The
temporal probability is based on rainfall, which is the main trigger of
landslides in the area. For the threshold analysis we have considered
all landslide events irrespective of the number of landslides they
triggered and the spatial distribution of landslides. Therefore, the
threshold is not directly dependent on a particular terrain condition
within the study area. Further for the susceptibility modeling we did
not consider rainfall as a factor or landslides related to a specific
rainfall event, rather we considered all landslides in the study area as
a dependent variable. Therefore it is reasonable to accept that both
spatial and temporal probabilities of landslides are independent.

In nature the number of landslides and the proportion of large to
small landslide volume can vary according to the intensity of rainfall.
It is expected that a very high intensity rainfall can trigger more
number of landslides and of a larger volume than a rainfall of
relatively low intensity. Thus, both rainfall and frequency-size
distribution of landslide are mutually dependent. On contrary, in
this case study it is observed that a very high rainfall event of 2009 has
resulted in less number of landslides and of relatively smaller volumes
than in 2006 (Figure 6). This difference is mainly because of the
contrast in the terrain condition where most landslides have occurred
in 2006 and 2009. Landslides in 2006 occurred in relatively steeper
slopes than in 2009. Thus, we can say that the frequency–size
distribution of landslides is not directly dependent on the rainfall
condition, rather it is more related to the terrain type. However, in
other studies, based on a handful of complete inventories, researchers
(e.g., Guzzetti et al., 2002; Malamud et al., 2004) have demonstrated
that the probability density of landslide size does not change
significantly with changing physiographical conditions. Malamud
et al. (2004) showed that the probability density distribution are
virtually identical for landslides triggered by three different triggers in
three different physiographical regions (e.g., co-seismic landslides in
southern California, rainfall induced landslides in Guatemala, Central
America and landslides due to rapid snow melting in Umbria, Italy).
For simplicity, like other studies we also assume that the probability
distribution of the landslide size is independent of the terrain type.

In this study, we have noticed that a relatively high susceptible
areas (e.g., east of Burliyar) can be of low hazard in a given time if the
rainfall does not exceed the threshold value (e.g., 2009 event east of
Burliyar) or vice versa. The hazard of an area is therefore conditionally
dependent on the probability of occurrence of a landslide triggering
rainfall event and the susceptibility of the terrain. Due to the difficulty
in evaluating conditional probabilities its multiplication remains the
best option to evaluate hazard. The model can be further improved
when better ways of generating more accurate measures of the
thematic variables and hazard model become available. One way to
improve a hazard model is to incorporate event-based landslide
inventories andmake separate spatial probabilities, temporal and size
probabilities per return period of the triggering event that caused the
event-based landslides (e.g., Glade, 2001). But as a major drawback
the multi-temporal event-based landslide inventories are seldom
available.

The proposed hazards models are based on a limited landslide
inventory. For example, the susceptibility model is based on land-
slides that are mostly located in the eastern part of the study area.
When new information on spatial, temporal or size of landslides
becomes available, the hazard models can be revised. The models can
be used to estimate hazard for different time scenarios for the purpose
to provide quantitative expertise on future slope failures to planners,
disaster management authorities, decision makers and individual
landowners. The models provide information on the likelihood of the
initiation of future slope failures in an area and not the area that are
likely to be inundated by debris. For the latter case run-out areas are
needed to be incorporated in the hazard model. The availability of
information on the 2009 landslide events has given us the opportunity
to validate the models used in the hazard analysis. But still we have to
“wait and watch” for more events to occur in order to validate the
hazard map for different time scenarios.
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