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In this paper, we created predictive models for assessing the susceptibility to shallow translational rocksliding
and debris sliding in the Darjeeling Himalayas (India) by empirically selecting and weighting spatial
predictors of landslides. We demonstrate a two-stage methodology: (1) quantifying associations of individual
spatial factors with landslides of different types using bivariate analysis to select predictors; and (2) pairwise
comparisons of the quantified associations using an analytical hierarchy process to assign predictor weights.
We integrate the weighted spatial predictors throughmulti-class index overlay to derive predictive models of
landslide susceptibility. The resultant model for shallow translational landsliding based on selected and
weighted predictors outperforms those based on all weighted predictors or selected and unweighted
predictors. Therefore, spatial factors with negative associations with landslides and unweighted predictors
are ineffective in predictive modeling of landslide susceptibility. We also applied logistic regression to model
landslide susceptibility, but some of the selected predictors are less realistic than those from our
methodology, and our methodology gives better prediction rates. Although previous predictive models of
landslide susceptibility indicate that multivariate analyses are superior to bivariate analyses, we demonstrate
the benefit of the proposed methodology including bivariate analyses.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Previous assessments of landslide susceptibility in the Himalayas
were mainly based on mapping of morphodynamic processes and
related landforms. Their main objective was to understand slope
processes for estimating their threat to socio-economic resources
(Kienholz et al., 1983; Peters and Mool, 1983; Vuichard, 1986;
Zimmermann et al., 1986; Shroder, 1998). The potential sites of such
slope instability in the Himalayas are mostly controlled by geomor-
phology, lithology and structure. With the advent of statistical/
mathematical spatial data analysis using GIS, more recent studies of
landslide hazards aim to incorporate the vast amount of empirical
data obtained thus far in spatial prediction of landslide susceptibility
(Gupta and Joshi, 1990; Pachauri et al., 1998; Gupta et al., 1999; Saha
et al., 2002; Kanungo et al., 2006).

Predictive modeling of susceptibility to landsliding of type L (SL)
aims tomake an estimate at every location in a study area of the future
occurrence of such landslides based on known occurrence of L type
landslides. The analysis thus assumes that the relations between
spatial factors and past landslides are relevant to the occurrence of

future landslides. Thus, SL can be defined as a function of relevant
spatial factors Xi (i=1, 2,…, n):

SL = f ðX1;…;XnÞ; ð1Þ

If a study area is partitioned into square unit cells (or pixels) for
estimating local SL and Xi is categorized into classes Cji ( j=1, 2,…,m),
SL can be defined as:

SL = f ðaCji;::::; aCmnÞ; ð2Þ

where for example, aCji represents predictor weights (i.e., degree of
spatial associations) of Cji attributes of Xi spatial factor (or map) with
respect to the known occurrences of L-type landslides.

Published literature indicates that empirical analysis for predictive
modeling of SL can be achieved by either bivariate or multivariate
analysis. Whereas spatial associations of known landslide occurrences
with factors of landslide susceptibility and the inter-relationships
among the factors are complex and likely non-linear, methods of
bivariate analysis typically model those relationships as linear. In
contrast, multivariate analysis, especially those with non-linear
functions, are more often employed in predictive modeling of SL for
two main reasons. One is that multivariate analysis can model com-
plex associations of spatial variables. The other is that multivariate
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analysis can simultaneously and automatically select predictors
based on the spatial input data. However, some of the predictors
selected may not represent genetic processes of landslides being
studied (Baeza and Corominas, 2001; vanWesten et al., 2008) because
of purely statistical or mathematical assumptions used in the multi-
variate analysis (e.g., independence among predictors with respect to
target variables).

There are two other likely reasons why methods of bivariate
analysis are less often employed in predictive modeling of SL. One is
that the function f in bivariate analysis mainly describes spatial
associations of individual Xi factor with known landslides but not
the relative importance of each factor. The other is the lack of
methodology to select predictors and simultaneously assign predictor
weights.

The objective of this paper is to propose a methodology involving
bivariate analysis to select and weight predictors for predictive
modeling of SL. This methodology involves two stages: 1) quantifying
spatial associations between individual spatial factors and landslides
through bivariate analysis, and 2) using the quantified spatial
associations in an analytical hierarchy process (AHP; Saaty, 1977) to
weight predictors. The proposed methodology is applied to the
landslide-prone Darjeeling Himalayas (India) using the weighted
multi-class index overlay in a GIS (Bonham-Carter, 1994), for
medium- to regional-scale predictive modeling of SL. We also showed
that the predictors selected and weighted through our proposed
methodology are more realistic compared to predictors selected and
weighted through a method of multivariate analysis (i.e., logistic
regression).

2. Study area

The study area is located in the surroundings of Kurseong Town in
the Darjeeling district (West Bengal, India). Geologically, it belongs to
the southern part of Darjeeling Klippe of the Himalayan Fold-Thrust
Belt (FTB) (Fig. 1). In this part high-grade metamorphic rocks of the
Central Crystalline Gneissic Complex (CCGC) are thrust over low-
grademeta-sedimentary rocks of the Daling Group along a high-strain
ductile shear zone called the Main Central Thrust (MCT) (Sinha-Roy,
1982; Searle and Szulc, 2005). Further to the south, foreland molasse
sediments of the Siwalik Group are underlain by a thin intra-thrust

slice of minor coal-bearing clastic rocks of the Gondwana Group.
Towards the north, these Gondwana rocks are thrust over by the
Daling Group of meta-sediments along the southern-most front of the
FTB known as theMain Boundary Thrust (MBT). Due to intense ductile
and brittle deformation, rocks in this part of the FTB are folded,
faulted, thrust and fractured.

Elevations in the study area vary from 236 to 2189 m (mean=
1073 m, standard deviation=440 m) and slopes vary from 0° to 84°
(mean=27°, standard deviation=12°). Climate is humid with high
amounts of monsoon (June–October) rainfall with some extreme
events. Average annual precipitation varies between 2000 and
5000 mm (Soja and Starkel, 2007). Previous studies (Starkel and
Basu, 2000; Starkel, 2004) confirm that 2–3 successive days of high
precipitation (300–400 mm) can trigger a number of shallow
landslides. In addition, some deep-seated rockslides (mainly transla-
tional and partly rotational) also occurred or were reactivated in the
recent past (1968–2007). Detailed descriptions of geology and land-
slide types, processes and triggers are given in our recent publications
(Ghosh et al., 2010; Ghosh and Carranza, 2010).

We compiled available data (e.g., large-scale topographic maps,
high resolution stereo air-photos, satellite images, and maps/reports
from field studies) and mapped different types of landslides that
occurred between 1968 and 2007 (Fig. 2) following Varnes' (1978)
classification (Sengupta, 1995; Bhattacharya et al., 1998; Starkel and
Basu, 2000; Paul and Sarkar, 2003; Ghoshal et al., 2008) and also
generated eight event-based landslide inventory maps (Ghosh et al.,
2009b). There are three major types of landslides in the study area
(Fig. 3) – deep-seated rockslides (hereafter denoted as Dp), shallow
translational rockslides (hereafter denoted as Sh) and shallow
translational debris slides (hereafter denoted as Db) – having varied
spatial and temporal occurrences (Table 1). Due to their predomi-
nance in the study area, we only dealt with Sh and Db for model
calibration, whereas, Dp occurrences were used as validation samples.

3. Data

Shallow translational landslides are nearly planar failures in the
upper few meters of slope materials (regolith including weathered
bedrock and unconsolidated scree/colluvium). The failure plane
usually corresponds to a pre-existing discontinuity within regolith

Fig. 1. Geographical and regional geological set up of the study area. (a) Location of the study area. (b) Regional geological sketch map of the Darjeeling-Sikkim Himalaya (adapted
from Searle and Szulc, 2005). (c) Schematic geological section of the Himalayan Fold-Thrust Belt (FTB) in the Darjeeling-Sikkim region (adapted from Searle and Szulc, 2005) with
exaggerated vertical scale.
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or to the interface between regolith and bedrock (Fig. 3a,b). The
frequency of such landslides is generally high in areas with high
precipitation rates and/or storm frequencies (Zaruba and Mencl,
1969; Rogers and Selby, 1980), as in the study area (Starkel and Basu,
2000; Starkel, 2004). Shallow landslides occur when the shearing

stress along the failure plane exceeds the shearing strength of rock/
debris mass (Varnes, 1978). This can be affected by the physical state
of slope such as slope gradient, shape, and aspect; orientation of
planar/linear discontinuities in the rock mass; lithology and degree of
weathering; depth to failure surface; hydrology, and land use/cover.

Fig. 2. Simplified geological map of the study area and locations of compiled/mapped landslides (1968–2007) and old rockslides (pre-1968). MCT=Main Central Thrust.
MBT=Main Boundary Thrust. CCGC=Central Crystalline Gneissic Complex.

Fig. 3. Photographs of active landslides (see Fig. 2 for locations). Examples of (a) a shallow translational rockslide (Sh), (b) a shallow translational debris slide (Db), (c) and (d) deep-
seated rockslides (Dp). Scale and directions shown in the photographs are approximate.
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Based on this assumption, we included various factors for the GIS-
based analysis of susceptibility to shallow landsliding (Table 2).

We prepared raster maps of slope, aspect, elevation and curvature
from a gridded digital elevation model (DEM) with 10 m spatial
resolution. This DEM was prepared photogrammetrically using the
LPS suite of ERDAS Imagine 9.2 and stereo images with 2.5 m
resolution from the IRS (Indian Remote Sensing) P5 Cartosat-1
satellite from 2006. We ortho-rectified the images using 16 ground
control points (GCPs) measured with DGPS using the WGS 84 datum
and the UTM-45 N projection. The computed aspect values were
discretized into 12 classes using 30° intervals whereas, gradient/slope
(o) per pixel was directly used as a continuous field data. The
curvature values ranging from−23.87 to 25were also discretized into
10 percentile intervals. Negative and positive curvature values
represent concave and convex upward slopes, respectively.

Despite limited access in the rugged terrain and limited rock
exposures, we collected site-specific data of slope materials at 315

locations (Ghosh et al., 2010). Fieldworkwas conducted to collect data
on landslides including locations, extents, rock and soil types, rock
discontinuity types and orientations, soil depth, and weathering
degrees. Most visited sites were along roads and footpaths and are
reasonably spread over the study area. Incorporating the above field
data with the available information and geological maps (Banerji et
al., 1980; Acharya, 1989; Searle and Szulc, 2005; Ghoshal et al., 2008),
we created interpretative maps of lithology and soil/overburden
thickness. The lithology map represents 13 different rock types and
the soil/overburden thickness map has five classes (Fig. 4). The
distribution of soil/overburden thickness is controlled by erosion
processes and slope morphometry (cf., Dietrich et al., 1986; DeRose et
al., 1991). Using landforms as proxies (cf., Taylor and Eggleton, 2001),
we first prepared a subjective soil/overburden thickness map, since
those proxies can easily be mapped on 1:25,000 scales using remote
sensing data. Then we modified the map using thickness data
obtained in the field.

Table 1
Summary statistics of landslides in individual landslide inventory of the study area (NA=not available).

Landslide statistics Pre-1968
slides

Landslide inventory (LI)

LI68 LI79 LI93 LI98 LI99-02 LI03 LI04-06 LI07

Area of inventory (km2) 90 90 90 56 20 90 90 90 90
Number of landslides 200 83 562 108 31 185 242 164 85
Landslide area (km2) 9.5 0.49 0.64 0.5 0.05 0.84 1.18 0.65 0.11
Min. slide area (m2) 192 776 45 372 185 271 221 45 42
Max. slide area (m2) 2,141,500 70,253 55,815 40,906 9573 79,157 92,155 119,285 8265
Mean area (m2) 101,455 5986 1136 4634 1713 4525 4898 3985 1357
Median area (m2) 20,345 3385 519 2616 824 2301 1866 732 628

Shallow translational rock slides (Sh)
Total landslides (Nr) 0 59 374 86 NA 123 167 116 63
Landslide area (km2) 0 0.22 0.32 0.28 NA 0.31 0.36 0.17 0.08

Shallow translational debris slides (Db)
Total landslides (Nr) 0 13 175 13 31 48 53 34 22
Landslide area (km2) 0 0.04 0.12 0.05 0.05 0.16 0.17 0.04 0.03

Deep-seated rock slides (Dp)
Total landslides (Nr) 200 11 13 9 NA 14 22 14 0
Landslide area (km2) 19 0.23 0.20 0.17 NA 0.37 0.65 0.44 0

Table 2
Data source, methods of preparation/mapping of spatial factors of shallow landslides. Sh=shallow translational rockslides. Db=shallow translational debris slides.

Generic factor theme Specific factor Source data, scale or spatial resolution and method of mapping
of factor

Landslide type

Directly related Indirectly related

Topography/morphometry Slope DEM of 10×10 m pixel resolution; automated mapping in GIS. Sh, Db –

Aspect
Curvature

Lithology or slope material Rock and soil type Field data, information from existing geological maps
(1:10,000–50,000 scales)

Sh, Db –

Depth to bedrock Soil/overburden thickness Estimated using field data from 400 sites and linked to
lithology map

Db –

Structure Distance to major thrusts Compiled from 1:50,000 and 1:25,000 geological maps;
interpreted from high spatial resolution satellite imagery
and stereo air-photos (1:50,000 and 1:10,000);
ground-truthing in the field.

Sh, Db

Distance to major faults/fractures Interpreted from stereo-pairs of 1:10,000 and 50,000 B×W
air-photos with limited ground-truthing in the field.

Sh, Db

Distance to kinema-tically
unstable slopes

Determined using field data of rock discontinuity orientations
and DEM-derived slope and aspect maps (Ghosh et al.,2010)

Sh, Db

Land-use/land-cover Land-use/land-cover Interpreted from 1:10,000 and 1:50,000 B×W air-photos and
multispectral IRS LISS 4 MX imagery (5.8 m spatial resolution)
with limited ground-truthing in the field.

Sh, Db –

Old rockslides Distance to old rockslides
(pre-1968)

Mapped from stereo interpretation of 1:10,000 scale B×W
stereo air-photos of 1980.

Sh, Db –

Hydrology Contributing area upslope DEM of 10 m×10 m pixel resolution; automated mapping in
GIS and digitized streams from 1:25,000 topographic maps.

Sh, Db –

Wetness index
Drainage density
Distance to streams Digitized streams from 1:25,000 topographic maps
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We mapped geomorphic features through visual interpretation of
stereo pairs of high-resolution (2.5 m) Cartosat-1 images of Indian
Remote Sensing (IRS) Satellite (P5), multispectral LISS 4 images of IRS
P6 (5.8 m resolution) draped on the DEM, and stereo pairs of 1:50,000
and 1:10,000 panchromatic air-photos, and field verification. We
mapped 13 geomorphic landform types (Fig. 4), which are linked to
various geomorphic processes.

We also mapped steeply-dipping faults/fractures through field-
work and air-photo interpretation. We segregated the faults/fractures
into six 30°-interval classes of trends (NNE to NNW). It is likely that
faults/fractures of different trends reflect local stress fields and have
unequal controls on landslides (Ghosh and Carranza, 2010). Although
we have collected local-scale structural data in the field such as

slickensides, mylonitised and cataclastic zones, the effects of such
structures on rocksliding in the Himalayas are too localized
(Weidinger, 2006; Weidinger et al., 1996), for the mapping scale
(1:25,000) in this study. Nevertheless, through a separate study, we
modeled andmapped discontinuity-controlled kinematically unstable
slopes using deterministic testing of the geometrical relationships
between topographic slopes and structural discontinuities in rocks
(Ghosh et al., 2010).

Concerning hydrological parameters, we first classified the
digitized perennial streams using Strahler's (1957) ordering system.
We considered 2nd to 4th order perennial streams because field
observations show that 1st order streams cause only limited erosion
including shallow landslides. From the DEM, we also derived maps of

Fig. 4.Maps of some relevant spatial factors of susceptibility to shallow landslides. (a) Slope grid. (b) Aspect grid showing 30°-interval aspect classes. (c) Lithology (slope material).
(d) Land-use/cover. (e) Soil/overburden depth. (f) Geomorphology.
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upslope contributing area (Mark, 1988) and thewetness index (Beven
and Kirby, 1979). We then subdivided the study area into different
sub-catchments by delineating ridge crests, boundaries of high order
streams and spur axes using the DEM and adapting the semi-
automatic method of Carrara et al. (1991). We then calculated
drainage density for each sub-catchment.

We prepared a land use/cover map for 2004–2006 through visual
interpretation of multispectral LISS 4 images and fused images of
LISS 4 and Cartosat 1 and confirmed the interpretations during field
investigations. Seven land use/cover classes were identified (Fig. 4)
and calibrated for the period 1968–2003. As the aim of our study was
not to depict temporal changes of landslides due to changes in land
use/cover (e.g., Kienholz et al., 1983), we did not create land use/cover
maps for an older period.

4. Analytical methods

For predictive modeling of SL, it is important to select and use
only the good predictors, which are spatial factors that exhibit
positive spatial associations with existing landslides of a particular
type. After selection of such predictors, the next step is to objectively
determine their inter-predictor weights and then combine the
selected predictors with their weights in a suitable susceptibility
model.

4.1. Spatial association analysis for categorical spatial factors

Given that a categorical spatial factor map ( f) is multi-class and a
landslide occurrence map (s) is binary, we can measure the spatial
association between classes of f and s by calculating Yule's coefficient
(YC) (Yule, 1912; Fleiss, 1991; Bonham-Carter, 1994):

YC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfs

.
Mfs

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfs

.
Mfs

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfs

.
Mfs

r
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfs

.
Mfs

r ; ð3Þ

where Mfs is area of ‘positive match’ where a factor class and
landslides are both present, Mfs is area of ‘mismatch’ where a factor
class is absent but landslides are present, Mf s is area of ‘mismatch’
where a factor class is present but landslides are absent, and Mf s is
area of ‘negative match’ where a factor class and landslide are both
absent. The value of YC ranges between −1 and +1, just like the
Pearson's correlation coefficient. A negative YC means negative spatial
association, whereas a positive YC means positive spatial association.

We calculated values of YC for the following categorical spatial
factors: slope aspect, curvature, lithology (slope material), geomor-
phology, land-use/cover and depth to bedrock (soil/overburden
thickness). Based on YC, we derived a Favorability Score per factor
class (FCt):

FCt =
0

YC=YCmax

for YC ≤ 0

for YC N 0;

8<
: ð4Þ

where, YCmax
is the highest YC of all classes in a spatial factor and Xi

represents the relative degree of influence of every factor class on the
susceptibility to landslide occurrence in the range of 0 to 1 (Table 3).

4.2. Spatial association analysis for continuous spatial factors

Berman (1977, 1986) proposed the distance distribution analysis
(DDA) for measuring the spatial association between a set of point
objects and another set of objects. DDA is also applicable to polygonal
objects such as landslides, whereby the cumulative relative frequency

distribution of distances from a set of continuous spatial features to
landslide polygons (denoted as D(L)) is compared with the cumula-
tive relative frequency distribution of distances from the same set of
spatial features to non-landslide locations (denoted as D(NL)). D(L) is
a non-random probability density distribution of locations of a certain
landslide type with respect to a set of spatial features, whereas D(NL)
is a random probability density distribution of non-landslide locations
with respect to the same set of spatial features. The D(L) and D(NL)
values for each distance class in a factor map can be derived by the
following two expressions:

D Lð Þ =
N Cji∩L
� �

cum

N LTð Þ ; ð5Þ

where, N(Cji∩L)cum is the cumulative of the number of pixels where
both landslides of type L and the i-th class of the j-th spatial factor
coincide, (i=1, 2, 3,…, n and j=1, 2, 3,…, m), and, N(LT) is the total
number of pixels of landslide type L in that area.

D NLð Þ =
N Cji

� �
cum

N Tð Þ ; ð6Þ

where N(Cji)cum is the cumulative of the total number of pixels
occupied by the i-th class of the j-th spatial factor, (i=1, 2, 3,…, n and
j=1, 2, 3,…, m), and, N(T) is the total number of pixels of a map (i.e.,
total map area).

We prepared graphs of D(L) and D (NL) by determining their
values following Eqs. (5) and (6) for all classes (i=1, 2, 3,…, n) of j-th
factor, arranged either in ascending or in descendingmanner. Further,
to determine if landslide locations are associated spatially with a set of
continuous spatial factor, the graph of D(L) is compared with the
graph of D (NL) by calculating the following statistic (Berman, 1977):

D = D Lð Þ � D NLð Þ: ð7Þ

The value of D represents the degree and type of spatial association
of landslides with a set of spatial features and how much the
likelihood of landslide occurrence due to a set of spatial features is
higher or lower than would be expected due to chance. If D≅0, then
the landslides lack spatial associationwith the set of spatial features. If
DN0, then the landslides under study have positive spatial association
with the set of spatial features and if Db0, they have a negative spatial
association. Thus, a positive, rather than negative, spatial association
between landslides and a set of spatial features is important, as it
suggests that the latter can be used as a predictor of occurrence of the
former.

DDA is appropriate for quantifying spatial associations of land-
slides of a certain type (e.g., shallow translational rockslides) with
spatial features representing continuous fields showing the proximity
to regional thrusts (e.g., MCT), faults/fractures, 2nd to 4th order
streams, kinematically unstable slopes and old rockslides as well as
for continuous field data like elevation, slope inclination, wetness
index, and contributing upslope area. In DDA, the highest positive D
(or Dmax) of a continuous spatial factor represents the distance to
spatial features or continuous field data with which landslides of a
certain type have the strongest positive spatial association. Based on
D, favorability scores (FCn) are defined as:

FCn =
0

D=Dmax

for D b 0

for D N 0
:

(
ð8Þ
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4.3. Weighting of predictors

Individual spatial factors can have different degrees of spatial
associations with landslides. However, as landsliding is an inter-play
ofmultiple factors, predictivemodeling of SL requires analysis of inter-
predictor weights. The analysis can benefit from expert/generic
knowledge of causal factors of landslides. However, expert knowledge
is subjective and landslide experts are likely to assign different
weights. In this section, we describe how analysis of inter-predictor

weights can be made more objective by applying the analytical
hierarchy process or AHP (Saaty, 1977). This involves pairwise
analysis of predictor weights based on the results of quantified spatial
associations of individual spatial factors with landslides. To determine
the relative importance of every predictor, we derived a predictor
rating (PR) for every spatial factor based on their degree of spatial
association with each landslide type, thus:

PR = jSAmax−SAmin j = jSAmax−SAmin jmin ð9Þ

Table 3
Yule's coefficients (YC) and favorability score (FCt) of every class of categorical spatial factor with respect to Sh and/or Db.

Factor Factor class Sh Db

YC FCt YC FCt

Aspect NNE −0.112 0 −0.201 0
NE −0.060 0 −0.151 0
ENE 0.081 0.68 −0.210 0
ESE 0.119 1.00 −0.028 0
SE 0.061 0.52 0.040 0.22
SSE 0.043 0.36 0.042 0.24
SSW 0.055 0.46 0.178 1.00
SW 0.041 0.34 0.107 0.60
WSW −0.096 0 0.068 0.38
WNW −0.128 0 −0.047 0
NW −0.177 0 −0.228 0
NNW −0.073 0 −0.175 0

Lithology (slope material) Scree and weathered regolith (SCR) −0.803 0 0.044 0.09
Alluvium mixed with colluvium (COLUALU) −0.529 0 0.144 0.28
Weathered colluvium and debris (WRCOLU) −0.464 0 0.522 1.00
Sheared phyllonite (SHPH) 0.010 0.03 −1.000 0
Fresh gneiss (FRGN) −0.047 0 −0.521 0
Quartzite and phyllite (FRCSCH) 0.044 0.13 −0.624 0
Fresh sandstone (Gondwana) (FRGOND) 0.142 0.41 −1.000 0
Weathered gneiss (WRGN) 0.162 0.47 −0.211 0
Weathered sheared phyllonite (WRSHPH) 0.221 0.64 −0.695 0
Weathered and soft sandstone (Siwaliks) (WRSIWA) 0.234 0.68 −0.093 0
Weathered schists and phyllite (WRSCH) 0.142 0.41 −1.000 0
Weathered and sheared gneiss (Lingtse) (WRSHGN) 0.287 0.84 −0.277 0
Weathered sandstone (Gondwana) (WRGOND) 0.344 1.00 −0.544 0

Geomorphology Intermontane plateau (structural/tectonic) (PLATEAU) −0.834 0 −1.000 0
Recent alluvial flood plain (depositional - fluvial) (ALU) −1.000 0 −0.114 0
Colluvial debris fan (depositional - gravitational) (FAN) −1.000 0 −1.000 0
Lowly dissected intermontane valley (fluvial/denudational) (LDISVAL) −0.485 0 −0.467 0
Old alluvial terrace (depositional-fluvial) (TERRACE) −0.091 0 0.300 0.71
Flat ridge (RIDGE) −0.476 0 −0.723 0
Mod. dissected intermontane valley (fluvial/denudational) (MDISVAL) −0.245 0 −0.057 0
Highly dissected intermontane valley (fluvial/denudational) (HDISVAL) 0.006 0.02 −0.192 0
Scree-laden highly dissected steep slope (denudational) (SCHDISVAL) 0.018 0.07 0.218 0.52
Alluvial/colluvial terrace and fan (depositional) (ALCLFAN) 0.096 0.36 0.421 1.00
Fault-related faceted slope (structural/tectonic) (FACET) −0.168 0.00 −0.586 0
Steep escarpments and denudational niches (ENTRVAL) 0.265 1.00 0.169 0.40
Deeply entrenched denudational valley (DEEP) 0.247 0.93 0.232 0.55

Land-use/land-cover Barren and agricultural flat lands (AGRI) −0.530 0 0.182 0.84
Tea cultivation (TEA) −0.422 0 −0.243 0
Settlement (SET) −0.149 0 −0.209 0
Thick forest (TF) 0.034 0.09 −0.026 0
Moderately vegetated forest (MF) 0.022 0.06 0.045 0.21
Sparsely vegetated forest (SPF) 0.156 0.42 0.196 0.90
Barren mountain slope (BARREN) 0.374 1 0.217 1

Depth to bedrock (m) 0–1 – – −0.420 0
1–2 – – −0.114 0
2–5 – – 0.404 0.96
5–8 – – 0.423 1.00
N8 – – 0.274 0.65

Curvature (−) 23.87 to (−) 2.2 0.156 1 0.133 1
(−) 2.2 to (−) 1.3 0.059 0.38 0.038 0.29
(−) 1.3 to (−) 0.7 0.003 0.02 0.025 0.19
(−) 0.7 to (−) 0.3 −0.053 0 −0.071 0
(−) 0.3 to 0.0 −0.074 0 −0.046 0
0.0–0.3 −0.103 0 −0.067 0
0.3–0.7 −0.061 0 −0.064 0
0.7–1.3 −0.082 0 −0.041 0
1.3–2.2 −0.013 0 −0.002 0
2.2–25.1 0.068 0.44 0.031 0.23
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where SA is the degree of spatial association (either YC or D) of classes
of a spatial factor with a set of the same type of landslides (Table 4).
For each factor the absolute difference between the maximum and
minimum SA values is calculated, which is then divided by the lowest
absolute difference of all the factors (Table 4). By pairwise comparison
of PR values of every factor and by using the nine-point pairwise
rating scale in AHP (see Saaty, 1977 for details), a matrix of pairwise
ratings of the relative importance of every predictor can be obtained
(Table 5). The next step is to estimate the eigenvectors of the matrix
(Boroushaki and Malczewski, 2008). Reasonable estimates of eigen-
vectors of the pairwise rating matrix can be obtained by normalizing
the pairwise ratings down each column. That is, for example in
Table 5, each pairwise importance rating in a column is divided by the
sum of pairwise importance ratings in that column. This procedure is
repeated for all columns in the matrix of pairwise importance ratings

(Table 5) to obtain the eigenvectors of the matrix (Table 6). Then, a
fractional predictor weight is obtained by averaging the eigenvectors
across a row of the matrix (Table 6). Each of the fractional predictor
weights can be converted into an integer predictor weight by dividing
each of the fractional predictor weights by the smallest fractional
predictor weight of all factors and then by rounding-off decimals of
every quotient to nearest ones. Either fractional or integer predictor
weight can be used, although the latter is more intuitive than the
former (Carranza, 2008). Note that the predictorweight of AHP relates
to aCji in Eq. (2). The consistency of predictor weights derived through
the AHP must be checked by estimating the consistency ratio (Saaty,
1977; Carranza, 2008). A consistency ratio larger than 0.1 indicates
that a pairwise comparison matrix has a level of inconsistency that is
unacceptable, meaning that pairwise importance ratings must be re-
evaluated to obtain usable (i.e., meaningful) predictor weights.

Table 5
Matrix of pairwise ratings of relative importance of predictors of susceptibility to Shallow translational rock slides (Sh) occurrence based on pairwise comparison of PR values
(Table 4). A value of N1means that a predictor in the first column is ‘more important’ than a predictor in the first row, whereas a value of b1 thatmeans a predictor in the first column
is ‘less important’ than a predictor in the first row. For explanation of predictor symbols, see caption of Table 4.

Predictors L G LC KUS A S RT E NE NNE NW U O ST NNW WNW ENE R C W D

L 1 1 3 8 8 8 8 9 9 9 9 9 7 9 9 9 9 9 8 9 9
G 1 1 4 8 8 8 8 9 9 9 9 9 7 9 9 9 9 9 8 9 9
LC 1/3 1/4 1 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 7 9 9
KUS 1/8 1/8 1/7 1 1 1 1 5 5 5 5 5 1/2 6 6 7 7 7 1 7 6
A 1/8 1/8 1/7 1 1 1 1 5 5 5 5 5 1 6 6 8 8 8 1 8 6
S 1/8 1/8 1/7 1 1 1 1 5 5 5 5 5 1 6 6 8 8 8 1 8 6
RT 1/8 1/8 1/7 1 1 1 1 5 5 5 5 5 1/2 6 6 7 7 7 1 7 5
E 1/9 1/9 1/8 1/5 1/5 1/5 1/5 1 1 1 1 1 1/5 3 3 5 5 5 1/5 5 3
NE 1/9 1/9 1/8 1/5 1/5 1/5 1/5 1 1 1 1 1 1/5 3 3 5 5 5 1/5 5 3
NNE 1/9 1/9 1/8 1/5 1/5 1/5 1/5 1 1 1 1 1 1/5 3 3 5 5 5 1/5 5 3
NW 1/9 1/9 1/8 1/5 1/5 1/5 1/5 1 1 1 1 1 1/5 3 3 5 5 5 1/5 5 3
U 1/9 1/9 1/8 1/5 1/5 1/5 1/5 1 1 1 1 1 1/5 3 3 5 5 5 1/5 5 3
O 1/7 1/7 1/8 2 1 1 2 5 5 5 5 5 1 6 6 7 7 7 2 7 6
ST 1/9 1/9 1/9 1/6 1/6 1/6 1/6 1/3 1/3 1/3 1/3 1/3 1/6 1 1 1 1 1 1/6 1 1
NNW 1/9 1/9 1/9 1/6 1/6 1/6 1/6 1/3 1/3 1/3 1/3 1/3 1/6 1 1 1 1 1 1/6 1 1
WNW 1/9 1/9 1/9 1/7 1/8 1/8 1/7 1/5 1/5 1/5 1/5 1/5 1/7 1 1 1 1 1 1/7 1 1
ENE 1/9 1/9 1/9 1/7 1/8 1/8 1/7 1/5 1/5 1/5 1/5 1/5 1/7 1 1 1 1 1 1/7 1 1
R 1/9 1/9 1/9 1/7 1/8 1/8 1/7 1/5 1/5 1/5 1/5 1/5 1/7 1 1 1 1 1 1/5 1 1
C 1/8 1/8 1/7 1 1 1 1 5 5 5 5 5 1/2 6 6 7 7 5 1 7 5
W 1/9 1/9 1/9 1/7 1/8 1/8 1/7 1/5 1/5 1/5 1/5 1/5 1/7 1 1 1 1 1 1/7 1 1
DR 1/9 1/9 1/9 1/6 1/6 1/6 1/5 1/3 1/3 1/3 1/3 1/3 1/6 1 1 1 1 1 1/5 1 1
Sum 4.43 4.35 10.24 32.07 31 31 32.10 62.8 62.8 62.8 62.8 62.8 28.57 85 85 103 103 101 32.16 103 83

Table 4
Ratings of predictors (PR) based on degrees of spatial associations (SA) of individual spatial factors with Sh occurrences. Value in bold is |SAmax−SAmin|min.

Predictors of Shallow translational rock slides (Sh) occurrence SA (YC or D) |SAmax–SAmin| PR (Eq. (9))

Min Max

Lithology/slope material (L) −0.803 0.344 1.147 23
Geomorphology (G) −1.000 0.265 1.265 25
Land-use/cover (LC) −0.530 0.374 0.904 18
Aspect (A) −0.177 0.119 0.296 6
Slope (S) 0 0.28 0.28 6
Elevation (E) 0 0.13 0.13 3
Proximity to NE-trending faults/fractures (NE) 0 0.13 0.13 3
Proximity to NNE-trending faults/fractures (NNE) 0 0.16 0.16 3
Proximity to regional MCT/MBT (RT) 0 0.24 0.24 5
Proximity to NNW-trending faults/fractures (NNW) 0 0.11 0.11 2
Proximity to NW-trending faults/fractures (NW) 0 0.15 0.15 3
Proximity to WNW-trending faults/fractures (WNW) 0 0.06 0.06 1
Proximity to ENE-trending faults/fractures (ENE) 0 0.05 0.05 1
Presence of and proximity to kinematically unstable slopes (KUS) 0 0.25 0.25 5
Proximity to 2nd–4th order streams (ST) 0 0.09 0.09 2
Proximity to road (R) 0 0.06 0.06 1
Upslope contributing area (U) 0 0.13 0.13 3
Curvature (C) −0.103 0.156 0.259 5
Wetness (W) 0 0.05 0.05 1
Drainage density (D) 0 0.08 0.08 2
Presence of and proximity to old rockslides (pre-1968) (O) 0 0.4 0.4 8
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4.4. Predictive models of landslide susceptibility

4.4.1. Weighted multi-class index overlay model using pre-selected
predictors

To integrate the selected predictors for each landslide type, we
applied the weighted multi-class index overlay method (Bonham-
Carter, 1994). In each of the i-th (i=1,2,…,n number of) predictor
maps, each of the j-th ( j=1,2,…,m number of) predictor classes is
assigned a favorability score (Fji) obtained through spatial association
analysis (Eqs. (4) and (8)). Every i-th predictor map is assigned an
integer predictor weight, Wi, obtained through AHP (Tables 6 and 7).
Weighted predictor maps are then combined using the following

equation, which calculates an average weighted score S
� �

for every
location (Bonham-Carter, 1994):

S = ∑n
l Fji × Wi

� �.
∑n

l Wi: ð10Þ

The output map of S is a predictive model of susceptibility to
occurrence of each type of shallow translational landslides under
examination in the area. Note that, in Eq. (10), the product of Fji×Wi

represents in aCji in Eq. (2).
To show the usefulness of our proposed methodology, we

developed three different models: Model-1 which uses selected and

Table 6
Estimated eigenvectors of the pairwise rating matrix in Table 5 and weights of predictors of susceptibility to Sh occurrence. For explanation of predictor symbols, see caption of
Table 4. Selected predictors and their corresponding integer weights are marked in bold font.

Predictors L G LC KUS A S RT E NE NNE NW U O ST NNW WNW ENE R C W D Row
sum

Fractional
weight
(row sum/
npredictor)

Integer
weight

L 0.23 0.23 0.29 0.25 0.26 0.26 0.25 0.14 0.14 0.14 0.14 0.14 0.25 0.11 0.11 0.09 0.09 0.09 0.25 0.09 0.11 0.23 0.17 20
G 0.23 0.23 0.39 0.25 0.26 0.26 0.25 0.14 0.14 0.14 0.14 0.14 0.25 0.11 0.11 0.09 0.09 0.09 0.25 0.09 0.11 0.23 0.18 21
LC 0.08 0.06 0.10 0.22 0.23 0.23 0.22 0.13 0.13 0.13 0.13 0.13 0.28 0.11 0.11 0.09 0.09 0.09 0.22 0.09 0.11 0.08 0.14 16
KUS 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.02 0.07 0.07 0.07 0.07 0.07 0.03 0.07 0.07 0.03 0.05 6
A 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.04 0.07 0.07 0.08 0.08 0.08 0.03 0.08 0.07 0.03 0.06 7
S 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.04 0.07 0.07 0.08 0.08 0.08 0.03 0.08 0.07 0.03 0.06 7
RT 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.02 0.07 0.07 0.07 0.07 0.07 0.03 0.07 0.06 0.03 0.05 6
E 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.04 0.05 0.05 0.05 0.01 0.05 0.04 0.03 0.02 3
NE 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.04 0.05 0.05 0.05 0.01 0.05 0.04 0.03 0.02 3
NNE 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.04 0.05 0.05 0.05 0.01 0.05 0.04 0.03 0.02 3
NW 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.04 0.05 0.05 0.05 0.01 0.05 0.04 0.03 0.02 3
UC 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.04 0.05 0.05 0.05 0.01 0.05 0.04 0.03 0.02 3
OSL 0.03 0.03 0.01 0.06 0.03 0.03 0.06 0.08 0.08 0.08 0.08 0.08 0.04 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.03 0.06 7
ST 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 1
NNW 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 1
WNW 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.03 0.01 1
ENE 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.03 0.01 1
R 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 1
C 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.02 0.07 0.07 0.07 0.07 0.05 0.03 0.07 0.06 0.03 0.05 6
W 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.03 0.01 1
DR 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 1

Table 7
All the identified spatial factors of shallow translational landslides and the selected predictors of susceptibility to Sh and Db occurrence in the study area. Values in bold within
brackets are AHP integer weights of the selected predictors of susceptibility to the occurrence of Sh and Db.

Factor theme Factor Predictors of susceptibility to shallow translational landsliding

Sh Db

Lithology/geo-morphology Lithology Lithology (20) Lithology (15)
Geomorphology Geomorphology (21) Geomorphology (15)
Soil/overburden thickness - Soil/overburden thickness (11)

Land-use/land-cover Land-cover Land-use/land-cover (16) Land-use/land-cover (8)
Proximity to road - -

Topography/morphometry Slope Slope (7) Slope (2)
Aspect Aspect (7) Aspect (7)
Elevation Elevation (3) Elevation (3)
Curvature Curvature (6) -

Geological structures Presence of and proximity to kinematically
unstable slopes

Presence of and proximity to kinematically
unstable slopes (6)

-

Proximity to NE-trending faults/fractures Proximity to NE-trending faults/fractures (3) -
Proximity to NNE-trending faults/fractures Proximity to NNE-trending faults/fractures (3) -
Proximity to NNW-trending faults/fractures - Proximity to NNW-trending faults/fractures (3)
Proximity to NW-trending faults/fractures Proximity to NW-trending faults/fractures (3) -
Proximity to ENE-trending faults/fractures - -
Proximity to WNW-trending faults/fractures - Proximity to WNW-trending faults/fractures (3)
Proximity to major thrusts (MCT/MBT) Proximity to major thrusts (MCT/MBT) (6) Proximity to major thrusts (MCT/MBT) (3)

Hydrology Proximity to 2nd–4th order streams - Proximity to 2nd–4th order streams (3)
Wetness index - -
Upslope contributing area Upslope contributing area (3) -
Drainage density - -

Old rockslides (pre-1968) Presence of and proximity to old rockslides
(pre-1968)

Presence of and proximity to old rockslides
(pre-1968) (7)

Presence of and proximity to old rockslides
(pre-1968) (4)
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weighted spatial predictors, Model-2 using selected but un-weighted
spatial predictors and Model-3 using all relevant spatial factors as
predictors with their respective weights for the susceptibility to
occurrences of Sh and Db respectively (Fig. 5).

4.4.2. Logistic regression model using all identified/mapped spatial
factors

To compare the results of the method proposed earlier, the
conventional multivariate statistical method was used. Logistic
regression (LR) is a method for multivariate analysis of spatial
association between target and predictor variables. We used LR to
derive predictive maps (Model-4) of susceptibility to both shallow
rock (Sh) and debris (Db) slides because it is appropriate when the
target variable is dichotomous (e.g., landslide occurrence score, LOS,
depicting presence or absence of landslide) (Fig. 5). The LR predictive
model of susceptibility to shallow translational landslide occurrence
can be defined as (Hosmer and Lomeshow, 2000):

LOSi = 1= 1 = e− b0 + bM1M1i + bM2M2i + … + bMnMnið Þ� �
ð11Þ

where LOSi is the predicted landslide occurrence score or the
probability of landslide occurrence at every i-th pixel, b0 is a constant,
b is coefficient of individual predictor variables (M1i, M2i, …, Mni)
representing different spatial factors. Note that bM1, for example,
represents aCji in Eq. (2).

To calibrate the logistic regression model (Model-4), we used the
centroids (single pixels of 10×10 m size) of shallow landslide
polygons from the period 1968–2003 (584 for Sh and 206 for Db)
(Dai and Lee, 2002). To each landslide-polygon centroid, we assigned
LOS=1. For an un-biased selection of non-landslide locations (each
assigned LOS=0), we applied three criteria (Carranza, 2008). First,
the number of non-landslide locations is equal to the number of
landslide locations (LOS=1) because LR is optimal if an equal number
of ‘zeros’ and ‘ones’ are used (Schill et al., 1993). Second, non-
landslide locations are sufficiently far away from landslide locations
so that dissimilar multivariate spatial data signatures are obtained for
locations with LOS of 0 and 1. Third, in contrast to landslide locations,
which usually exhibit clustered distribution, non-landslide locations
must be randomly-distributed. To satisfy the second criterion, we
applied point pattern analysis (Boots and Getis, 1988) to the

landslide-polygon centroids and found that non-landslide locations
are likely 200 m away from existing landslides. To satisfy the third
criterion, we also applied point pattern analysis (Boots and Getis,
1988) to evaluate the degree of spatial randomness of a set of
randomly-selected non-landslide locations for both rock and debris
slides.

For the representation of predictors based on categorical factors
(e.g., aspect, geology, and geomorphology), we used dummy binary
values according to the method of data preparation proposed by
Chung et al. (1995). The use of the ten percentile classes for factor
maps that represent distances to objects (e.g., faults/fractures,
streams, old rockslides, kinematically unstable slopes) would increase
the chances of redundancy in LR. Thus, we reduced the number of
classes in these factor maps to only three (‘low’, ‘moderate’ and
‘high’). We arbitrarily defined the distance limits for these factor maps
based on our field observations about their spatial associations with
certain spatial features. For predictors based on continuous field data
(e.g., slope, elevation, upslope contributing area, and wetness index),
we used map values directly as input to LR.

We used the backward stepwise approach to LR, which starts with
all input predictors and ends with only statistically significant
predictors that contribute to the prediction or classification. We
forced the b0 to zero in the backward stepwise LR model so that
statistically significant predictors can be compared with those
selected through bivariate spatial association analyses. However,
because LR coefficients are non-linear weights, we cannot compare
them with predictor weights derived through the linear methods of
bivariate spatial association analyses that we applied. We only
compared both the methods by their predictive capabilities through
model evaluation and selection of predictors of susceptibility to
shallow landslides.

4.4.3. Model evaluation
We evaluated each of our four predictive SL models (Model-1 to

Model-4; Fig. 5) by calculating and graphing of success and prediction
rates (Chung and Fabbri, 1999) based on the calibration data set of
landslides from the period 1968–2003 and the validation set from the
period 2004–2007. We validated each of the models for different
types of landslides (e.g., shallow translational rockslides, Sh and
debris slides, Db). Further, we evaluated the performance of all
predictive SL models also by calculating and graphing of receiver

Fig. 5. Schematic flow diagram showing data, processes and steps followed in developing four different models of susceptibility to shallow landsliding in the study area.
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operating characteristics (ROC) (Fawcett, 2006; Frattini et al., 2010).
Since both methods for empirical model evaluation (success/predic-
tion rates and ROC) are cutoff-independent, they are suitable for
evaluating the performance of predictive models that use an arbitrary
selection of classification cutoffs (e.g., in the LR model the default
cutoff used was 0.5) (Frattini et al., 2010).

5. Results

5.1. Spatial association analysis for categorical spatial factors

The results of the spatial association analyses for categorical spatial
factors are presented in Table 3. For slope aspect, the south-facing
slopes have positive spatial associations with both types of shallow
landslides. This is because in the study area the south-facing slopes,
compared to north-facing slopes, have steeper inclinations and
receive higher amounts of rainfall coming from the south during
monsoons. Due to the tectonic setting of the Himalayan thrust fronts,
south-facing slopes exhibit more landslide activity (Fig. 2). Slope
aspect is, thus, an important predictor of susceptibility to shallow
translational landsliding in the area.

Compared to slopes with convex profiles (with positive curvature
values), those with concave ones (negative curvature values) have a
higher degree of positive spatial association for both types of shallow
landslides because landslides in the areas are characterized by
depletion zones upslope and accumulation areas down slope (Fig. 3).

Lithological units with weathered bedrock and less-competent
clastic rocks have strong positive spatial associations with shallow
rockslides (Sh) but have negative spatial associations with shallow
debris slides (Db) (Table 3). For weathered colluvium/debris and
scree/weathered regolith the situation is reverse (Table 3). Lithology
is, thus, an important predictor of susceptibility to occurrence of both
types of shallow landslides in the area (e.g., Peters and Mool, 1983;
Anbalagan, 1992; Weidinger et al., 1996; Weidinger, 2007).

Landforms like deeply entrenched valleys, steep scarps, highly
dissected intermontane valleys and denudational niches have strong
positive spatial associations with Sh (Table 3). Strong positive spatial
associations of alluvial/colluvial terraces and fans with shallow
rockslides are due to the fact that the accumulation zones are located
on these gentler slopes. Alluvial/colluvial terraces and fans, old terrace
deposits, deeply entrenched valleys and scree-laden highly dissected
steep slopes also have strong positive spatial associations with
shallow debris slides (Db) (Table 3). Strong positive spatial associa-
tions of deeply entrenched valleys, steep escarpments and denuda-
tional niches with Db are due to the presence of debris of old
rockslides (cf., Anbalagan, 1992; Shroder and Bishop, 1998; Weidinger
and Korup, 2009; Korup et al., 2010). Geomorphology is, thus, an
important predictor of susceptibility to occurrence of both types of
shallow translational landslides in the area (e.g., Burbank et al., 1996;
Wesnousky et al., 1999; Gabet et al., 2010).

Moderately to sparsely vegetated forests and barren slopes have
positive spatial associations with both types of shallow landslides
(Table 3). That is because lack of vegetation reduces the shear
strength of slope materials, facilitates penetration of surface runoff
and increases hydrostatic pressure in slope material (Swanson and
Dyrness, 1975; Wu and Swanston, 1980; Ives and Messerli, 1989).
Barren and agricultural lands also have positive spatial associations
with shallow debris slides (Db). This is due to fact that compared to
Sh, Db occurs at gentle to flatter slopes. Thus, land use/cover forms an
important predictor of susceptibility to occurrence of both types of
shallow translational landslides in the area (e.g., Peters and Mool,
1983; Begueria, 2006).

Areas with soil/overburden thickness larger than 2 m have
strong positive spatial associations with debris slides (Db), whereas
those with thin soil cover have negative spatial associations with
Db (Table 3) because those areas are more related to rockslides.

Therefore, soil/overburden thickness is an important predictor of
susceptibility to occurrence of shallow debris slides in the area
(Anbalagan, 1992; Ghoshal et al., 2008; Ghosh et al., 2009a).

5.2. Spatial association analysis for continuous spatial factors

Fig. 6 presents some examples of the results of the distance
distribution analysis (DDA) using continuous spatial factors. Most
shallow landslides of both Sh and Db types are present on 22°–34°
slopes, where there is a 24–28% higher likelihood of Sh occurrence
(Fig. 6a) and 10–11% higher likelihood of Db occurrence (Fig. 6b). DDA
analysis further indicates that most rockslides occurred at elevations
between 532 m and 1532 m, where there is an 11–13% higher
likelihood of Sh occurrence whereas most debris slides are present
between 590 and 1260 m, where there is a 6–11% higher likelihood of
Db occurrences. The fact that most debris slides are present at
relatively lower elevations than most rockslides suggests that the
former are likely developed within the accumulation zones that are
present down slope of the depletion zones of rockslides.

The regional thrusts such as MCT and MBT have positive spatial
associations with either types of shallow landslides (Fig. 6c,d). Within
2400 m of these regional thrusts, there is at least 24% higher
likelihood of Sh (Fig. 6c). Within 1600 m of those regional thrusts,
there is at least 20% higher likelihood of Db (Fig. 6d). These results are
meaningful because, in a structurally complex terrain like the
Himalayan FTB, proximity to regional discontinuities such as MCT
and MBT are inherent structural controls on landslides. Thus,
proximity to MCT/MBT can be used as a predictor of susceptibility
to occurrence of either Sh or Db in the area (cf., Anbalagan, 1992;
Gupta, 2005; Anbarasu et al., 2010; Ghosh and Carranza, 2010).

The spatial association analyses of proximity to different faults/
fractures show that NNE-, NE- and NW-trending faults/fractures have
strong positive spatial associations with shallow rockslides (Sh),
whereas NNW-,WNW- and NW-trending faults/fractures have strong
positive spatial associations with shallow debris slides (Db) (e.g.,
Fig. 6e,f). The strong positive spatial associations of Sh with NNE- and
NE-trending faults/fractures can be explained by the presence of
several sympathetic faults/fractures sub-parallel to the general NE
trend of MCT and MBT, which are inherent structural controls on
geomorphic processes in the area. The strong positive spatial
association of Sh with NW-trending faults/fractures is likely due to
some prominent NW-trending faults/fractures that form oblique
angles with the MCT and MBT. The positive spatial association of Db
with northwesterly trending faults/fractures can be explained by the
fact that many Db are the products of landslide reactivation as they
occur at the toes of the shallow rockslide occurrences (cf., Anbalagan,
1992; Shroder, 1998; Weidinger and Korup, 2009), which are
associated spatially with NW-trending faults/fractures. Thus, different
sets of faults/fractures, according to their trends, have different
degrees of spatial association with the landslides under study (Ghosh
and Carranza, 2010).

Within 150 m of 2nd to 4th order streams, there is only 9% higher
likelihood of Sh whereas within 70 m of 2nd to 4th order streams,
there is about 19% higher likelihood of Db occurrence than would be
expected due to chance (Fig. 6g,h). These results are consistent with
earlier results that most Db are present at relatively lower elevations
than most Sh and are more proximal to 2nd–4th order streams.
However, compared to the proximity to streams, other hydrologic
factors such as wetness index, contributing area upslope and drainage
density have weak spatial associations with both types of shallow
landslides.

Some rockslides (Sh) and debris slides (Db) in the area occurred
along or close to the national highway (NH-55) and railway track
(Fig. 2) as well as along other roads. However, the results of spatial
association analysis show that occurrences of either Sh or Db mainly
have weak positive spatial associations with roads because we had to
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consider the entire map area for the present spatial association
analysis. However, it never rules out the fact that proximity to road
cuts inmountainous terrain increases the susceptibility to landsliding.

Within old rockslides and within 90 and 155 m of those spatial
features, 72% of Sh and 65% of Db are present, respectively, and there
exist chances of 42% higher likelihood of Sh and 25% higher likelihood
of Db. Similarly, kinematically unstable slopes have strong positive
spatial associationwith either Sh or Db.Within kinematically unstable
slopes and within 100 m of those spatial features, about 84% of Sh are
present and there exist chances of 24% higher likelihood of Sh. Within
kinematically unstable slopes and within 137 m of those spatial
features, about 87% of Db are present and there exist chances of 17%
higher likelihood of Db. Therefore, presence of and proximity to either
old rockslides or kinematically unstable slopes are good predictors of
susceptibility to shallow translational landsliding in the area.

5.3. Weighting of spatial factors

Table 4 shows the results of quantified spatial association in the
form of predictor rating (PR) of all the predictors used for
determination of pairwise ratings of relative importance (Table 5)
using the nine-point pairwise rating scale in AHP (Saaty, 1977). We
obtained fractional weights for all the identified 22 spatial factors, the
sum of which equals 1 (Table 6) explaining that approximately 100%
of the explained variances are satisfied in the AHP pairwise
importance rating matrix prepared by using PR. The integer weights
of the important and selected predictors of susceptibility to both Sh
and Db obtained using AHP are shown in Tables 6 and 7. We also
computed the consistency ratio of AHP weights obtained so far, which
was below 0.1, indicating that (a) inconsistencies among pairwise
ratings of predictors of susceptibility to occurrence of Sh and Db are
minor and (b) estimated fractional (or integer) weights of predictors
of susceptibility to occurrence of either Sh or Db are consistent.

5.4. Predictive modeling of susceptibility

5.4.1. Predictive models of susceptibility to shallow translational
rockslides (Sh)

Model-1 of susceptibility to rockslides (i.e., based on 14 selected
and weighted predictors, indicated in bold in Table 7) has 79% success
rate (Fig. 7a) and 91% prediction rate (Fig. 7c) based on 30% of the
study area with the highest values of S. Model-1 also has a prediction
rate of 89% for deep-seated rockslides(Dp) occurrences in 30% of the
study area with highest values of S (Fig. 7e), suggesting that the same
set of 14 predictors are also relevant for predictive modeling of the
susceptibility to deep-seated rockslides. However, Model-1 has a poor
prediction rate (54%, based on 30% of the study area with highest
values of S) for debris slides (Fig. 7g), indicating that the spatial factors
of rockslides and their inter-predictor weights are strongly different
from those for debris slides. This illustrates that predictive modeling
of SL must be specific to a landslide type, or that landslides of strongly
different types must not be used together for predictive modeling of
SL. Moreover, Model-1 outperforms Models-2 and−3 both in success
and prediction rates (Fig. 7a,c) indicating that using either selected
but unweighted predictors or using all identifiable spatial factors of
shallow rockslides actually undermine the predictive modeling of SL.

Susceptibility Model-4 for shallow rockslides (Sh) has an over-
all 91.6% goodness-of-fit with calibration Sh (Table 8). Out of 69

input predictors, 45 predictors contribute significantly to Model-4
(Table 9). Based on 30% of the study area with the highest values of
LOSi, Model-4 has, compared to Model-1, a higher success rate (87%,
Fig. 6a) against calibration shallow rockslides (Sh), but has a slightly
lower prediction rate (89%, Fig. 7c) against validation Sh and a
substantially lower prediction rate (79%, Fig. 7e) against deep-seated
rockslides (Dp). These results indicate that logistic regression (LR)
modeling of SL allows better goodness-of-fit between predictors and
calibration landslides but does not guarantee higher prediction rates
against validation landslides.

The results of ROC analyses (Fig. 7b,d,f,h) are statistically
significant and show low levels of estimated model error. The lower
ROC areas for Model-2 (0.762) and Model-3 (0.598), compared to
Model-1 (0.802) (Fig. 7b), show that predictive modeling of SL based
on selected and weighted predictors (Model-1) results in higher
sensitivity (true positive rate) than based on selected but un-
weighted predictors (Model-2) and on all identifiable spatial factors
(Model-3). ROC analyses based on validation Sh (Fig. 7d) and on
Dp (Fig. 7f), indicate that the sensitivities or true positive rates of
Model-1 and Model-4 are much higher than those of Model-2 and
Model-3. With respect to deep-seated rockslides (Dp), the ROC
areas for Model-2 (0.743) and Model-3 (0.527), compared to that of
Model-1 (0.855), suggest that the predictors used to derive Model-1
would be useful in predictive modeling of susceptibility to Dp
occurrence in the area. The ROC analyses of Models-1, -2 and -3
with respect to Db occurrences show low sensitivities, suggesting that
Db is strongly dissimilar to either shallow or deep rockslides and that
predictive modeling of susceptibility to shallow debris slides will not
benefit from using predictors of susceptibility to either shallow or
deep-seated rockslides.

For slope aspect, logistic regression (LR) modeling selected and
assigned the highest weight for NNE-facing slopes (Table 9), whereas
our field observations and bivariate spatial association analysis
indicate that this particular aspect class exhibits negative spatial
association with shallow rockslides. For lithology, LR modeling
selected 11 out of 13 input predictors (Table 9), whereas bivariate
spatial association analyses indicated three predictors consisting of
mainly weathered lithology (i.e., WRSHGN, WRSIWA, WRSHPH). For
geomorphology, LR modeling selected HDISVAL, LDISVAL, MDISVAL
and RIDGE (Table 9), but the bivariate spatial association analyses
showed that these spatial factors lack spatial association with shallow
rockslides. Nevertheless, LRmodeling and bivariate spatial association
analyses resulted in selection of similar predictors such as slope,
elevation, land-use/land-cover, proximity to old rockslides (pre-
1968) and proximity to some sets of structures. However, unlike
our proposed methodology, LR modeling did not select proximity to
kinematically unstable slopes as a predictor of susceptibility to Sh
occurrence.

Finally, by classifying the output S values in Model-1 into four
categories – very high, high, moderate and low – based on the
difference between prediction and success rate curves (Fig. 8a), we
prepared qualitative shallow rockslides (Sh) susceptibility map
(Fig. 8b). Areas with very high and high susceptibility to Sh
occurrence based on Model-1 contain 79% of 1968–2003 Sh
(calibration set) and 91% of 2004–2007 Sh (validation set). Areas
with very high and high susceptibility to Sh occurrence also contain
90% of deep-seated rockslides (Dp). Similarly, by classifying the
output LOSi values inModel-4 into four classes based on the difference

Fig. 6. Cumulative relative frequencies of topographic gradient/slope and distances from major thrusts, faults/fractures and other linear features at Sh and Db locations and at non-
landslide locations. (a) Spatial association of topographic gradient/slope at Sh and non-Sh locations. (b) Spatial association of topographic gradient/slope with Db and non-Db
locations. (c) Spatial association of MCT andMBT with Sh and non-Sh locations. (d) Spatial association of MCT andMBT with Db and non-Db locations. (e) Spatial association of NW-
trending faults/fractures with Sh and non-Sh locations. (f) Spatial association of NW-trending faults/fractures with Db and non-Db locations. (g) Spatial association of 2nd–4th order
streams with Sh and non-Sh locations. (h) Spatial association of 2nd–4th order stream with Db and non-Db locations.
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between the prediction and success rate curves (Fig. 8c), we prepared
a qualitative Sh susceptibility map (Fig. 8d). Areas with very high and
high susceptibility to Sh occurrence based on Model-4 contain 87% of
calibration Sh, 89% of validation Sh and 79% of Dp occurrences in the
area.

5.4.2. Predictive models of susceptibility to shallow translational debris
sliding

Model-1 of susceptibility to shallow debris slide (Db) occurrence
(i.e., based on 12 selected and weighted predictors; Table 7) has 84%
success rate (Fig. 9a) and 95% prediction rate (Fig. 9c) based on 30% of
the study area with highest values of S. Model-1 has poor prediction
rates of 68% and 54% against Dp occurrences (Fig. 9e) and Sh
occurrences (Fig. 9g) based on 30% of the study area with highest
values of S, indicating that the spatial factors of susceptibility to debris
slide occurrence are strongly different from those of shallow/deep-
seated rockslides occurrences. Like shallow rockslide suscep-
tibility models, Model-1 of debris slide susceptibility also outperform
(Fig. 9a,c) those of Model-2 (based on 12 selected but un-weighted
predictors) and Model-3 (using all identified spatial factors) indi-
cating that susceptibility models based either on selected but
unweighted predictors or based on all identified spatial factors can
actually undermine the predictive modeling of SL.

Model-4 of susceptibility to Db occurrence has an overall 86.7%
goodness-of-fit with calibration Db (Table 8). Out of 72 input
predictors, 19 predictors contribute significantly to Model-4
(Table 9). Based on 30% of the study area with the highest values of
LOSi, Model-4 has, compared to Model-1, a slightly lower success rate
(81%, Fig. 9a) against calibration Db and a much lower prediction rate
(86%, Fig. 9c) against validation Db and an extremely lower prediction
rate (~25%, Fig. 9e) against deep-seated rockslides. These results
indicate that LR modeling of SL provides satisfactory goodness-of-fit
between predictors and calibration landslides but does less satisfac-
tory prediction rates against validation landslides.

The results of the ROC analyses in Fig. 9 are statistically significant
and show low levels of estimated model error. The lower ROC areas
for Models-2 and -3, compared to Model-1 (Fig. 9b,d), show that
predictive modeling of SL based on selected and weighted predictors
(Model-1) results in higher sensitivities (true positive rates) than
those based on selected but un-weighted predictors (Model-2) and on
all identifiable spatial factors (Model-3). Results of ROC analyses
based on validation Db occurrences show that the sensitivity or true
positive rate of logistic regression (LR) model (Model-4) is slightly
lower than that of Model-1 (Fig. 9b,d). This goes to show that, with

respect to shallow debris slides, our proposed methodology for
selection and weighting of predictors outperforms the LR algorithm
for selection and weighting of predictors.

Comparison of Models-1 and -4 for susceptibility to debris slide
occurrences indicates that for slope aspect, LRmodeling selected only
SSW-facing slopes, whereas bivariate spatial association analyses
indicate that Db occurrences have positive spatial associations with
SW-, SSW-, SE- and SSE-facing slopes. For geomorphology, LR
modeling did not select old terraces, screes and scarps, although
these units exhibit positive spatial associations with Db occurrence.
For land-use/land-cover, LR modeling did not select relevant factors
such as agricultural areas, sparse forests and barren slopes. LR
modeling shows that proximity to WNW-trending faults/fractures is
the main structural factor of Db occurrence, but our proposed
methodology of selecting and weighting predictors based on
bivariate spatial association analysis shows that proximity to
NNW- and NW-trending faults/fractures are also important struc-
tural factors of Db occurrence. Nevertheless, LR modeling and
bivariate spatial association analyses were more-or-less consistent
in terms of selecting lithology as predictor and in terms of not
selecting elevation and proximity to old rockslides (pre-1968) as
predictors of Db occurrence. However, we can say that predictors
selected in LR modeling of susceptibility to Db occurrence are less
realistic than those selected through bivariate spatial association
analysis.

Finally, by classifying the output S values in Model-1 into four
categories – very high, high, moderate and low – based on the
difference between prediction and success rate curves (Fig. 10a), we
prepared qualitative debris slide (Db) susceptibility map (Fig. 10b).
Areas with very high and high susceptibility to Db occurrence based
on Model-1 contain 78% of 1968–2003 Db (calibration set) and 90% of
2004–2007 Db (validation set). Similarly, by classifying the output
LOSi values in Model-4 into four classes based on the difference
between the prediction and success rate curves (Fig. 10c), we
prepared a qualitative Db susceptibility map (Fig. 10d). Areas with
very high and high susceptibility to Sh occurrence based on Model-4
contain 71% of calibration Db and 80% of validation Db in the area.

6. Discussion

Predictive modeling of susceptibility to landsliding of a certain
type involves the empirical selection and assignment of weights to
appropriate predictors (Guzzetti et al., 2005; van Westen et al., 2008;
Van Den Eeckhaut et al., 2009). That is because susceptibility

Fig. 7. Success rate, prediction rate and ROC curves for different predictive models of susceptibility to shallow rocksliding (Sh). The success rate and prediction rate curves are
calculated based on (a and b) calibration Sh (1968–2003), (c and d) validation Sh (2004–2007), (e and f) validation Dp (1968–2007) and (g and h) validation Db (1968–2007)
respectively. The plots in (a) represent success rate curves and the plots in (c), (e) and (g) represent prediction rate curves. The corresponding ROC curves are shown in (b), (d), (f)
and (h).

Table 8
Results of logistic regression model calibration to derive Model-4 of susceptibility to Sh and Db.

Model performance

Observed Predicted

LOS (Slide 1968-2003)

0 1 % Correct classification

Model-4 (Sh) LOS (Slide 1968–2003) 0 524 60 89.7
1 43 541 92.6
Overall% 91.2

Model-4 (Db) LOS (Slide 1968-2003) 0 178 28 86.4
1 27 179 86.9
Overall% 86.7
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to landsliding is a function of two types of spatial associations:
(1) spatial associations of individual spatial factors with known occur-
rences of landslides of a certain type; and (2) relative importance of
every spatial factor with respect to other spatial factors in relation to
those known landslide occurrences.

6.1. Modeling of predictor-target spatial associations

For quantifying spatial associations between predictor and target
variables, we used (a) Yule's coefficient to evaluate spatial associa-
tions between landslide occurrences and discrete field factors (e.g.,
lithology and aspect) and (b) distance distribution analysis to evaluate
spatial association between landslide occurrences and continuous
field factors (e.g., slope and elevation). Both of these objectives can also
be achieved by calculating likelihood functions (Fisher, 1922; Pratt,
1976), weights-of-evidence (Good, 1950; Bonham-Carter, 1994) and

evidential belief functions (Dempster, 1967; Shafer, 1976). These
methods of bivariate analysis measure predictor-target spatial
associations in probabilistic terms and have been used in predictive
modeling of susceptibility to certain types of natural hazards (Lee and
Choi, 2004; Carranza and Castro, 2006; Ghosh and Carranza, 2010;
Regmi et al., 2010). Other methods of bivariate analysis for mea-
suring predictor-target spatial associations with probabilistic inter-
pretations involve calculating landslide frequency or density analysis
per predictor class (Ayalew and Yamagishi, 2005; Yalcin, 2008;
Blahut et al., 2010). Here, we introduced Yule's coefficient and the
distance distribution analysis because, to the best of our knowledge,
they have not been applied to the predictive modeling of landslide
susceptibility.

The predictor-target spatial associations quantified by Yule's
coefficient and the distance distribution analysis also have probabi-
listic interpretations. Note that the value of YC (Eq. 3) is based on areal

Table 9
Coefficients (b) of predictors at the last step of backward stepwise logistic regression to derive Model-4 of susceptibility to Sh and Db occurrence.

Predictor variables Model-4 (Sh) Model-4 (Db)

Description Code b b

Drainage density Drndens −168.64 −353.66
Elevation Elvn −0.004 –

Slope Slope 0.067 –

Aspect NNE 4.447 –

NEAST 3.116 –

ENE 2.592 –

ESE 2.661 –

SE 3.618 –

SSE 2.715 –

SSW 2.767 1.731
SW 3.549 –

WSW 3.190 –

WNW 3.955 –

NW 3.640 –

NNW 2.290 –

Proximity to structures 0–200 m of ENE-trending faults/fractures LENE 0.636 –

0–200 m of NE-trending faults/fractures LNE −0.676 –

0–200 m of NNE-trending faults/fractures LNNE – −1.321
201–500 m of NNE-trending faults/fractures MNNE −0.461 −0.915
0–200 m of NNW-trending faults/fractures LNNW 0.788 –

201–500 m of NNW-trending faults/fractures MNNW 0.773 –

0–200 m of NW-trending faults/fractures LNW 0.712 –

0–200 m of WNW-trending faults/fractures LWNW – 1.356
201–500 m of WNW-trending faults/fractures MWNW – 0.839
201–500 m of major thrusts MTH 1.518 –

Geomorphology Steep escarpments and denudational niches ENTRVAL −1.872 −2.643
Flat ridge RIDGE −2.149 −3.234
Highly dissected intermontane valley HDISVAL −1.629 −2.286
Intermontane plateau PLATEAU – −24.103
Lowly dissected intermontane valley LDISVAL −2.859 −3.656
Moderately dissected intermontane valley MDISVAL −2.762 –

Land use/cover Barren and agricultural flat lands AGRI −1.808 –

Barren mountain slope BARREN 1.386 –

Moderately vegetated forest MF – 0.902
Sparsely vegetated forest SPF 0.852 –

Tea cultivation TEA −0.926 –

Lithology Alluvium mixed with colluvium COLUALU −5.662 2.356
Quartzite and phyllite FRCSCH −2.340 −2.660
Fresh sandstone (Gondwana) FRGOND −3.412 –

Fresh gneiss FRGN −2.981 −2.127
Sheared gneiss (Lingtse) SHGN −3.991 –

Scree and weathered regolith SCR −6.170 –

Weathered gneiss WRGN −1.149 –

Weathered schists and phyllite WRSCH −2.216 –

Weathered sheared phyllonite WRSHPH – −20.522
Weathered colluvium and debris WRCOLU −4.958 3.022
Weathered sandstone (Gondwana) WRGOND 2.562 –

2nd–4th order streams 0–50 m of 2nd–4th order streams LSTRM – 1.040
Proximity to road 0–50 m of road LRD 1.071 –

51–100 m of road MRD 1.106 –

Presence and proximity to old rockslides (pre-1968) 0–50 m of old rockslides LOLDSLD 2.841 –

51–100 m of old rockslides MOLDSLD 1.35 –

Depth to bedrock Low (0–1 m) LD – 1.314
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proportions, which are also the bases of spatial conditional probability
calculations (cf. Bonham-Carter, 1994). Note also that the D-statistic
(Eq. 7) in distance distribution analysis is equivalent to the spatial
contrast (W+–W–) in weights-of-evidence analysis (Good, 1950;
Bonham-Carter, 1994), which is based on the Bayesian theory of
probability (Bayes, 1764). Therefore, in probabilistic terms, a positive
value of YC or D implies that a spatial factor class increases the
likelihood of landslide occurrence of a particular type, whereas a
negative value of YC or D implies that a spatial factor class decreases
the likelihood of landslide occurrence of a particular type. Accord-
ingly, maps with relevant spatial factor classes found to have positive
spatial associations with known landslide occurrences of a certain
type are considered predictors in predictivemodeling of susceptibility
to occurrence of that type of landslide.

It can be argued that quantified positive factor-landslide spatial
associations, regardless of which method of bivariate analysis is
applied, may not necessarily imply genetic associations between
spatial factors and landslides. That is because, at local-scales,
landslides are dynamic objects whereas spatial factors or features
considered in the analysis represent static objects. However, the
methods of bivariate analysis used here and discussed above have
been used in predictive mapping of mineral prospectivity (Bonham-
Carter, 1994; Pan and Harris, 2000), wherein the target (mineral

deposit occurrence) and predictor variables considered all represent
static objects and the results of spatial association analyses are given
district- to regional-scale genetic predictor-target interpretations
(Carranza, 2009a, 2009b). Nevertheless, in the present study,
comparisons of site-specific observations of landslides vis-à-vis
quantified positive regional-scale spatial associations between certain
factor classes and landslides suggest genetic links between some
spatial factors and landslide occurrences. One example is that shallow
translational rockslides in the area occur on and have positive spatial
associations with weathered bedrock but they do not occur on and,
thus, have negative spatial associations with alluvial/colluvial de-
posits (Table 4). Another example is that shallow translational
rockslides in the area have positive spatial association with MCT/
MBT, which is likely real because previous works in the area and
elsewhere show the following. The MCT/MBT are regional-scale
tectonic controls on structural and geomorphological developments
in the area (Banerji et al., 1980; Acharya, 1989), local stress fields vary
with respect to major tectonic structures (Pandey et al., 1999; Singh
and Thakur, 2001; Joshi and Hayashi, 2008) andmechanisms for slope
deformation are influenced by variations in distribution of stress (Di
Luzio et al., 2004; Kinakin and Stead, 2005; Cadoppi et al., 2007).
Therefore, the results of the bivariate analyses of spatial associations
presented in this work are intuitive and instructive, if not, realistic. In

Fig. 8. Predictive Model-1 (based on 14 predictors selected and weighted through bivariate analyses) andModel-4 (based on backward stepwise logistic regression) of susceptibility
to occurrence of Sh. (a) Success and prediction rate curves of Model-1. (b) Map of classified susceptibility to Sh occurrence based on Model-1. (c) Success and prediction rate curves
of Model-4. (d) Map of classified susceptibility to Sh based on Model-4. Maps of classified susceptibility to occurrence of Sh (b and d) are based on classification of susceptibility
scores (S,LOSi) according to the difference between prediction and success rate curves.
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contrast, some of the factor-landslide spatial associations quantified
through logistic regression analysis (Table 9) are less intuitive and
instructive.

6.2. Pairwise modeling of predictor-target relationships

Various relevant spatial factors are involved in landsliding and
individual relevant spatial factors have different degrees of influence
of landsliding. Assignment of meaningful weights to individual
predictors, to portray the relative importance of every spatial factor
with respect to other spatial factors in relation to known landslide
occurrences, is a highly subjective exercise. It may involve a trial-and-
error procedure, even in the case when expert knowledge is available
especially from different experts. The difficulty of the exercise lies in
deciding objectively and simultaneously how much more important
or howmuch less important is one predictor compared to every other
predictor. This difficulty is alleviated here with the application of the
analytical hierarchy process (Saaty, 1977). In this process, we used the
quantified spatial associations between landslides and individual
predictors as bases, by converting them into predictor ratings (Eq. 9),
because somehow they suggest genetic links between some spatial
factors and landslide occurrence. Expert knowledge is, nonetheless,
essential in this process because quantified factor-landslide spatial

associations may not necessarily imply genetic associations between
spatial factors and landslides.

Because expert knowledge is subjective, we consider it non-
instructive to describe here how precisely we obtained the pairwise
comparison matrix so that readers may be able to replicate the
process. Our only guide for objectivity is to obtain a consistent
pairwise comparison matrix (Saaty, 1977) using the results of our
proposed spatial association analyses (Table 4). A matrix is consistent
if every value across each row in a pairwise comparison matrix is a
multiple of every other value in the other rows.We observe, however,
that this may not be the case always with the pairwise importance
matrix (Table 5), illustrating the subjectivity (or inconsistency)
introduced by applying expert knowledge in the pairwise comparison
process. Nevertheless, the analytical hierarchy process provides for
quantifying and determining whether inconsistencies in a pairwise
comparison matrix are within acceptable limits.

Because the analytical hierarchy process involves simultaneous
use of three variables (i.e., two predictors, one target), it constitutes a
semi-multivariate analysis. In fact, the analytical hierarchy process is a
form of principal component analysis, wherein loadings on individual
variables in a component reflect their degrees of association in that
component. Thus, the methodology we propose here above actually
endeavors to emulate multivariate analysis in modeling of predictor-

Fig. 9. Success rate, prediction rate and ROC curves for different predictive models of susceptibility to shallow debris sliding (Db). The success rate and prediction rate curves are
calculated based on (a and b) calibration Db (1968–2003), (c and d) validation Db (2004–2007), (e and f) validation Dp (1968–2007) and (g and h) validation Sh (1968–2007). The
plots in (a) represent success rate curves and the plots in (c), (e) and (g) represent prediction rate curves. The corresponding ROC curves are shown in (b), (d), (f) and (h)
respectively.
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target relationships and predictor–predictor relationships with
respect to targets. That is because, for example, in stepwise multiple
regression, predictor–target relationships are evaluated in a number
of steps until a final model is obtained consisting only of predictors
that contribute significantly to the prediction of the target variable.
We have chosen logistic regression analysis for comparing the
performance of our proposed methodology. The consistency among
predictors derived through logistic regression and our proposed
methodology constitute a basis to describe the efficacy of our
proposed methodology. However, describing that further in terms of
magnitude of predictor weights is irrelevant because logistic
regression coefficients are non-linear weights whereas predictor
weights derived through methods of bivariate spatial association
analyses that we applied are linear weights.

6.3. Integration of predictors and evaluation of susceptibility maps

We applied weighted multi-class index overlay (Eq. 10) to
integrate individual predictors because it allows to model suscepti-
bility to landsliding of a certain type as a function of the two types of
spatial associations described in Eq. (1) and in the first paragraph of
this discussion section. This objective can neither be achieved by
application of weights-of-evidence modeling (Bonham-Carter, 1994)
nor evidential belief modeling (Carranza and Castro, 2006). That is
because these two predictor integration modeling techniques accom-
modate only predictor class weights (e.g., Fji in Eq. 10), which

represent overall spatial associations of individual predictors with the
target, but they do not accommodate predictor weights (e.g., Wi in
Eq. 10), which represent the relative importance of every predictor
with respect to other predictors in relation to the target.

If we had applied weights-of-evidence or evidential belief
modeling, the results would have been more similar to Model-2
(i.e., using selected but un-weighted predictors) and less similar to
Model-3 (i.e., using all relevant spatial factors as predictors with their
respectiveweights). As shown above,Model-1 (i.e., using selected and
weighted predictors) outperforms Models-2 and -3, regardless of the
type of landslides examined. This goes to show two things: (1) the
importance of selecting predictors and assigning weights to pre-
dictors; and (2) the advantage of the weighted multi-class index
overlay modeling technique over weights-of-evidence and evidential
belief modeling techniques. The latter is supported by the following
facts. Weights-of-evidence modeling is disadvantaged by the as-
sumption of conditional independence among predictors with respect
to target (Bonham-Carter, 1994), whereas weightedmulti-class index
overlay modeling is not based on such assumption. Evidential belief
modeling is disadvantaged by the estimation of not one but three
types of predictor class weights (Dempster, 1967; Shafer, 1976;
Carranza and Castro, 2006), whereas weighted multi-class index
overlay modeling involves estimation of only one type of predictor
class weights. Compared to weights-of-evidence, evidential belief and
logistic regression modeling techniques, the main disadvantages of
weighted multi-class index overlay modeling are: (a) it relies on

Fig. 9 (continued).
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methods of bivariate analysis for estimation of predictor class
weights; and (2) it does not represent prediction uncertainty. Here,
we did not show a map of prediction uncertainty associated with the
logistic regression modeling because it cannot be used anyway to
compare with the results of the proposed methodology.

Comparisons of the performance of the Model-4 (logistic regres-
sion model) with those of Model-1 show that the main weakness of
our proposed methodology is in achieving a good fit between
predictors and target (or success rate of prediction against calibration
data). That, nevertheless, is a common weakness of bivariate analysis
compared to multivariate analysis because the inter-play of multiple
factors in landsliding is complex and requires, indeed, methods that
can model it simultaneously. However, strong similarity in success
and prediction rates between the two models indicates strong
similarity in the spatial pattern of the classified susceptibility maps,
which are also evident from visual inspection of these two
susceptibility maps (e.g., Fig. 8b,d). The fact that the prediction rate
is higher than the success rate in the case of Model-1, compared to
Model-4, means that in the former case the validation landslides have
very strong spatial association with the predictions based on the
training landslides. This means further that validation landslides and
training landslides have strongly similar spatial characteristics, which
result in very satisfactory prediction results (cf., Carranza et al., 2008).
Thus, Model-4 only outperforms Model-1 by 8% with respect to

success-rate against shallow translational rockslides, but Model-1
outperforms Model-2 and Model-3. This indicates the major im-
provement in predictive modeling of landslide susceptibility that can
be derived from our proposed methodology. Although our study area
has limited extension, the methodology proposed here would be
applicable to many parts of the Himalayan region, because of the
strong similarity of geo-environmental settings and types of failure
mechanisms (Anbalagan, 1992; Anbalagan and Singh, 1996; Ghoshal
et al., 2008; Mathew et al., 2009).

7. Conclusions

The application of the proposed methodology for selecting and
weighting predictors of landslide susceptibility in the Darjeeling
Himalayas (India) highlights the following findings.

● Not all relevant spatial factors of susceptibility to landsliding of a
certain type, as identified theoretically and heuristically, can be
used as predictors of landslide susceptibility.

● Methods for bivariate spatial association analysis, such as Yule's
coefficients and distance distribution analysis, are (a) instructive
for defining empirical relationships between landslides and spatial
factors and (b) useful for selection and weighting of spatial
predictors of susceptibility to landsliding.

Fig. 10. Predictive Model-1 (based on 11 predictors selected and weighted through bivariate analyses) and Model-4 (based on backward stepwise logistic regression) of
susceptibility to occurrence of Db. (a) Success and prediction rate curves of Model-1. (b) Map of classified susceptibility to Db occurrence based on Model-1. (c) Success and
prediction rate curves of Model-4. (d) Map of classified susceptibility to Db based on Model-4. Maps of classified susceptibility to occurrence of Db (b and d) are based on
classification of susceptibility scores (S,LOSi) according to the difference between t-prediction and success rate curves.
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● Results of quantified bivariate spatial associations between
landslides and spatial factors are useful empirical metrics because
they help to reduce subjectivity of expert knowledge that is applied
in the analysis of inter-predictor weights through the analytical
hierarchy process.

● Predictive maps of landslide susceptibility based on all possible
predictors and on selected but un-weighted predictors do not
outperform those based on selected and weighted spatial pre-
dictors. This indicates that bivariate analysis of spatial associations
of landslides with various relevant spatial factors to select and
assign weights to spatial predictors of landslide susceptibility is
essential in prudent and instructive predictive modeling of
landslide susceptibility.

● In the study area, predictors selected and weighted through the
proposed methodology are more realistic than those obtained
through logistic regression modeling. Because this may not
necessarily be the case in other areas, further testing of the
proposed methodology elsewhere is warranted.

● Predictive modeling of landslide susceptibility through amethod of
multivariate analysis, like logistic regression, is likely to result in
high success-rates but not necessarily high prediction-rates.

● The results of the study demonstrate the usefulness of the proposed
two-stage methodology for selecting and weighting of spatial
predictors for predictive modeling of landslide susceptibility.
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