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Event-based landslide maps display landslide events of different magnitudes that are associated with a single
major trigger. Event-based landslide maps allow the estimation of spatio-temporal probabilities of landslide
events that are required for the assessment of landslide hazard. In this paper, we discuss the generation of
event-based landslide inventory maps for a region in Darjeeling Himalayas (India) with limited historical
landslide information. We used eight different sets of source data, spanning the period from 1968 to 2007,
which include topographic maps, satellite images and post-event field maps. For each period we mapped the
various landslide types, and calculated landslide density and activity in individual terrain units to analyze
changes in the spatial behavior of landslides through time. For the assessment of the temporal landslide
probability, we used landslide event-days and associated daily and antecedent rainfall amounts in a
multivariate statistical analysis to model the temporal relationship between landslide events and the amount
of triggering rainfall. For estimating the magnitude probability, we applied magnitude–frequency analysis for
the different event-based landslide maps using landslide area (m2) as a proxy. Despite the incompleteness of
the source data sets used, the resulting landslide inventory maps can be used successfully in determining
temporal and magnitude probabilities of future landslides.
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1. Introduction

Incorporation of landslide hazard analysis into land use planning
is important in mitigating the impact of landslides. Whereas this is
slowly becoming a standard practice in developed countries, many
developing countries still lack proper land use planning, let alone
the inclusion of landslide risk due to lack of detailed and reliable
landslide hazard maps. In many cases, available landslide hazard
maps are actually landslide susceptibilitymapswith qualitative legends
(Kanungo et al., 2006;Ghoshal et al., 2008;Gupta et al., 2008;Mathewet
al., 2009), that are difficult to use in the quantification of the possible
impact of landslides. Conversion of landslide susceptibility maps into
landslide hazard maps requires estimates of landslide spatial, temporal
and magnitude probabilities (Guzzetti et al., 1999; Glade et al., 2005;
Fell et al., 2008; van Westen et al., 2008). These can only be derived
accurately through the generation and analysis of landslide inven-
tory maps.

Landslide inventorymaps can be prepared through variousmethods,
such as historical archive studies, interviews, detailed geomorphologic
fieldwork, image interpretation andremote sensing techniques (Hansen,
1984; Wieczorek, 1984; Guzzetti et al., 2000; Cardinali et al., 2002; Galli
et al., 2008; vanWesten et al., 2008;Martha et al., 2010). An event-based
inventory is prepared soon after a prominent triggering event (e.g.,
rainfall and earthquake) to depict all slope failures that are due to that
triggering event (Harp and Jibson, 1996; Guzzetti et al., 2004; Sorriso-
Valvo et al., 2004). Due to lack of sufficient historical information on
landslides or post-event field maps, air photos or satellite images from
the past are often used as the main remote sensing source data for the
generation of event-based landslidemaps (Rib and Liang, 1978; Guzzetti
et al., 2008).

The success of generating an event-based landslide inventory via
stereoscopic interpretation of images fromdifferent periods depends on
several factors. Most importantly the availability of images of suitable
quality and resolution, taken soon after a major landslide triggering
event, determines whether it is possible to extract individual event-
based landslide maps. The characteristics of landslides may not be
recognizable anymore in remote sensing imagery at later dates, as they
may be obscured by vegetation re-growth or even by quick reactivation.
If no images are available directly after a triggering event it becomes
difficult to make separate event-based inventories for those triggering
events that occurred between the dates of two successive images. Also
skills in image interpretation play an important role (Carrara, 1993), as
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well as the accuracy with which landslides are located on base maps
(Malamud et al., 2004). Through time, multiple small slope failures
may merge into larger landslides, which render detection of smaller
landslides problematic and thereby introducing bias in frequency–
size statistics of landslides. Accordingly, lack of spatial and temporal
accuracy in landslide inventories, incompleteness of individual inven-
tories and gaps in time between inventories are serious bottlenecks in
determining temporal and magnitude probabilities of landslides and,
therefore, posedifficulties inquantitativehazardassessment (vanWesten
et al., 2006).

In this paper, we discuss how to generate event-based landslide
inventory maps for triggering events over a 40 year period (1968 to
2007) in a highly landslide-prone area in Darjeeling Himalayas (India)
based on available source data. In a data-scarce environment like India,
the source data for landslide inventory mapping are incomplete, there
are data gaps for certain periods, and the source data has different scales
and resolution. Notwithstanding such constraints, we generated an
event-based landslide database for utilization in quantitative hazard
assessment.

2. Study area

The study area is located around the town of Kurseong in the
Darjeeling district ofWest Bengal province in India (Figure 1a). The area
is characterized by a prominent NE–SW trending ridge in the central
part dividing the study area into sub-catchments of two major streams
(Figure 1a and d): Balason toward the west and Tista toward the east.
Elevations in the study area vary from 236 m to 2189 m and slopes vary
from 0° to 84°. Climate is humid with a long period (June–October) of
monsoon-controlled heavy precipitation. Annual precipitation varies
between 2000 mm and 5000mm (Soja and Starkel, 2007).
Fig. 1. Location of the study area. (a) Geographic location of the study area. (b) Schematic re
Szule, 2005). (d) Geological map of the study area showing various lithologies and trends of
The map in (d) also shows prominent places, railroad and locations of field photographs sh
The study area is part of a tectono-stratigraphic sequence of
metamorphic rocks of the Himalayan Fold-Thrust-Belt (FTB) in the
north and the foreland molasse basin in the south (Figure 1b and c).
Toward the north, high-grade metamorphic rocks (migmatites) are
present, whereas its southern boundary is marked by a high-strain
ductile shear zone called the Main Central Thrust (MCT) that coincides
with high-to-low grade metasediments (cf. Hubbard, 1996; Searle and
Szule, 2005). The study area is situated in the southern part of the
Darjeeling klippe (Figure 1b and c), where high-grade metamorphic
rocks of the Central Crystalline Gneissic Complex (CCGC) are thrusted
over low-grade metasediments of the Daling Group along the MCT
(Mallet, 1875; Sinha-Roy, 1982). Toward the south, foreland molasse
sediments of the Siwalik Group are underlain by an intra-thrusted slice
of Gondwana sediments. Toward the north, Gondwana sediments
are overthrusted by Daling Group metasediments along the abrupt
southern-most front of Himalayan FTB known as the Main Boundary
Thrust (MBT). The MCT and MBT represent the main regional tectonic
discontinuity surfaces in this part of the Himalayas (Figure 1b–d).

Denudational geomorphic processes are predominant due to the
active tectonic processes in Darjeeling Himalayas. It has been demon-
strated by several workers in the adjacent Nepalese Himalayas (Caine
andMool, 1982; Selby, 1988; Petley et al., 2007) that the high frequency
of slope failures in the Eastern Himalayas can be attributed to a very high
rateofdenudation (i.e., 5–14 mm year−1) associatedwithactive tectonic
processes of Himalayan orogeny. Slopes are gentler on ridge tops but
become increasingly steeper downward to the streams (Dutta, 1966;
Burbank et al., 1996; Binnie et al., 2007).

In general, three types of landslides are observed in the study area
(Figure 2). Most frequent are shallow translational rockslides, followed
by shallow translational debris slides and some deep-seated rockslides
that are much larger than the first two types.
gional geological map and (c) section of Darjeeling-Sikkim Himalayas (after Searle and
regional thrust planes —Main Central Thrust (MCT) and Main Boundary Thrust (MBT).
own in Fig. 2.



Fig. 2. Examples of landslide-types in different lithologies of the study area. (a) A shallow translational rockslide in Gondwana sediments. (b) A shallow translational debris slide in
quartzo-feldspathic gneiss (CCGC). (c) A large landslide complex containing both shallow translational and deep-seated rock slides in quartzo-feldspathic gneiss (CCGC) (known as
Ambutia landslide complex). (d) A deep-seated rockslide (14 Mile Slide) in the Paglajhora slide complex. For locations of the above field photographs see Fig. 1d. Scale bars shown
are approximate.

Table 1
Types, extent and period (DOA = date of acquisition) of source data and associated
rainfall events for landslide inventory (LI).

Source data
(scale/resolution)

Extent
(km2)

DOA/period Rainfall event LI period

Topographic map
(1:25,000)

90 1969–1970 Oct. 1968 LI68

B×W stereo airphotos
(1:50,000 and 1:10,000)

90 1980 1979 LI79

Field-based landslide
inventory map (1:25,000)

56 1993 July 1993 LI93

Field-based landslide
inventory map (1:25,000)

20 1998 July 1998 LI98

IRS 1-D PAN image (5.8 m) 90 2000 Unknown LI99-02
IRS 1-D LISS-3 MX image
(23.5 m)

90 2002 Unknown LI99-02

IRS P-6 LISS-4 MX (5.8 m) 90 2004 July 2003 LI03
IRS P5 Stereo Cartosat – 1
(2.5 m)

90 2006 Unknown LI04-06

Field-based landslide
inventory map (1:25,000)

90 2007 July/Sept. 2007 LI07
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3. Generation of event-based landslide inventory

3.1. Source data

The source data that were used in this study for landslide inventory
mapping consisted of high-resolution satellite images, aerial photo-
graphs, topographic maps, old landslide inventory maps and reports of
field investigations (Table1). In this section thesedata sets are described
in chronological order. The oldest data set consists of topographic maps
prepared by the Survey of India (SOI) in 1969, one year after a major
rainfall event that occurred between 2 and 4 October 1968, with a
rainfall amount of 1100mm (Basu and De, 2003). During 1969, the SOI
updated their topographic survey and prepared new 1:25,000 topo-
graphic maps which included the locations of prominent and active
landslides of the 1968-event. The next data set consists of 1:50,000 and
1:10,000 scale black-and-white stereo-air photos from 1980. The third
set is a field-based landslide inventory map from 1993 prepared by
the Geological Survey of India (GSI) soon after a landslide event that
occurred between 1 and 3 July 1993 (Sengupta, 1995). Unfortunately,
this map covers only 56 km2 in the southeastern part of the study
area. The fourth data set is another event-based landslide inventory
map prepared by GSI after a landslide event that occurred between 6
and 8 July 1998. Also this inventory map covers only a part of the area
(~20 km2) in the center of the study area, and does not overlap with
the previous inventory map (Bhattacharya et al., 1998). For the period
2002 to 2006 four high-resolution Indian satellite imageswere available
(Table 1). Themost recent data set is a detailed landslide inventorymap
prepared by the first author through field surveys soon after a recent
landslide event in 2007.

3.2. Landslide inventory mapping

Since the source data vary in resolution, type and extent, different
methods were adopted for extracting landslide information. For each
period, a landslide inventory wasmade, and landslides weremapped
as polygons, with a separation of their erosional and depositional
area (preferably for large landslides). Each landslide was character-
ized by attributes such asmovement type, material involved, activity,
depth, failure mechanism, and date of occurrence, according to
international standards (cf. Varnes, 1978; UNESCO-WP/WLI, 1990,
1993). We considered a depth-to-failure surface of 5 m as the main
criterion to differentiate between deep-seated and shallow land-
slides. The source data of the 1968-event (topographic map sheets of
1969) contain no information on landslide types, depth and failure
mechanisms. Thus, we used the 1980 airphotos to stereoscopically
examine and characterize the 1968-landslides (LI68).

Stereoscopic interpretation of the 1:10,000 and 1:50,000 scale black-
and-white stereo airphotos from 1980 was carried out using a mirror
stereoscope, and landslide types were identified based on texture, tone
of photo-elements, association of objects, morphometry, depth and
freshness of scarps. We also used the airphotos from 1980 to map large
scarps and depositional areas representing old/inactive landslides,

image of Fig.�2
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which occurred prior to 1968 and that cannot be linked to any known
landslide event.

The landslides from thefield-based inventorymapsof 1993and1998
(LI93 and LI98) were converted to base map, and additional non-spatial
attributes, such as depth and failure mechanism, were interpreted from
later images.

Landslides were mapped from the four high-resolution satellite
images of 2000, 2002, 2004 and 2006 by digital stereo image
interpretation with a specialized software (Stereo-Analyst in ERDAS
Imagine 9.x and ILWIS 3.3) using ortho-rectified images and a digital
elevation model (DEM), derived from stereo Cartosat-I images of
2006. Within the period of 2000 to 2006 only one major landslide
event was known that occurred during the monsoon of 2003. The
landslides for this event (LI03) were mapped by comparing the
images of 2002 and 2004. By comparing the landslides mapped for
the period 1968 to 1998 with those in the images of 2000 and 2002,
we generated an inventory of landslides that occurred between 1999
and 2002 (LI99-02). Unlike the other inventories (e.g. LI68 and LI79),
this inventory lacks the exact date of the landslide triggering event.
Following a similar method, we compared further the landslides
mapped from the images of 2006 and 2004 to generate another
landslide inventory (LI04-06), also lacking a specific landslide event-
date. After amajor landslide event that occurred during themonsoon
of 2007, we mapped all associated landslides (LI07) by field survey.

Wealso gathered informationabout four landslide event years (1984,
1985, 1986 and 1991) from old geological reports and interviews with
local people, for which no post-event landslide maps were available. A
summary of all known landslide events and the event-based inventories
is given in Fig. 3. All landslide inventories were compiled in a GIS using
UTM projection parameters.

4. Analysis of the landslide inventories

4.1. Landslide types and frequencies

The eight event-based landslide inventories were compared to
examine variations in landslide characteristics (frequency, area, density,
type and activity). We spatially compared landslides associated with
different events via buffer analysis in GIS to identify likely reactivated
landslides. Landslides from a later inventory were considered to be
reactivated ones if they were located within 50 m of landslides from an
earlier one, otherwise they were considered as new landslides. We
adopted the buffer distance of 50 m based on our field experiences and
scale of mapping (1:25,000 or smaller).
Fig. 3. Known landslide event-years and landslide inventories (LI). Gaps in inventory
for the 1970–1978 and 1981–1992 periods are shown.
The descriptive statistics for the eight event-based landslide inven-
tories are presented in Table 2. The landslide density (number per km2)
shows a variation through time, with the highest density in 1979 (6.2).
The medians of areas of mapped landslides per event-based inventory
vary between 519 m2 (LI79) and 3385 m2 (LI68), excluding the large
undated landslides that were already present before 1968 (Table 2).
Those large landslides older than 1968 occupy about 21% of the study
area and are mostly deep-seated rockslides with areas that range up
to 2.14 km2. Since the inventory of pre-1968 landslides is not event-
based, we did not compare their density and dimension with the
landslides in our eight event-based inventories.

Between 1968 and 2007, shallow translational rockslides appear to
be the most frequent slope movements, followed by shallow transla-
tional debris slides (Table 2). No analysis of shallow translational debris
slides is made for LI98 because it only contains 31 debris slides, which
were exclusivelymapped along a road-cut slope, and landslides of other
types occurring on natural slope were not mapped for this event.
Compared to the above two landslide types, the density frequency of
deep-seated rockslides is rather low, although they occupy larger areas
(Table 2). Fig. 4 shows the overall landslide inventory for the study area,
with indication of the most recent date of landslide activity.

4.2. Landslide activity analysis

Table 3 shows the number and area of both reactivated and new
landslides in each of the landslide inventories. For the inventory LI79,
the analysis is done with respect to the LI68 inventory. One has to take
into account that two of the inventories (LI93 and LI98) do not cover
the entire study area. Therefore it is better to evaluate the relative
numbers (e.g. percentage of landslides) rather than the absolute
numbers. The inventory of 1979 (LI79) shows the highest absolute
number of landslides (562) and the highest percentage of reactivated
landslides (90%). This is partly due to the effect of the large difference
in source data from which the inventories are derived, as the
inventory of 1979 was obtained from 1:10,000 scale airphotos and
the one from 1968 from a generalized topographic map. The relative
number of new landslides does not show a clear trend. There are years
when the fraction of new landslides increases, periods when it
remains constant. The event of 2003 is clearly an outlier, as all 185
landslides that were mapped in the previous event (LI99-02) were
reactivated. The percentage of deep-seated rockslides that are
reactivated is higher than the percentage of reactivated shallow
landslides, and ranges from 54% (LI79) to 100% (LI03). On average 61%
of the recent landslides that occurred in the period 1968 to 2007 were
located either within or very close to the deep-seated large landslides
that were already present before 1968 (see Figure 4).

We calculated the landslide density within terrain units to study
changes in landslide activity. A map of terrain units was obtained via a
semi-automatic technique for delineating ridge crests, streams and spur
axes using a 10 m×10m digital elevation model (DEM) (cf. Carrara et
al., 1991). Since both LI93 and LI98 inventories cover only small and
separate parts of the study area (see Table 2), we merged them into a
single inventory for the purpose of this analysis. In view ofmapping and
digitization errors, we considered terrain units with landslide density
equal to or less than 2 to be stable (cf. Galli et al., 2008).

Fig. 5 illustrates the variation in area-based landslide density per
terrain unit during the 40-year period. Table 4 lists the number of
unstable terrain units in different periods. Initially 44% of the terrain
units (i.e. 443 out of 1001 terrain units) are covered by the large
pre-1968 landslides. There is a steady increase of unstable terrain
units from 1968 (66) to 2007 (301). About 68% (or 205) of these 301
unstable terrain units in 2007 are located within/proximal to pre-
1968 landslides. The number of new terrain units affected by landslide
activity is decreasing from 1980 (94) to 2007 (8) (Table 4). The number
of terrain units with increasing landslide activity is highest in 2004
(106) but the number reduces in 2007 (31). However, about 87% of

image of Fig.�3


Table 2
Summary statistics of landslides in individual event-based landslide inventory (NA = not available).

Landslide statistics Pre-1968
landslides

Event-based landslide inventory (LI)

LI68 LI79 LI93 LI98 LI99-02 LI03 LI04-06 LI07

Area of inventory (km2) 90 90 90 56 20 90 90 90 90
Number of landslides 200 83 562 108 31 185 242 164 85
Landslide area (km2) 9.5 0.49 0.64 0.5 0.05 0.84 1.18 0.65 0.11
Minimum slide area (m2) 192 776 45 372 185 271 221 45 42
Maximum slide area (m2) 2,141,500 70,253 55,815 40,906 9573 79,157 92,155 119,285 8265
Mean area (m2) 101,455 5986 1136 4634 1713 4525 4898 3985 1357
Median area (m2) 20,345 3385 519 2616 824 2301 1866 732 628
Number density (Nr/km2) 2.2 0.9 6.2 1.9 1.6 2.1 2.7 1.8 0.9
Area density (%) 10 0.5 0.7 0.9 0.25 0.93 1.31 0.67 0.12

Shallow translational rock slides
Total landslides (Nr) 0 59 374 86 NA 123 167 116 63
Landslide area (km2) 0 0.22 0.32 0.28 NA 0.31 0.36 0.17 0.08

Shallow translational debris slides
Total landslides (Nr) 0 13 175 13 31 48 53 34 22
Landslide area (km2) 0 0.04 0.12 0.05 0.05 0.16 0.17 0.04 0.03

Deep-seated rock slides
Total landslides (Nr) 200 11 13 9 NA 14 22 14 0
Landslide area (km2) 19 0.23 0.20 0.17 NA 0.37 0.65 0.44 0
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the unstable terrain units in 2007 appear to have a constant landslide
activity (meaning that the absolute values of area based landslide
density in such terrain units remained unchanged), as those in the
inventory for the immediately preceding period.

5. Estimation of temporal probability of landslides

Because of the incompleteness of the landslide inventories we
could not use them independently for a direct calculation of the
temporal probability of landslides. Instead, we used the available
information about the known days (or events) of landslides to establish
a link with days (or events) of extreme rainfall (cf. Gabet et al., 2004;
Petley et al., 2007; Dahal and Hasegawa, 2008). Unlike methods of
linking rainfall and landslides using a bivariate linear relations between
daily and an antecedent rainfall amounts (Chleborad et al., 2006; Jaiswal
and vanWesten, 2009), we preferred to use amultivariate classification
technique (discriminant analysis, hereafter denoted as DA) to predict
landslide-triggering events. The latter method facilitated us to objec-
tively understand thepossiblenon-linear relationship that existsbetween
triggering rainfall events and various rainfall predictors, such as daily
rainfall as well as a set of different antecedent rainfall amounts. The
frequencies of such predicted landslide events were then used in a
Poissondistributionmodel to calculate the temporal probabilityof similar
landslide events in the future.

5.1. DA modeling of relationship between landslide events and triggering
rainfall events

The aim of the discriminant analysis was to define a relationship
between days with and without landslide events as response variable
and daily variation in rainfall amounts as predictor variables. We
could then predict landslide event-days by using thresholds derived
from the DAmodel. For the DAmodeling, we selected a rainfall station
that is centrally located in the study area (Goomtee Tea Garden's rain
gauge station, see Figure 1) and used its daily rainfall data (in mm) for
the same 40-year period as our landslide inventories (1968–2007).
For DA, we considered various rainfall indicators such as daily rainfall
(DR) and different antecedent rainfall amounts (1, 2, 3, 5, 7 and 10-day
antecedent rainfall, hereafter referred to as AR1, AR2, AR3, AR5, AR7 and
AR10, respectively) as predictors or explanatory variables (cf. Dai and
Lee, 2001). As response or grouping variable, we used the known days
(or events) of landslides (24 days) in the 40-year period. To each of
those 24 days of landslides, we assigned a Landslide Occurrence Score
(LOS) of “1”, and to all other days we assigned a LOS of “0”. Since
landslides in the study area were triggered only during monsoon
rainfall, we used only the rainfall data in the monsoon period (June to
October) for each year, resulting in a data set of 6120 days. To calibrate
the DA model, we randomly selected 4862 (or about 80%) of these
6120 days, of which 20 days have LOS of 1. The other 1258 (or about
20%) days, of which 4 days have a LOS=1, were kept aside for cross-
validation of the DA model.

The DA model with seven rainfall predictors (DR, AR1, AR2, AR3, AR5,
AR7 and AR10) resulted in a statistically significant discriminant function
(Wilk's Lambda=0.938 and significance level=0.000), whichwas able
to explain all the variances of the data in the model and successfully
classified 80% of known landslide event-days (LOS=1). The group
centroids of the DA model have wide separation between the two
response groups (LOS 0=−0.017 and LOS 1=4.005) suggesting that
the separation potential of the discriminant function between the two
groups is strong. The highest coefficient value of the discriminant
function pertains to daily rainfall (DR 0.849), followed by AR1 (0.383),
AR2 (0.271) and AR5 (−0.338) respectively, signifying their ability to
classify the dichotomous response variable (i.e., LOS=1 and LOS=0).
The predictors AR3, AR7 and AR10 are non-correlated with the
discriminant function; and, therefore, contribute nothing to the model
classification. The structure matrix of the discriminant function further
reveals that both AR7 (0.247) and AR10 (0.237) are highly correlated
with AR5 (0.267) and the model statistics used in our DA model (“F to
enter as 3.84” and “F to remove as 2.71”) successfully resulted in the
removal of AR7 and AR10 from the analysis. The variables remaining at
the final step of the DA are reasonably uncorrelated as depicted by the
values of correlation in their structure matrix (DR=0.886, AR1=0.542,
AR2=0.480 and AR5=0.267), meaning that they ultimately satisfy the
basic assumption of independence among predictor variables in DA.
Based on the results of the above DAmodel, the following equation was
derived to calculate DS for each case:

DS = −0:637 + 0:021DRð Þ + 0:01AR1ð Þ + 0:004 AR2ð Þ− 0:003AR5ð Þ:
ð1Þ

The DA model successfully classified 80% (or 16) of the 20 known
landslide event-days and 95.2% (4610) of the known non-landslide
event-days (4842) in the calibration set, which indicates that the



Fig. 4. Multi-temporal landslide inventory map.
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overall success rate of the model is 95.1% (100⁎(4610+16)/4842)
(see Table 5). The validation of the DA model is obtained from the
classification of cross-validation cases (1258) that were not used to
calibrate the model. The DA model successfully classified 100% (four)
known landslide event-days and 95.4% (1196 out of 1254) of the non-
landslide event-days in the validation data set, which indicates that
the overall prediction rate of the DA is 90.8% (see Table 5).

5.2. Prediction of landslide events using thresholds of DA function scores

We used discriminant function scores (DS) derived from our DA
model (Eq. 1) as a threshold to identify the predicted landslide
event-yearswith varying degrees of severity.We used three different
thresholds: four, ten and twenty. A discriminant score of four was
selected to separate years with no landslide events from those with
landslide events. Years with a cumulative discriminant score (DS)
between four and ten were classified as “minor landslide event year”,
those with a DS between 10.0 and 20.0 as “moderate landslide event
year” and those with a DS above 20.0 were designated as “major
landslide event year”. These thresholds were subjectively determined
by examining and comparing the cumulative DS of the confirmed
landslide events (e.g. LI68 and LI93) with the severity and damage
potential of the corresponding landslide events, as expressed by the
landslide density in the terrain units. In Fig. 6, we show that for the
period between 1968 and 2007 there are 30 predicted landslide event-
years with a cumulative DS above the minimum threshold of four.
The LI68 event in Darjeeling Himalaya with DS of 21.89 (Figure 6)
corresponds to the most severe landslide event year (1968) within
the analyzed period. During this event a very large number of landslides
occurred throughout the entire Darjeeling-Sikkim Himalayas, that

image of Fig.�4


Table 3
Frequency (Nr) and area of reactivated and new landslides in individual event-based
landslide inventories (results of GIS-based buffer analysis). (NA = not mapped).

Landslide inventory
(LI)

LI79 LI93 LI98 LI99-02 LI03 LI04-06 LI07

All landslides:
Number of landslides 562 108 31 185 242 164 85
Landslide area (km2) 0.64 0.5 0.05 0.84 1.18 0.65 0.12
Reactivated (Nr) 55 60 13 76 185 98 53
New (Nr) 507 48 18 109 57 66 32
Reactivated area (km2) 0.2 0.32 0.03 0.52 1.10 0.59 0.09
New area (km2) 0.44 0.18 0.02 0.32 0.08 0.06 0.03

Shallow translational rockslides:
Number of landslides 374 86 NA 123 167 116 63
Landslide area (km2) 0.32 0.28 NA 0.31 0.36 0.17 0.08
Reactivated (Nr) 42 44 NA 55 124 71 38
New (Nr) 332 42 NA 68 43 45 25
Reactivated area (km2) 0.04 0.15 NA 0.17 0.30 0.14 0.05
New area (km2) 0.28 0.13 NA 0.14 0.06 0.03 0.03

Shallow translational debris slides:
Number of landslides 175 13 31 48 53 34 22
Landslide area (km2) 0.12 0.05 0.05 0.16 0.17 0.04 0.03
Reactivated (Nr) 6 9 13 12 30 14 15
New (Nr) 169 4 18 36 18 20 7
Reactivated area (km2) 0.003 0.04 0.03 0.07 0.14 0.02 0.02
New area (km2) 0.12 0.01 0.02 0.09 0.03 0.02 0.01

Deep-seated rockslides:
Number of landslides 13 9 NA 14 22 14 0
Landslide area (km2) 0.20 0.17 NA 0.37 0.65 0.44 0
Reactivated (Nr) 7 7 NA 9 22 13 0
New (Nr) 6 2 NA 5 0 1 0
Reactivated area (km2) 0.16 0.13 NA 0.29 0.65 0.43 0
New area (km2) 0.04 0.04 NA 0.08 0 0.01 0
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destabilized the infrastructure and communication network in this
region for more than a year (Starkel and Basu, 2000). Another
confirmed from LI93 (DS=4.36) was comparatively the least-severe
one that occurred, causing a limited number of landslides in a few
localized areas. Accordingly, in Fig. 6, we have classified 16 event-
years as “minor”, 10 event years as “moderate” and 4 event years as
“major”within the 40 year period (1968–2007). Among the confirmed
events, LI93 is predicted as a “minor” event, LI79, LI03 and LI07 as
“moderate” events and both LI68 and LI98 as “major” events.

5.3. Calculation of exceedance probability

Weestimated themean landslide recurrence interval (μ) by dividing
the period of analysis (40 years) by the number of predicted landslide
event-years (major, moderate and minor). We later used the estimated
μ to calculate the exceedance probability of landslide events byusing the
Poisson distribution model (cf. Crovelli, 2000; Coe et al., 2004). In the
Poisson distribution model, exceedance probability or probability of
experiencing one or more landslide events during a period ‘t’ can be
estimated by the following equation:

P NL tð Þ≥1½ � = 1−P NL tð Þ = 0½ � = 1−e−λt = 1−e−
t

μ= ð2Þ

where P[NL(t)≥1] is the exceedance probability or probability of
occurrence of one or more landslide events in period t and λ is the
reciprocal of the mean recurrence interval (μ), that is,

λ =
1
μ
: ð3Þ

A graph of exceedance probability against period (in years) as
illustrated in Fig. 7 can be used as an indication of the temporal
probability of landslide events. For example, within a 10-year period,
the exceedance probability of “moderate” and “minor” predicted events
are very high (0.91 and 0.98 respectively) compared to a “major” event
(0.63).

6. Estimation of landslide magnitude probability

6.1. Landslide magnitude–frequency analysis

The quantitative estimation of the probability of occurrence of
landslides of a given magnitude is a key issue for any regional
landslidehazard assessmentmethod (Fell et al., 2008). In themagnitude–
frequency analysis performed, we considered the area of landslide
(m2) as a proxy for landslide magnitude (cf. Aleotti, 2004; Dapporto
et al., 2005; Guzzetti et al., 2005).We applied frequency–size analysis
of landslide area to all the eight event-based landslide inventories
covering the period 1968 to 2007. We performed this analysis by
calculating the probability density function (hereafter, denoted as
pdf) of landslide area using the maximum likelihood estimation
method (Fisher, 1922a, 1922b) assuming two distribution functions:
(i) the Inverse-Gamma distribution function (Malamud et al., 2004),
and (ii) the Double-Pareto distribution function (Stark and Hovius,
2001). For each inventorywe further calculated rawprobability density
using the histogramestimationmethod and considering logarithmic bin
width. Starting from the estimated probability density functions, we
further calculated the cumulative density function (hereafter, denoted
as cdf). The above estimation of landslide area–frequency distribution
was performed using a script developed in R (R Development Core
Team, 2010), a free software environment for statistical computing and
graphics (http://www.R-project.org). The R package “bbmle”was used
in the script to implement themaximum likelihood estimationmethod.

The results of the magnitude–frequency analysis of landslide areas
are shown in Figs. 8, 9 and 10 and in Table 6. Column A in Figs. 8 and 9
shows the box plots of landslide area; column B shows the estimates
of the Inverse-Gamma pdf and column D, the estimates of the Double
Pareto pdf. Columns C and E show the cumulative probability through
cdfs calculated considering the corresponding Inverse-Gamma and
the Double Pareto fitted distributions (columns B and D) respectively.
Table 6 gives the related values for the slope of the pdfs (α) and the
rollover points, where the distribution changes direction for smaller
landslides (in m2). The assumption in the analysis was that larger
landslide events would show a higher value for the rollover point,
whereas the slope of the right part of the curve (α) would also be
slightly steeper. The value for α as reported by Malamud et al. (2004)
in their Inverse-Gamma distribution (which they indicate as ρ) is 1.40
for cumulative distribution, and for non-cumulative distribution as
2.40 (α+1). They reported the rollover at 1280 m2. Stark and Hovius
(2001) presented equivalent α values using a Double Pareto
distribution ranging between 1.11 (for medium and large landslides
in Taiwan) and 1.48 (for large landslides in New Zealand). From the
data in Table 6 and Fig. 10, we can conclude that the inventories show
different values for the rollover point and for α. From the magnitude–
frequency distributions illustrated in columns B and D of Figs. 8 and 9,
we infer that except for LI93, LI98 and LI07, the rest of the inventories
can satisfactorily be described by both standard distribution functions
available in the literature. This could be an indication that those
inventories are more or less complete for landslide areas that are
greater than the rollover sizes, and their respective cumulative
probability estimates (cdfs in columns C and E) can be used for the
estimation of themagnitude of different landslide events. However, of
the eight inventories, only 5 were able to actually map individual
triggering events (see Table 7). Inventory LI79 is made from a very
good source data; in fact it is the only inventory for which large scale
(1:10,000) stereo aerial photographs were available. However, it is
the first data source available since 1968, and therefore the landslides
that were mapped might have been produced by several triggering
events between 1968 and 1979 (see also Figure 6). The inventories
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Fig. 5. Distribution of area-based landslide density per terrain unit (landslide area×100/area of terrain unit) for periods from 1968 to 2007.
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LI99-02 and LI04-06 also might include several triggering events, as
no data was available for the intermediate years.

The cumulative distribution curves shown in columnsC andE allow
determining the probability to have an area smaller or larger than a
particular size, which can be used as the quantitative estimate for
landslide size (or,magnitude) probability (Guzzetti et al., 2005). For an
Table 4
Temporal trend of landslide activity in affected terrain units. There are 1001 terrain
units in the study area.

Inventory
year

Number of unstable terrain units

Total With new activity With increasedactivity With constant activity

1968 66 – – –

1980 160 94 27 39
1998 206 46 56 104
2002 259 53 61 145
2004 293 34 106 153
2007 301 8 31 262
example, based on the LI68 event and the Inverse-Gamma fit of the
landslide area–frequency data, the probabilities that a future landslide
event of a similar magnitude could result in landslides that have an
area larger than 1000 m2 or larger than 10,000 m2 are 0.98 and 0.15
respectively (Figure 8 and Table 6). The same estimate, based on the
Double Pareto fit of LI68 data gives somewhat similar probability
values (0.95 and 0.12 respectively) (Figure 8 and Table 6). Table 6
presents the probability of future landslide sizes based on the
Table 5
Classification results of DA model.

Predicted Total

No landslide Landslide

Cases for model
calibration

Original count
(days)

No landslide 4610 232 4842
Landslide 4 16 20

Cases for model
validation

Original count
(days)

No landslide 1196 58 1254
Landslide 0 4 4
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Fig. 6. Threshold cumulative discriminant scores (DS) for predicted “minor”,
“moderate” and “major” landslide events. The confirmed six events are also shown.
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magnitude–frequency analysis of each of the eight landslide invento-
ries, for small (smaller than 1000 m2) and large landslides (larger than
10,000 m2). Our aim was to make an assessment of landslide size
probabilities for the three magnitude events, as obtained from the
rainfall analysis (major, moderate and minor events as shown in
Figure 6). However the results from the frequency–size analysis do not
support this very well, as can be seen from Table 6 and Fig. 10. For
major landslide events, such as the one from 1968, the magnitude–
frequency analysis of LI68 indicates that the probability of landslides
larger than 10,000 m2 is as high as 0.15. The rollover point of this curve
is also the highest of all inventories (1682 m2). However, valueswith a
similar order of magnitude are obtained for LI93 inventory, which
according to the classification in Fig. 6were rated as aminor triggering
event.

Given the problems with the differences in the source data, with
respect to their aerial and temporal coverage and resolution of
their source data which are summarized in Table 7, we also made a
frequency–size analysis using the combination of the 8 inventories
as a single inventory (figures in columns A–E along the last row of
Figure 9). The results shown in Figs. 9–10 and Table 6 for the combined
inventory (α ranging from 1.09 to 1.17 and rollover point from 218 to
300 m2) are on the lower range of those reported by Malamud et al.
(2004) and Stark and Hovius (2001). Therefore, given the problems
Fig. 7. Exceedance probability of predictedmajor, moderate andminor landslide events,
resulting from the application of the Poisson distribution model.
involved in thegenerationof the individual inventories, it is better to use
the size probability values derived from the overall inventory. Based on
the Inverse-gamma fit of the overall inventory data, the probabilities of
landslides with an area larger than 1000m2 and larger than 10,000 m2

are 0.50 and0.08 respectively,which, based on theDouble Paretofit also
give similar probability values (0.52 and 0.08 respectively).

7. Discussion and conclusions

For quantitative landslide hazard analysis, an estimation should be
made of the spatial, temporal and magnitude probabilities for future
landslide events. The reliability of such estimations depends on the
completeness of these event-based landslide inventories, which are
only as good as the source data from which historical landslide
information is extracted. The results that have been presented in this
paper on the temporal andmagnitude probabilities indicate that several
of the landslide inventories that were used, are not complete. The
generation of event-based landslide inventory maps is not a trivial task
in areas where source data vary not only in resolution but also are
constrained by irregular gaps between two successive events. When
there is a large time gap between two successive data sources (e.g. LI68
and LI79), the landslides that have been triggered by several events are
all mapped together. Therefore the resulting landslide inventory might
contain too many landslides in relation to the last triggering event. This
was the case for the inventory from 1979, which according to Fig. 6
actually contains the landslides caused by sixmoderate landslide events
that occurred between 1968 and 1979. Given the unavailability of
source data in the intermediate period makes it difficult to prove this
phenomenon of oversampling of landslides. The quality of the event-
based landslide inventories alsodepends verymuchon thequality of the
input data. For instance, the landslides caused by the major event of
1968 were mapped from an updated topographic map. However, this
inventory was far from complete, and many small landslides were not
included. Therefore the 1968 landslide inventory contains much less
landslides than couldbeexpected given the importanceof the triggering
event (Figure 6). The landslide inventory of 1979, however, was made
using large scale aerial photographs from which many more landslides
could be mapped. This is an inherent uncertainty in landslide mapping,
generally evidenced by inconsistent landslide density values of
successive events.

Since our derived landslide inventory maps suffer from problems
related to the quality and resolution of source data fromwhich they are
mapped, oftenweget such inconsistent landslide density estimates. The
increased values of landslide densities (6.2 and 2.7) of LI79 and LI03
respectively are thus attributed to the ease in identification of smaller
landslides (e.g., LI79, LI03, and LI04-06) due to the availability of high-
resolution source data, so that smaller landslides with areas as small
as 45 m2 (LI79 and LI04-06) could be easily mapped. On the other
hand the inventory LI68, which was derived from 1:25,000 scale
topographic maps, only contains landslides with areas larger than
776 m2. The smaller landslides were not on the source data and
therefore this inventory represents a landslide density (0.9) that is
too low given the importance of the event.

This inconsistency in landslide density caused problems in the
direct utilization of landslide density values for the estimation of
temporal probability as presentedbyGuzzetti et al. (2005). Therefore,we
adapted an indirect method for the estimation of temporal probability
(cf. Dai and Lee, 2001), assuming rainfall as the only landslide trigger.
The importance of rainfall as a trigger is confirmed by Basu and De
(2003) in the study area and also in the adjacent Nepal Himalayas
by Dahal and Hasegawa (2008) and Gabet et al. (2004). Thus, we
considered different rainfall amounts (daily rainfall and six ante-
cedent rainfall amounts) as possible predictors to model landslide
event days using discriminant analysis (DA). If we would have had
landslide inventories with consistent landslide densities, which we
lack, it would have been better to apply a multinomial logistic
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Fig. 8. Probability density functions (pdfs) of landslide area (m2) for historic landslides of 1968–1998. (a) Box plot showing distribution of landslide area (m2) and (b) pdfs fittedwith
Inverse-Gamma distribution function of Malamud et al., 2004. (c) Probability estimates as per the fitted Inverse-Gamma distribution functions and (d) pdfs fitted with the Double
Pareto distribution function of Stark and Hovius, 2001. (e) Probability estimates as per the fitted Double Pareto distribution functions.
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regression using ranges of landslide density estimates as multiple
response variables to estimate temporal probability of events linked
to different levels of severity. To overcome this problem, we used DA
function scores of our known landslide events as a basis for defining
thresholds, assuming a linear relation between DA function scores
and the severity of events. It allowed us to differentiate three
different classes of landslide events (major, moderate and minor)
based on decreasing levels of cumulative DA function scores. Their
recurrence intervals in 40 years (1968–2007) were used for the
calculation of temporal probability of future similar events using the
well-established Poisson's distribution model (Crovelli, 2000; Coe et
al., 2004).

Based on this method, we established that LI68 belongs to a
“major” landslide event having a cumulative DA function score of
21.89 (Figure 6), which is supported by additional information about
this event from the literature (cf. Starkel and Basu, 2000). However,
the landslide density of LI68 is not the highest one because of the
problems mentioned earlier with the source data. In contrary, the
inventory LI79was classified as a “moderate” landslide event based on
the rainfall analysis, but shows the highest landslide density (6.2)
(Figure 6). Compared to all the derived landslide inventories, the
predicted “moderate” event, LI03 with a landslide density of 2.7,
represents a more or less realistic situation since it was made from
high-resolution source data (5.8 m multi-spectral satellite image,
LISS-4), and is preceded and followed by substantially complete
landslide inventories, which were mapped from similar source data.
Therefore, it becomes apparent from this research that it is important
to reduce the inconsistency and uncertainty of landslide inventories,
by analyzing the results of our magnitude–frequency analysis
(Figures 8–10).

Both the fitted Inverse-Gamma (Malamud et al., 2004) and Double
Pareto (Stark and Hovius, 2001) probability density functions of all
the inventories show power–law area–frequency distributions for
medium to large landslides in all the event-based landslide invento-
ries and a distinct exponential rollover for smaller landslides
(excepting the Double Pareto fitted pdf of LI07). This indicates that
the nature of distribution of landslide area (m2) is quite similar across
all the landslide events of the study area. Due to the widely variable
minimum landslide areas caused by the different quality of the source
data (42 m2 for LI07 to 776 m2 in LI68), though, rollover estimates
vary between 45 m2 for Double Pareto fit of LI98 and 1682 m2 for
Inverse-Gamma fit for LI68 (Table 6). The widely variable rollover
estimates observed in different event-based landslide inventories
(Figures 8–10) indicate that these could be used together with the
slope of the curve for medium to large landslide size (α) as an
indication to separate distributions resulting from major, moderate
andminor triggering events. It can further be inferred that the rollover
phenomena are not always an artifact of censoring, where small
landslides are simply not mapped (Guthrie and Evans, 2004) since we
observed rollover almost in all our inventories and at different
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Fig. 9. Probability density function (pdfs) of landslide area (m2) for historic landslides of 1999–2007 and for all inventories together. (a) Box plot showing distribution of landslide
area (m2) and (b) pdfs fitted with Inverse-Gamma distribution function of Malamud et al., 2004. (c) Probability estimates as per the fitted Inverse-Gamma distribution functions and
(d) pdfs fitted with the Double Pareto distribution function of Stark and Hovius, 2001. (e) Probability estimates as per the fitted Double Pareto distribution functions.
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rollover estimates. But nevertheless, it can also be argued that the
variable rollover changes observed in the present analysis could be
caused due to the use of landslide source data of variable resolutions
Fig. 10. Comparison of the probability density functions (pdfs) of all historic landslides that oc
Double Pareto fit.
which support the connotations of Stark and Hovius (2001) that
rollover changes can be attributed to survey resolution (Brardinoni
and Church, 2004).
curred in the period between 1968 and 2007. (a) Using Inverse-Gamma fit, and (b) using
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Table 6
Results of size–frequency analysis of landslide area for each event-based inventory. The table also demonstrates examples of two magnitude probability estimates, P[ALN1000 m2]:
probability that a future landslide will have area larger than 1000 m2 and P[ALN10,000 m2]: probability that a future landslide will have area larger than 10,000 m2 (see Figures 8–9);
IG = Inverse-Gamma and DP = Double Pareto; α = Power–law exponent or slope of the Power–law tail (both for IG and DP cumulative distributions); β = slope of the rollover
segment of pdf; Rollover (m2) = the area at which pdf changes direction for smaller landslides.

Inventory LI68 LI79 LI93 LI98 LI99-02 LI03 LI04-06 LI07 All

Classification of event Major Mod. Minor Major N.A. Mod. N.A. Mod. –

Min. area (m2) — c (DP) 776 45 372 185 271 221 45 42 42
Max. area (m2) — m (DP) 70,253 55,815 40,906 9573 79,157 92,155 119,285 8265 119,285
Number 83 562 108 31 185 242 164 85 1460
IG α 1.66 1.64 1.72 1.75 1.53 1.35 0.68 0.51 1.09

Rollover (m2) 1682 232 1269 496 918 770 143 – 300
P[ALN1000 m2] 0.98 0.25 0.88 0.52 0.82 0.72 0.39 0.32 0.50
P[ALN10,000 m2] 0.15 0.01 0.15 0.02 0.09 0.10 0.09 – 0.08

DP α 1.27 1.49 1.34 1.28 1.47 1.22 0.69 1.97 1.17
β 13.72 2.58 3.51 5.91 1.84 3.31 9.61 0.23 1.46
t 390.17 327.46 1125.83 253.50 1730.39 702 10.53 3960 828
Rollover (m2) 1500 241 1188 459 832 726 108 – 218
P[ALN1000 m2] 0.95 0.25 0.85 0.55 0.79 0.73 0.42 0.40 0.52
P[ALN10,000 m2] 0.12 0.01 0.15 0.0 0.1 0.10 0.1 – 0.08
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Our area–frequency analysis (Table 6) of different landslide
inventory maps also indicates wide variability of data as evidenced
from variation in cumulative and non-cumulative power–law expo-
nents or slopes (α). For example, according to the Inverse-Gamma fit,
the cumulative area–frequency power–law exponent (α) varies from
0.51 (LI07) to 1.75 (LI98) and non-cumulative power–law exponent of
the same (α+1) varies from 1.51 to 2.75. The lower range of the above
exponentmatcheswith thepower–lawexponent of cumulative power–
law exponent of 0.75±0.30, as observed in the frequency–volume
statistic of the 1937 number of rock fall and rockslides in British
Columbia (Hungr et al., 1999). Similarly the upper limit of cumulative
Table 7
Summary of problems associated with the various landslide inventories (N.A. = Not
applicable).

Inventory Type of
event

Triggering event Explanation

LI68 Major Single event Data source is a topographic map,
which is updated just after the
1968 landslide event. Many small
landslides are not mapped.

LI79 Moderate Combination of
several triggering
event

Amalgamation of several landslide
events in the period between 1968
and 1979. Only source data consisting
of detailed aerial photographs (1:m),
therefore many more smaller
landslides could be mapped, as
compared to the other inventories

LI93 Minor Single event The source data is a field map made
after a triggering event, but it doesn't
cover the entire study area.

LI98 Major Single event The source data is a field map made
after a triggering event, but it doesn't
cover the entire study area.

LI99-02 N.A. Combination of
several events

Amalgamation of several landslide
events in the period between 1999
and 2002. Interpreted from satellite
images.

LI03 Moderate Single event Interpreted from satellite images;
could represent a near-complete
landslide inventory since its source
data is bounded by other high-
resolution satellite imagery at close
intervals.

LI04-06 N.A. Combination of
several events

Amalgamation of several minor
landslide events in the period
between 2004 and 2006.
Interpreted from satellite images.

LI07 Moderate Single event Field-based maps; no high-resolution
remote sensing data available after
the event.
power–law exponent (α=1.75) is quite comparable with the error
estimate of α (1.88±0.30) as observed by Stark and Hovius (2001).
According to Guzzetti et al. (2002), such a variation over cumulative/
non-cumulative power–law exponent (α) can be attributed to
occurrence of landslides in different physiographic settings (lithology,
geomorphology and geology). But causes of such a variation in a small
study area (ca. 90 m2) used for our present analysis could be different
such as subtle changes in the intensities of climatic triggers, which
justifies our assumptions to link the results of magnitude–frequency
analysis with the different types of predicted landslide events that are
linked to variation in rainfall parameters acting as triggers.

But nevertheless, compared to all the inventories, the magnitude–
frequency distributions of LI07 can be termed a distinct outlier
(α=0.51) (see Table 6). The reason is difficult to explain since LI07 is
the most-recent inventory prepared through field investigation imme-
diately after the event (within two months) and contains most of
landslides triggered by that particular event. Some inconsistencies and
incompleteness in the fitting of magnitude–frequency distributions are
also noticed for LI93 and LI98, both of which are also old field-based
landslide occurrence maps (Figures 8–10). This could be due to
comparisonofpdfs of landslide inventoriespreparedusing twodifferent
techniques and two distinct groups of source data— one through field-
based mapping and another through employing different remote
sensing techniques using high resolution satellite imagery and air
photos. Depending on the spatial and spectral resolutions, the maps
from the latter source data depict near-exact spatial dimension of
landslides, facilitating correct estimation of landslide area, whereas the
field-based landslide maps, though contain a large number of smaller
landslides having very high locational accuracy, but their spatial
dimensions in most cases are exaggeratedly represented. Moreover,
field-based inventory maps might lack landslide information from
highly inaccessible areas. The above invokes inaccuracies in the correct
estimation of landslide areas, which can be avoided, if landslide polygon
boundaries, identified throughfield investigations are surveyed on large
scale and later represented by down-scaling to the base maps, and the
same is generally a cost-prohibitive exercise for any medium to small
scale (1;25,000 and smaller) landslide hazard. Examples of the above
inconsistencies in magnitude–frequency data in literature are rather
rare, therefore, more studies comparing such types of inventories are
required tounravel this anomaly, if anyobtainedalsobyother researchers.

The landslides that occurred before 1968 for which we do not
know their date of occurrence were not incorporated in the analysis of
the temporal ormagnitude frequency. As can be seen from Table 2 and
Fig. 4, these old landslides are generally large and cover a substantial
part of the study area (10%). As we do not know the type and dates of
triggering events or the landslides associated with them, we cannot
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estimate the temporal and magnitude probabilities for extreme
events. If we would have had such data over larger periods we expect
that earthquakes would be very important for triggering the very
large landslide complexes in the area.

This study emphasizes the importance of collecting event-based
landslide maps, directly after the occurrence of landslide triggering
events. The use of ancillary data sources, with different qualities and
aerial coverage, creates serious problems in generating reliable event-
based landslide inventory maps. The estimation of temporal proba-
bility of triggering events in such a data-scarce environment can be
done by identification of unknown events through statistical analysis
using triggering rainfall variables as predictors and known landslide
events as response variables. Using the recurrence interval of such
unknown predicted events, temporal probability of similar such
events can be quantified. To estimate the probability of landslide
magnitude, size–frequency analysis considering historic landslides is
a valuable tool. Both temporal and magnitude probability measures,
when combined together with estimates of spatial probability, can
give a reasonable quantitative estimate of landslide hazard.
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