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Abstract Landslide risk assessment is based on spatially integrat-
ing landslide hazard with exposed elements-at-risk to determine
their vulnerability and to express the expected direct and indirect
losses. There are three components that are relevant for express-
ing landslide hazard: spatial, temporal, and magnitude probabil-
ities. At a medium-scale analysis, this is often done by first
deriving a landslide susceptibility map, and to determine the three
types of probabilities on the basis of landslide inventories linked
to particular triggering events. The determination of spatial,
temporal, and magnitude probabilities depend mainly on the
availability of sufficiently complete historical records of past
landslides, which in general are rare in most countries (e.g., India,
etc.). In this paper, we presented an approach to use available
historical information on landslide inventories for landslide
hazard and risk analysis on a medium scale (1:25,000) in a
perennially typical data-scarce environment in Darjeeling Himalayas
(India). We demonstrate how the incompleteness in the resulting
landslide database influences the various components in the
calculation of specific risk of elements-at-risk (e.g., buildings,
population, roads, etc.). We incorporate the uncertainties involved
in the risk estimation and illustrate the range of expected losses in
the form of maximum and minimum loss curves. The study
demonstrates that even in data-scarce environments, quantitative
landslide risk assessment is a viable option, as long as the
uncertainties involved are expressed.
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Introduction
Landslides can occur as potential natural hazards causing huge
damage to the environment and society leading to loss of lives
and resources. Societies that are affected frequently with such
damaging landslides need suitable scientific advice to understand
the phenomena and develop expertise on the prediction that deals
with space, time, and magnitude of such damaging events, so that
appropriate mitigative measures can be suitably planned. Accord-
ingly, landslide hazard is defined as the likelihood of a damaging
landslide phenomenon of certain magnitude that is expected to
occur in a certain period of time and area (Varnes 1984 and
UNESCO’s IAEG Commission on landslides and other mass
movements; Guzzetti et al. 1999). The conventional spatial
prediction of landslides or predictive mapping of landslide
susceptibility, is therefore, not sufficient enough to predict
“when”/“how often” and “how large” the future landslides would
be, for which, estimations of frequency and magnitude of such
events and integration of those estimates into the susceptibility
maps are necessary (van Westen et al. 2006; Guzzetti et al. 2005).
There is need to go a step beyond the susceptibility approach and
to focus on the estimation of probable losses or risks in order to

be able to properly allocate resources to landslide risk reduction
(Fell et al. 2008; Guzzetti 2002; Fell and Hartford 1997).

Quantitative landslide hazard and risk analysis requires the
availability of sufficient historical landslide information in order
to estimate the spatial, temporal, and magnitude probabilities
(Einstein 1997; Cruden 1997; Zêzere et al. 2008; Fell et al. 2008;
Malamud et al. 2004; Salvati et al. 2010). However, in most cases,
information on past landslides is scarce which acts as a serious
deterrent in correctly predicting landslide hazard scenarios and
thereby impedes subsequent quantitative risk assessment, espe-
cially at mapping scales smaller than say 1:5,000. Therefore, in an
area where historic information on past landslides is absent or
incomplete, landslide risk assessment is extremely difficult, if not
impossible (van Westen et al. 2006). This problem is quite
common, especially, in most of the developing countries like
India and has therefore, compelled many landslide scientists to
rely more on the susceptibility maps to do a qualitative/semi-
quantitative landslide hazard and risk assessment (Rautela and
Lakhera 2000; Anbalagan and Singh 1996; Kanungo et al. 2008).
Moreover in literature, not much research on medium-scale
(1:25,000) quantitative landslide hazard and risk analysis in such
a data-scarce environment is available, where varying levels of
uncertainties that are expected to propagate in quantitative
landslide hazard and risk analysis are shown.

In order to address the above issue, this research was
undertaken because quantitative estimation of landslide hazard
and risk (a) renders a standardized and quantifiable way to express
the expected impact of landslides and (b) facilitates a more objective
way to allocate or prioritize resources for mitigation by the
administrators. This paper thus outlines some suitable and uniform
methods ofmedium-scale landslide hazard and risk assessments that
are also applicable to similar data-scarce environments in India and
can easily be followed by the scientific organizations in India,
engaged in regional landslide mitigation programs.

The hazard and risk analysis enumerated in this paper was
undertaken in a landslide-prone terrain around Kurseong town in
the Darjeeling district, West Bengal, India, which falls within the
fragile fold-thrust-belt of the Eastern Himalayas (Fig. 1; Ghosh and
Carranza 2010). The area is characterized by a prominent NE–SW
trending ridge in the central part with elevations varying from 236 to
2,189m and slopes vary from 0° to 84° (Ghosh et al. 2011b). Slopes are
gentler on ridge tops but become increasingly steeper downward to
the streams (Dutta 1966; Binnie et al. 2007; Burbank et al. 1996).
Climate is humid with a long period (June–October) of monsoon-
controlled heavy precipitation. Annual precipitation varies between
2,000 and 5,000 mm (Soja and Starkel 2007).

Landslides and source data sets
Denudational geomorphic processes are predominant in the
Himalayas due to the active tectonic processes. It has been
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demonstrated by several workers in the adjacent Nepalese
Himalayas (Selby 1988; Caine and Mool 1982; Petley et al. 2007)
that the high frequency of slope failures in the Eastern
Himalayas can be attributed to a very high rate of denudation
(i.e., 5–14 mm year−1) associated with active tectonic processes

of Himalayan orogeny. Moreover, high rate of precipitation
(Soja and Starkel 2007) in the Eastern Himalays accentuates
activation/reactivation of innumerable number of landslides in
Darjeeling-Sikkim Himalayas (Starkel and Basu 2000). To quantify
the impact of such landslides, despite data gaps, we have already
attempted to generate event-based landslide inventory maps for the
study area (Fig. 2) for triggering events over a 40-year period (1968 to
2007) based on the available source data (e.g., archives, reports, old
landslide occurrence maps, high-resolution aerial photos, satellite
images, etc.; Ghosh et al. 2011b). The above inventory maps were
subsequently used as landslide source data for susceptibility, hazard,
and risk analyses.

We also created predictive models of landslide susceptibility to
shallow translational rocksliding (Sh_rs) and debris sliding (Db_rs)
in the study area by empirically selecting and weighting spatial
predictors of such landslides through a two-stage methodology: (a)
quantifying associations of individual spatial factors with landslides
of different types using bivariate analysis to select predictors; and (b)
pairwise comparisons of the quantified associations using an
analytical hierarchy process to assign predictor weights. We
subsequently integrated the weighted spatial predictors through
multi-class index overlay to derive the predictive models of landslide
susceptibility (Ghosh et al. 2011a). In the present study, we used such
predictive maps of landslide susceptibility to rockslides (Sh_rs) and
to debris slides (Db_rs) to calculate the impacts of each of the
landslide types separately for different hazard scenarios.

We collected data from the local village or administrative
authorities, municipalities, and census for mapping and character-
izing elements-at-risk (focusing on buildings and roads) and
demographic data at the level of settlement units (which are the

Fig. 1 Location map of the study area

Fig. 2 Lithology map with landslide
occurrences in the study area
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smallest administrative units) for population. For spatial represen-
tation of this data in the form of settlement units (hereafter denoted
as SU), we first prepared a land-use/land-cover map from high-
resolution satellite imagery (5-m resolution IRS P6 MX image of
2004), and combined it with the census blocks and village maps to
make a settlement unit map containing 236 SUs (Fig. 3). We obtained
information on the number of buildings and population for each
village from the reports of a Rural Household Survey (RHS)
from 2006, which were integrated with the SU map. Each SU
contains attribute information on the total number of
buildings, type of dwelling structure and population, and its
related demographic details including number of children,
employed people, etc. (Fig. 3a and b; Table 1). For areas
within the town of Kurseong, we obtained the above
information both from the census and municipality records.
As this research focuses on medium-scale analysis (1:25,000),
the SUs are considered as the basic units for loss estimation.
Apart from the settlement units, we also prepared a map of
the road network to calculate the likelihood of direct losses
along roads in different hazard scenarios (Fig. 3c).

In this work, we first predicted the landslide events of
different magnitudes by quantifying a multivariate relation
between landslide event-days (i.e., the day when there is a
landslide event in an area) and different daily/antecedent
rainfall variables because the landslides used for this work are
rainfall triggered. Then, from the recurrence of such predicted
events of different magnitudes, we calculated the ranges of
temporal probabilities. The ranges of spatial probabilities of
different landsliding events were calculated by using landslide
occurrence maps of different known landsliding events and
then combined with different ranges of temporal probabilities
for making various landslide hazard scenarios. Finally, we
calculated the number of affected elements-at-risk (e.g.,
buildings, population, etc.) through an exposure-based analy-

sis by incorporating each of the determined landslide hazard
scenarios.

Predicting landslide events and hazard scenarios
Landslide risk expresses the likelihood of losses arising from an
event of certain magnitude within a given period of time and area
(Lee and Jones 2004). Therefore, the first step of risk analysis is to
characterize landslide events with varying degrees of magnitudes
and determine their respective recurrence intervals. We deter-
mined the same using the event-based landslide inventory maps
generated in this study area using the landslide event database of
1968–2007 (Ghosh et al. 2011b).

The temporal prediction of landslide events depends on the
analysis of past event data and analysis of their return periods
(RP). Due to gaps in the source data sets (e.g., 1969–1978, 1980–
1992, etc.; see Table 2), the event-based landslide inventories
available for the study area (Ghosh et al. 2011b), could not be used
directly to calculate the return periods. Moreover, these invento-
ries were not complete and therefore cannot provide complete
information about landslide events and their varying levels of
magnitudes (i.e., magnitude of events in terms of increasing
number of landslide occurrences and density) that have occurred
in the periods for which data is missing (Table 2). Although, the
historic data gives a good indication of the importance of
landslide-triggering events (e.g., landslides that occurred in 1968,
1998, 2003, etc.), still they are not exhaustive, as other triggering
events might have occurred for which landslide inventories are
not available (Table 2). Therefore, to model the unknown events,
we established an empirical relationship between landslide events
and triggering rainfall (Ghosh et al. 2011b). The landslides between
1968 and 2007 mostly occurred in the monsoon period (June–
October), when precipitation is very high (between 2,500 and
3,600 mm), and accounting for 80–85% of the total annual
precipitation (Soja and Starkel 2007; Starkel 2004; Starkel and
Basu 2000). Therefore, we applied a stepwise discriminant
analysis (DA) to establish the quantified relationship between
landslide events and triggering rainfall (Ghosh et al. 2011b).

The above DA model predicted 30 landslide event-years
based on a subjectively derived threshold discriminant score (DS)
of 4.0 (Ghosh et al. 2011b). Based on increased DS values (along X-
axis in Fig. 4) and the number of predicted landslide event-days
per year (along Y-axis in Fig. 4), landslide events were classified
into three classes: minor, moderate, and major events (Fig. 4),
with increasing levels of magnitude. The basic assumptions we
followed are that the magnitude of events will increase with
increasing DS values (cf. Altman 1968; Rasmussen et al. 1985) and
with the increasing number of predicted landslide event-days per
event year. For example, major landslide events (e.g., LI68, LI03 in
Fig. 4) have at least three landslide event-days per year and high
DS values. Based on the above criteria, 16 minor, 10 moderate, and
4 major landslide events were predicted within the entire period
of analysis (1968–2007). Therefore the return periods of events
were assumed ranging between 3 and 5 years for minor events, 4–
10 years for moderate ones, and 20–50 years for major events.
These ranges of values were assumed, considering the number of
occurrences of both confirmed/known and model-predicted land-
slide events together for the entire period of analysis (40 years, 1968–
2007). The ranges of return periods or annual probabilities express
the level of uncertainty in temporal probability.

Table 1 Details of different elements-at-risk used to calculate expected losses

Details of elements-at-risk data

Number of settlement units (SUs) 236

Total number of buildings 13,736

Density of buildings (maximum) 1.0 (nos./100 m2)

Density of buildings (minimum) 0.005 (nos./100 m2)

Total number of RCC buildings 1,945

Total number of concrete buildings 5,208

Total number of squatter buildings 6,583

Total population 76,126

Population density (maximum) per SU 18.86 per 100 m2

Population density (minimum) per SU 0.051 per 100 m2

Population density (average for the entire
study area)

0.08 per 100 m2

Population density in urban area (average) 2.12 per 100 m2

Population density in rural area (average) 0.04 per 100 m2

Total length (km) of major roads 162 km

Source: Census of India, 2001 and Rural Household Survey (RHS), 2006
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Fig. 3 Map showing major elements-
at-risks of the study area. a Building
density (number/100 m2), b
population density (number/100 m2),
and c major road networks
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The identification of landslide events of certain magnitudes also
facilitates the correlation of predicted events with the existing
landslide inventories of 1968–2007, which are required for the
estimation of the spatial probability of landslides. The spatial
probability (Ps) of a pixel to have a future landslide can be calculated
as:

Ps ¼ LSi=Si ð1Þ

where, LSi is the total landslide area in a susceptibility class i, Si is total
area of the susceptibility class i.

The spatial probability can be calculated for different landslide
magnitude scenarios indicated as major, moderate, and minor
events as shown in Fig. 4. The known landslide inventories (see
Table 2; Fig. 4) that are representative for the respective magnitude

classes were used to calculate the spatial probability. The variation in
landslide densities per magnitude class was considered by evaluating
the landslide densities of all known events that are classified in a
particular magnitude class. So for instance, in case of major events,
we used the landslide densities of the inventories LI68, LI98, and
LI03 and the range of densities reflects the level of uncertainty in the
spatial probability. Therefore, a combination of the range of
temporal probabilities with the range of spatial probabilities resulted
in 12 different landslide hazard scenarios that were taken into
account (Fig. 5) for calculating hazard and risk.

Landslide risk estimation
We used 12 landslide hazard scenarios (Fig. 5) to calculate the
specific risks or loss to elements-at-risks (e.g., buildings) per
mapping unit (i.e., the settlement unit or SU) using an exposure-
based approach, adapted from the method of rock fall hazards
proposed by Lee and Jones (2004; see page 349–351). The method
for calculating such loss per SU (LSU) is illustrated in Eq. 2 and in
Fig. 6.

LSU ¼ CellaffSU � PCellOcc ð2Þ

where, Cellaf f SU ¼ Ps � NCellSU ; PCellOcc ¼ NElm=NCellSU ; Cellaf f SU is the num-
ber of cells affected in a SU, PS is the spatial probability according
to Eq. 1, NCellSU is the total number of cells/pixels in a SU, PCellOcc is the
probability of cells occupied by an elements-at-risk (e.g. build-
ings) in a SU and NElm is the total number of elements-at-risk
(e.g., buildings) within a SU.

The first step of risk estimation is to calculate the
number of cells per SU (Cellaf f SU ) that are likely to be affected
by landslides given a triggering event of a certain magnitude.
The Cellaf f SU is a function of the spatial probability (PS) that
depends on the landslide susceptibility maps and also on the
specific landslide distribution maps that have been identified
for events of different magnitudes. The spatial probability is
not calculated separately for each SU but is calculated for
each class of the susceptibility map, as we assume that the
landslide behavior is the same for each susceptibility class.
Therefore, the proportion of cells within an SU likely to be

Table 2 Types, extent, and period (date of acquisition, DOA) of source data and associated rainfall events for landslide inventory (LI)

Source data (scale/resolution) Extent (km2) DOA/period Known rainfall event-days (24 days) LI period

Topographic map (1:25,000) 90 1969–1970 2–4 October 1968 LI68

B×W stereo airphotos (1:50,000 and 1:10,000) 90 1980 12 and 24 July 1979 LI79

No source data available 90 1984 18 September 1984 –

90 1985 18–19 October 1985

90 1986 28 June 1986

90 1991 9–11 September 1991

Field-based landslide inventory map (1:25,000) 56 1993 1–3 July 1993 LI93

Field-based landslide inventory map (1:25,000) 20 1998 6–8 July 1998 LI98

IRS 1-D PAN image (5.8 m) 90 2002 Unknown LI99-02

IRS P-6 LISS-4 MX (5.8 m) 90 2004 5–7 July 2003 LI03

IRS P5 stereo cartosat–1 (2.5 m) 90 2006 Unknown LI04-06

Field-based landslide inventory map (1:25,000) 90 2007 6–8 September 2007 LI07

Fig. 4 Predicted landslide events with different magnitudes. The number of
landslide-triggering event-days (i.e., the day when there is a landslide event) for
minor, moderate, and major events are plotted along Y-axis against the
discriminant scores (DS). DS represents the discriminant scores obtained in the
discriminant analysis model for each case after solving the model-derived
discriminant equation. Also the known landslide inventories that matched/
correlated with different magnitude classes are also shown (e.g., LI68)
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affected (Cellaf f SU in Fig. 6) that actually have elements-at-risk
depends on its spatial exposure with different susceptibility
classes. Accordingly, we calculated the number of cells
affected per settlement unit by overlaying the SU map with
the susceptibility map in a GIS (Fig. 6c–d). Since a building
foot print map is not available or difficult to be prepared at
medium scales (1:25,000), we assumed that there is a uniform
distribution of buildings within the settlement unit. Finally,
the number of buildings likely to be affected can be calculated
by multiplying the number of cells affected (Cellaf f SU ) with the
probability of cells occupied (PCellOcc ) by buildings in a settlement unit
(Eq. 2 and Fig. 6c–d). It is important to mention here that we also
assumed the vulnerability to the elements-at-risk to be “1”, and
therefore, the results actually indicate the number of elements-at-
risk likely to be affected. Given the uncertainty of the data and the
medium scale of analysis, it is not possible to use vulnerability curves
and express the losses as number of elements-at-risk destroyed. By
adding the results for all 236 different settlement units (SU), we

calculated the total expected loss due to a particular hazard scenario
and presented the corresponding losses due to the event of different
magnitudes in a risk curve against the temporal probability of
occurrence of the hazard scenarios. We followed the samemethod to
calculate the expected losses to roads and population of the study
area. Our inventory contains two major landslide types: rockslides
and debris slides, the former being substantially more (about 70% of
the total landslide population) and occurs in a discernible spatial
location than the latter; we calculated the number of affected
buildings, population, and roads separately for the above two
landslide types.

Since the number of people living in a building during daytime
and nighttime varies (about 30% of the total population) and
landsliding being a discrete spatio-temporal event, the estimation of
people likely to be affected should be based separately on daytime
and nighttime population. We calculated the daytime population on
the basis of the number of unemployed people, housewives, and
small children. For the nighttime population, a proportion of 2% of
the total population was excluded from the total number of
inhabitants assuming that they are staying away from their homes
due to some personal work. We then graphically illustrated the likely
population that would be directly affected by landslides by adopting
the standard frequency–number (F–N) curves used to represent the

Fig. 5 Different possible landslide hazard scenarios based on minimum and
maximum temporal and spatial probabilities of landslide events of certain
magnitudes. The abbreviation used for each hazard scenario (e.g., HMJT20Dmin) can
be read as H=hazard; MJ (subscript)=major event; Md (subscript)=moderate
event; Mn (subscript)=minor event; T with RP value in subscript signifies different
temporal probabilities (e.g. T20); Dmax and Dmin signifies ranges of spatial
probability that has been calculated by using landside distribution maps of
maximum and minimum landslide densities respectively using Eq. 1

Fig. 6 A schematic diagram illustrating in stages, how building losses can be
calculated in a settlement unit (e.g. A) in combination with susceptibility units
(high, moderate, low) through exposure-based modeling. a and b illustrate
different susceptibility zones (H, M, L) and the method how spatial probabilities
are calculated following Eq. 1 using distribution of landslides of different
magnitudes (Major, Moderate, and Minor). c and d illustrate how building
losses are calculated in a settlement unit (A) following Eq. 2 in three magnitude
scenarios. For abbreviations at d, please refer to the explanations given in Eq. 2
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societal risk, in which the frequency of events (F) that likely affect N
people can be plotted along the Y-axis against the number of affected
people (N) on the X-axis on log–log scales. The frequency of events
(N) is represented by PL which is the annual probability of the
landslide event to occur, which in this case has a range with
minimum and maximum values depending of landslide events of
different magnitudes. The temporal spatial probability of a person or
group of person based on their respective exposure in day and night
time is taken into account when estimating the number of people (N)
likely to be affected, by multiplying the number of affected buildings
by the average number of people per building (both during day and
night time) in each settlement unit, for landslide events of different
magnitudes. The vulnerability of a person or a group of persons at
risk is also assumed here as 1, since the aim is only to represent the
number of people likely to be affected, and not the number of people
injured or killed.

We also represented the “number of likely affected buildings”
and “number of affected people or likely affected population” in a
map, by considering a certain period of time, instead of annualized
losses. For instance, the probability that an event with a given RP is
likely to occur within a 50-year period (T50) can be calculated using
the following expression:

T50 ¼ 1� 1� 1=RPð Þ50ð Þ ð3Þ

To express the number of buildings or persons affected by landslides
during a period of 50-years, we can multiply T50 by the respective

specific losses for each return period and integrate the losses for all
return periods with their respective T50 values. The cumulative
expected losses can also be expressed annually. The annualized loss
values are calculated as the “area under the risk curve”. Although, in
Eq. 3, we have a simple assumption that the annual probability of
occurrence of a particular landsliding event of certainmagnitude will
remain constant for the entire 50 years, which in practice, may not be
true.

Results of landslide hazard estimation
Following Eq. 1, we estimated the spatial probability of landslide
occurrence for the three magnitude classes (major, moderate, and
minor) using both the minimum and maximum landslide density
values of the known landslide inventories. This resulted in spatial
probability for six different hazard scenarios and for two types of
landslides (rockslides and debris slides). We presented the above
results in Tables 3 (rockslides) and 4 (debris slides) for different
susceptibility zones (low to very high), which are required to
convert the susceptibility zones into hazard zones. Examples of
specific landslide hazard maps related to major landsliding event
are shown in Fig. 7, where the ranges of spatial probabilities
(minimum–maximum) for each susceptibility class are shown.

In Table 3, a hazard scenario (HExt) has been added, which
represents a hypothetical situation of an extreme landslide event
caused by an earthquake occurring in the direct vicinity of the
study area. Since the landslide inventories prepared from
historical data since 1968 were all rainfall-triggered events, and

Table 3 Spatial probabilities for different hazard scenarios for rockslides

Landslide event Susceptibility class
Low Moderate High Very high

Total pixel 429,865 150,612 158,050 155,198

Minor HMnDmin 9.538E−05 3.785E−04 9.491E−04 1.186E−03

HMnDmax 6.141E−04 9.827E−04 2.360E−03 2.713E−03

Moderate HMdDmin 1.605E−04 5.312E−04 7.276E−04 3.808E−03

HMdDmax 8.305E−04 3.592E−03 5.688E−03 8.815E−03

Major HMJDmin 7.770E−04 4.289E−03 5.878E−03 1.713E−02

HMJDmax 5.234E−04 3.214E−03 9.794E−03 5.041E−02

Extreme HExt 1.117E−01 2.241E−01 2.352E−01 4.506E−01

The spatial probabilities were calculated according to Eq. 1

Table 4 Spatial probabilities for different hazard scenarios for debris slides

Landslide event Susceptibility class
Low Moderate High Very high

Total pixel 513,049 226,781 104,730 49,166

Minor HMnDmin 3.898E−05 1.980E−04 1.910E−05 2.156E−03

HMnDmax 5.068E−05 2.999E−04 1.136E−03 5.919E−03

Moderate HMdDmin 1.169E−05 1.499E−04 9.071E−04 3.763E−03

HMdDmax 3.177E−04 7.805E−04 2.444E−03 1.277E−02

Major HMJDmin 3.411E−04 1.102E−04 6.111E−04 3.315E−03

HMJDmax 4.542E−04 1.755E−03 3.819E−03 1.452E−02

The spatial probabilities were calculated according to Eq. 1
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we did not have any historical information on dates of
earthquake-triggered landslides, we therefore had to make some
assumptions. In the study area, there are a number of larger
landslides that were already present in the first of the available
landslide inventories, and that are referred to as pre-1968 (the
date of the first available inventory). For calculating the spatial
probability of the assumed earthquake-triggered event, the
inventory of these large undated landslides of pre-1968 (see
Fig. 2) was used to calculate the landslide density. The purpose of
modeling such an extreme event is relevant because the study
area falls within an active fold-thrust-belt of the Himalayas and is
highly earthquake-prone (BIS 2002). However, data is lacking to
make a more detailed analysis of return periods of earthquakes in

relation to earthquake-triggered landslide inventories. Based on
expert judgment, and evaluation of earthquake catalogs and
literature (Shedlock et al. 2000; Rastogi 2004; Petersen et al.
2004a, b), we assumed a range between 300 and 500 years for the
return period of such an extreme scenario.

Expected losses to buildings and population
Based on the exposure analysis presented in Fig. 6, we calculated
the ranges of buildings that are likely to be affected by minor,
moderate, major, and extreme events. Depending on the variation
in spatial probability due to the variation in landslide densities
linked to a certain magnitude of triggering events, a range of
expected loss values was analyzed. We present the results in

Fig. 7 Examples of landslide hazard
maps showing the ranges of spatial
probabilities of occurrence of landslides
(see Tables 3 and 4) for major
landsliding events to a rockslides and
b debris slides in the case of a major
landslide-triggering event (rainfall
related)
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Table 5 showing that the number of affected buildings is generally
higher for rockslides than for debris slides. In case of an extreme
event the number of affected buildings is much higher (2194),
compared to any of the other scenarios, due to fact that a nearby
earthquake scenario can trigger many more landslides than any of
the rainfall-triggered ones that occurred in the last 40 years
(1968–2007).

The building losses shown in Table 5 can also be graphically
represented in the form of risk curves (Fig. 8), where the variation
in losses (expressed as number of buildings likely to be affected)
is shown as minimum and maximum curves. The minimum risk
curve is made based on the minimum values for temporal and
spatial probabilities, and the maximum risk curve considers the
corresponding maximum temporal and spatial probability values.
The difference between the two curves is an indication of the
degree of uncertainty in the risk analysis. The effect of including
the extreme event is evident from Fig. 8b where the risk curves
result in very different values if such an event was excluded.

The expected building losses presented in Table 5 can be
directly used to calculate the number of people likely to be
affected by modeling both day- and nighttime population. We
present the corresponding results of the “number of affected

people or likely affected population” for different hazard
scenarios in Table 6. For population living inside buildings, it is
most unlikely that exposure of a person or group of persons at
risk are similar for both day and night time (Table 6). The
expected number of people (N) likely to be affected for each
landslide-event magnitude (see columns 7 and 8 of Table 6) are
plotted in a log–log scale (Fig. 9) against the respective annual
frequency (F) of these events (columns 9 and 10 in Table 6). We
do not have information on larger return periods, given the
limited time period for which inventories were available; we lack
information for lower frequencies. The F–N cuve could be used as
basis for evaluating the risk acceptability level; however, there are
no generally accepted risk acceptability criteria in India defined
yet.

Spatially, the variability of likely losses to buildings can also
be illustrated through various risk scenario maps by computing
the losses based, for example on a 50-year time period (Fig. 10).
Figure 10a represents the minimum losses, which have been
calculated, based on minimum spatial and temporal probabilities
of landsliding events. Most of the settlement units in the study
area have a low range of losses (buildings affected, ≤1 per SU)
with a few areas (e.g. Tindharia) having moderate losses

Table 5 Number of buildings likely to be affected for different landslide hazard scenarios

Landslide
event

Hazard
scenarios

Buildings likely to be
affected (rocksliding)

Buildings likely to be
affected (debris sliding)

Buildings likely to
be affected (total)

Temporal probability
Minimum
AP (1/RP)

Maximum
AP (1/RP)

Minor HMnDmin 4 1 5 0.2 (1/5) 0.33 (1/3)

HMnDmax 13 4 17

Moderate HMdDmin 6 2 9 0.1 (1/10) 0.25 (1/4)

HMdDmax 30 10 40

Major HMJDmin 37 5 42 0.02 (1/50) 0.05 (1/20)

HMJDmax 62 16 78

Extreme HExt 2,194 – 2,194 0.002 (1/500) 0.003 (1/300)

The range in temporal probability of these events is indicated

AP Annual probability; RP Return period in years

Fig. 8 Loss curves showing the ranges
in “the number of buildings likely to be
affected” in landsliding events of
different magnitudes against minimum
and maximum temporal probabilities
(see Table 5). The lower level loss curves
in “black” represent the minimum losses
plotted against minimum temporal
probabilities and the upper level curves
in “red” represent the maximum losses
plotted against the maximum temporal
probabilities. The curves at a include only
major, moderate, and minor landsliding
events. The curves at b include
landsliding events of all magnitudes
including the extreme event
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(buildings affected, one to four). Figure 10b, which has been
prepared based on the maximum values of spatial and temporal
probabilities of landsliding events, shows that the number of
settlement units having moderate losses increase substantially
and the areas around Tindharia has high losses (buildings
affected, four to ten). In Fig. 10c, the effects of an extreme
earthquake-triggering landslide event in the vicinity has also been
included. The expected losses in the Tindharia area become very
high (buildings affected, ten to 15 per SU) including some parts of
Kurseong municipality, which also show high losses. It is
important to mention that the actual number of affected buildings
in such an extreme earthquake-related scenario would be much
larger due to the effects of ground shaking. In this study, only the
possible effects of landslides are taken into account. The

estimation of such losses considering the 50-year time period
and the annualized loss estimates for buildings and population
are also shown in Table 7. This table demonstrates that the
maximum annualized and 50-year losses of buildings and
population increase manifold if the extreme earthquake-triggering
landslide events are included. Assuming an average economic
value of Indian rupees (INR) 120,000 per building (about 2,000
euros), the maximum annualized losses by landslides to buildings
in the study area could range between 44,000 euros (INR
26,40,000) and 144,000 euros (INR 86,40,000) for the entire study
area.

Direct losses to major roads
Following the above exposure-based method of loss estimation,
the likely losses to the 162-km-long road network have also been
estimated in the study area (Table 8). This table shows that about
893 m of the road is likely to be affected if the maximum density
of a major landslide event is taken into account. Like building and
population losses, length of roads (meters) likely to be affected
increases about 13 times if the extreme earthquake-triggered
landslide events are considered. A substantially higher proportion
of the road network is affected by debris slides as compared to
rock slides (Table 8) because debris slides are mostly concentrated
along the major roads of the study area.

Discussion
This study tried to estimate landslide risk in a quantitative
manner for a medium-scale analysis, by incorporating the
uncertainties involved in assessing temporal, spatial, and magni-
tude probabilities of landslide-triggering events. Rather than
calculating an average expected loss, we think it is better to
express the range of expected losses given the uncertainties
involved. Given the associated high uncertainties for spatial and
temporal probabilities and their effect on expected losses, we feel
that it is not very relevant to attempt to quantify landslide
vulnerability for individual buildings at this scale of analysis, and
therefore propose to use this method only to have a general
estimate about the number of affected buildings and population
rather than the real losses.

Due to non-availability of any proper damage records, it
becomes quite difficult to properly validate the results obtained in

Table 6 Values for daytime and nighttime population living in buildings likely to be affected for different landslide hazard scenarios

Landslide
event

Hazard
scenarios

Population likely
to be affected
(rocksliding)

Population likely
to be affected
(debris sliding)

Population likely
to be affected (total)

Temporal probability

Day Night Day Night Day Night Minimum AP (1/RP) Maximum AP (1/RP)

Minor HMnDmin 14 21 6 9 20 30 0.2 (1/5) 0.33 (1/3)

HMnDmax 48 70 14 22 62 92

Moderate HMdDmin 20 32 8 13 28 45 0.1 (1/10) 0.25 (1/4)

HMdDmax 105 157 43 65 148 222

Major HMJDmin 124 188 24 36 148 224 0.02 (1/50) 0.05 (1/20)

HMJDmax 183 293 66 99 249 392

Extreme HExt 7,910 11,646 – – 7,910 11,646 0.002 (1/500) 0.003 (1/300)

AP Annual probability; RP Return period in years

Fig. 9 F–N curves showing annual frequency (F) of N or more people likely to
be affected plotted on a log–log scale against the corresponding number of
people likely to be affected for both daytime and nighttime scenarios. For each
case, both “minimum” and “maximum” F–N curves are shown, which represents
the minimum and maximum likely losses calculated on the basis of minimum and
maximum spatial and temporal probability scenarios respectively (see Table 6)
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Fig. 10 Risk map showing spatial
distribution of likely losses of affected
buildings based on 50-year period due
to different landslide hazard scenarios.
a Risk map showing minimum losses
based on minimum temporal and
spatial probabilities; b risk map
showing maximum losses based on
maximum temporal and spatial
probabilities, and c risk map showing
extreme losses using maximum
landslide density and including the
probable extreme events
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this study, although, a general indication can be obtained from
reports of damage data in some recent (e.g., 1998, 2003) major
landsliding events in the area. They show that during major
rainfall-triggering events, a substantial portion of the road
network (about 1 km) was affected causing road blockades for
more than 15 days along with substantial damage to 30–40 houses
in the study area (Bhattacharya et al. 1998; Paul and Sarkar 2003).
This is quite in line with the calculated losses in buildings for a
major event in this study (42–78) as indicated in Table 5. These
landslide events can also cause indirect losses to various
elements-at-risk which might be larger than the direct losses.
However, it is very difficult to calculate such indirect losses, as
these incorporate even more uncertainties.

Landslide risk assessment at medium-scales (1:25,000) relies
primarily on the predictive mapping and landslide susceptibility
estimation which remains to be the primary step in the process.
The landslide susceptibility models used for this study were
prepared separately for two types of landslides (rock and debris
slides). Although, the risk estimation could be further improved
by generating separate susceptibility maps for different landslide
types for each triggering event (so separate susceptibility maps for
triggering events with say 5, 10, 50, 100, and 500-year return
periods) and use these in combination with their respective event-
based inventories to estimate specific spatial and magnitude
probabilities. We could not attempt this in the present study
because of the lack of reliable and insufficient number of
landslide occurrences in our available event-based landslide

inventories and also because it would make the risk models
perhaps too complex given the medium-scale of assessment. It is
also important to mention that despite the reasonably good
quality susceptibility models (Ghosh et al. 2011a) used in this
study, there are still some landslides within “low” and “moderate”
susceptibility classes, which introduced some additional amount
of uncertainty in the risk estimation since separate susceptibility
models using only landslide occurrences of different magnitudes
were not carried out due to paucity of complete landslide event–
magnitude data.

The magnitude probability based on the frequency–size
distributions of landslide areas (m2), which can be determined
by fitting standard distribution functions (e.g., inverse-gamma
and/or double pareto; Ghosh et al. 2011b) was not included in this
study as we considered that given the high degree of uncertainty
involved already and the rather general scale of analysis, the
estimation of vulnerability of each elements-at-risk based on
landslide sizes was not justified. However, given the availability of
complete landslide inventories it could be possible to calculate the
magnitude probabilities for different landslide sizes, and the same
could be used to estimate the number of cells affected by larger or
smaller landslides. And also, this can be used as a proxy for
landslide magnitude in assigning different vulnerability values for
buildings. However, as the aim of this work was to only represent
the number of buildings that might be affected by landslides at a
medium scale, this was considered not appropriate. Also, given
the large uncertainties involved, the inclusion of more uncertain-

Table 7 The annualized and 50-year loss estimates for buildings and population of the study area

Landslide events Buildings likely to be affected Population likely to be affected
(daytime)

Population likely to be affected
(nighttime)

Annualized 50 year Annualized 50 year Annualized 50 year

Min Max Min Max Min Max Min Max Min Max Min Max

Only rainfall
triggered

Rocksliding 4 17 34 100 14 56 113 323 22 85 172 497

Debris
sliding

1 5 9 35 5 20 14 57 7 30 44 179

Total 5 22 43 135 19 76 127 379 29 115 216 676

Including
earthquake
triggered

Rocksliding 26 72 243 438 93 253 866 1538 138 376 1281 2288

Table 8 Expected direct losses to road network against the different landslide hazard scenarios

Hazard
scenarios

Road (m) likely to be
affected/annum due
to rocksliding events

Road (m) likely to be
affected/annum due
to debris sliding events

Road (m) likely to be
affected/annum (total)

LFE AP
(1/RP)

HFE AP
(1/RP)

HzMnDMin 23 43 66 0.2 (1/5) 0.33 (1/3)

HzMnDMax 72 121 193

HzMDDMin 50 77 127 0.1 (1/10) 0.25 (1/4)

HzMDDMax 174 266 440

HzMJDMin 255 75 329 0.02 (1/50) 0.05 (1/20)

HzMJDMax 577 316 893

HzExt 11,686 – 11,686 0.002 (1/500) 0.003 (1/300)

LFE low-frequency events, HFE high-frequency events, AP annual probability; RP return period in years
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ties related to the probability of landslide sizes that would have
the potential to destroy buildings, and also the vulnerability of the
building themselves, were not considered justifiable.

Instead, for landslide risk assessment, modeling of different
consequences is required and that is possible if the landslide-
triggering events and their magnitudes are known. The determi-
nation of landslide-triggering event magnitudes is more reliable if
a complete historical record of landslide events is available (Rossi
et al. 2010; Salvati et al. 2010). But in most cases one has to deal
with incomplete data and unavoidable gaps in landslide invento-
ries such as in this study area. The only alternative was to
establish an empirical relation between landslides and triggering
events such as rainfall (Crozier 1999; Aleotti and Chowdhury 1999;
Chowdhury and Flentje 2002; Jaiswal and van Westen 2009),
assuming that all the landslides are rainfall triggered (Soja and
Starkel 2007; Starkel 2004; Starkel and Basu 2000; Dahal and
Hasegawa 2008), and that earthquake-triggered landslide events
occur infrequently, but could generate many more landslides than
the rainfall events. Due to non-availability of any record of such
earthquake-triggered landslide events, consequence modeling in
the study area was mainly based on the available record of the 40-
years period (1968–2007) using only the rainfall-triggered land-
slides, although, this 40-year period could be quite a small period
for estimating/visualizing the entire range of landslide event–
magnitude scenarios. Moreover, definite data gaps even within the
40-year period of analysis made the above study more challenging
that resulted in varying levels of uncertainty in loss estimation.

Due to the above data gaps, it was also difficult to characterize
the landslide-event magnitude, although an arbitrary classification
in minor, moderate, and major landsliding events worked well in
practice in the assessment of losses. The above framework can be
improved if a more complete set of historical data of landslide-event
magnitudes would be available in an area, where, identification of
events of different magnitudes and assessment of their respective
temporal probabilities are less uncertain. However, in many cases
there are simply no more historical data that could be collected, and
therefore the method presented in this paper could be a useful
approach to estimate the range of expected losses due to landslides
in such data-scarce environments.

The risk assessment framework presented in this study ismainly
aimed for the use in medium-scale risk assessment and therefore, a
separate run out assessment was also not included. The currently
available models for landslide runout assessment require a large
number of parameters, which cannot be obtained over large areas
(Kuriakose et al. 2009; Hungr and McDougall 2009; Chen and Lee
2003). Furthermore the identification of potential source areas, and
more importantly, the expected initiation volumes, has such a high
degree of uncertainty, that the application of such models is not
practical in medium-scale landslide risk assessment (Okura et al.
2000, 2003). As discussed earlier, another simplified assumption
followed in this study was not to consider the vulnerability, and
therefore only estimate the number of affected elements-at-risk
rather than the number of destroyed ones. This was caused due to
several reasons, such as the absence of detailed building data (both
building footprint data as well as building characteristics), the lack of
consistent estimations of landslide magnitude parameters (Ghosh et
al. 2011b) and the lack of quantitative vulnerability curves due to
non-availability of any proper historic damage data, etc. The risk
assessment model presented in this study is therefore a general one,

which is applicable at medium scale and mostly relies on good
susceptibility maps and on event-based landslide inventories. Based
on the distribution of known landslide occurrences, the ranges of
uncertainty in losses for different elements-at-risk were quantita-
tively determined.

Conclusions
& In a data-scarce environment, the empirical relations between

triggering events (e.g., rainfall) and landslides can be used to
classify the events with varying levels of magnitudes (major,
moderate, and minor). Accordingly, different ranges of
temporal probability can be estimated from their respective
return periods.

& Using variations in the densities of known event-based
landslide inventories, different landslide hazard scenarios
can be generated based on minimum and maximum temporal
and spatial probabilities of triggering events, which can yield
different levels of annual losses to various elements-at-risk
(buildings, people, road, etc.).

& This study has shown that the expected number of affected
buildings annually ranges between 0.01% and 0.16% of total
number of buildings (13,736), expected number of affected
population ranges between 0.02% and 0.15% of the total
population (76,126) and the expected section of affected roads
ranges between 0.04% and 0.55% of the 162-km road lengths
of the study area for landslide events of different magnitudes
(minor, moderate, and major).

& The variable amounts of such losses that are shown against
variable temporal and spatial probabilities can be considered
as a measure of uncertainty in risk estimation in situations
when there is incomplete information on historic landslides,
as evident in the study area. The above results are quite
plausible according to the losses occurred during similar
landslide events in the recent past.

& This study also demonstrated that losses to any elements-at-
risk exponentially increase if an extreme landslide event
occurs in the area due to a major earthquake as evident from
the hypothetical analyses of losses using pre-1968 landslides
which could be assumed as earthquake triggered.
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