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= Established: 1950 - Appeal by UN in framework of official
development assistance - ODA oieva
Aim: Build capacity for economic development in developing world
Main instrument: Postgraduate education and training, research,
project services
= Main field of science: earth observation, geoinformation science
applied to problem-solving in earth sciences, natural and water
resources and urban studies
= Achievements
Education and training:
20 000 mid-career professionals

Dean/Rector
Prof. Veldkamp

Founding father
Prof. Schermerhorn
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COURSE PARTICIPANTS 1950-2009 CONTENT OF THE TALK
ORIGIN OF ITC STUDENTS, EXCLUDING EXTRAMURAL - Remote sensing of landslides

= Coseismic landslides: fault controls on earthquake
induced landslides

e = Post earthquake events
= Disaster risk management & climate change

A%sgralia
&‘Ogégnia 1%

8,683 N \
Africa 6,237 )
b Sl Europe 3,066 5
S America 2,089 Y
Australia & Oceania 182

Total students 1950-2009: 20,327
Total countries 1950-2009: 175
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LANDSLIDE INVENTORY

= Single landslides?

= First time failure

= Reactivation.
Successive events in the
same location (e.g. rockfall,
debris flow)
= Many landslides?

= Density of landslides within

terrain units over time.

= Triggering events?

= Rainfall / earthquakes

= Soil moisture /acceleration
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LANDSLIDES INVENTORY IS DIFFICULT
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= Fresh landslide scarps become
overgrown by vegetation within a
few years after they happen!

= Signs of landslides become difficult

to interpret from images

= Single events might cause many

landslides at the same time
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Examples aspects used in detection of landslide initiation points

10

Cross-checking of
Satelite Images.

Pre- & Post-earthquake

Post-earthquake Image

Ridge & Valley Tandslide Infiaton Point
Orientations Detection

DEM Derivatives &
Landslide Infiation Point
Detection
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WHY ARE LANDSLIDE INVENTORIES IMPORTANT?
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Landslide inventories are the basis for assessing
landslide susceptibility, hazard and risk
= They are essential for susceptibility models that predict

landslide on the basis of past conditions: we need to know

where they happened and how many

= These conditions are used to predict future ones: we need

to know the causal factors

= These conditions differ for different landslide types: we
need to know what happened

= Temporal information is essential to estimate the
frequency of landslides: we need to know when they

happened.

= Landslide inventories are used to validate landslide
susceptibility, hazard and risk maps
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USE OF REMOTE SENSING FOR LANDSLIDE WORK

= Detection: new landslides recognition from space- or

airborne imagery

= Rapid mapping: fast semi-automatic image processing

for change detection and/or target detection; hotspot

mapping

= Fast characterization: retrieving information on failure

mechanism, volume involved, and run-out length

= Long-term monitoring: processing data for retrieving

deformation patterns and time series
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LIDAR FOR LANDSLIDE STUDIES

= Best source for DEMs
= Centimeter accuracy

= Good for landslide mapping
and monitoring

Source:
USGS




MAPPING LANDSLIDES FROM LIDAR IMAGES

= 1mLiDAR
posting image
of the Salmon
Falls
Landslide
southwest of
Twin Falls, ID

= Area of 0.2 km?

= 13 million data
points

= vertical
resolution of 15
cm

= 100X resolution
of a 10m DEM
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TERRESTRIAL RADAR INTERFEROMETRY
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INSAR THE LONDON JUBILEE LINE EXAMPLE

LONDON THE «
SINKING CITY
ooy

Source: TERRAFIRMA 1
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Image of an
earthquake
InSAR imagy
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7 MONITORING OF BUILDINGS ON LANDSLIDES

Al ‘ o ISl

= Exploitation of X-
band SAR data
allows
unprecedented
monitoring of
individual
buildings in
active landslide
areas

2T,

Clnfageteliodssnialickap
CR4/02R29MED | 5/2011 - 5/2012
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DATA SETS EARTHQUAKE INDUCED LANDSLIDES

Thrust and reverse fault earthquake events
1994 Northridge, USA (M,, 6.7) -Blind Fault
1999 Chi-chi, Taiwan (M,, 7.6)

2004 Mid-Niigata, Japan (M,, 6.8) § i
2008 Wenchuan, China (M,, 7.9) Surface rupture b
2010 Haiti (M,, 7.0) h f

Strike slip earthquake events

2002 Denali Fault (M,, 7.9) Surface rupture
2007 Aisén Fjord (M,, 6.2) Blind fault

2010 Yushu (M,, 6.8) earthquake

Fatal landslides 2008
International Landslide Centre: Landslide
Database

66.700 coseismic landslides mapped

D. N. Petley
PhD thesis Tolga Gorum: http://www.itc.nl/library/papers_2013/phd/gorum.pdf
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BACKGROUND WENCHUAN EARTHQUAKE 2008 CHINA (M,, 7.9)

= coseismic landslides depend on earthquake
magnitude, ground motion parameters, distance from
epicenter or from ruptured master faults, geological
properties (lithology, soil, etc.), geomorphic features
(rivers, ridges, etc.) and topographic variables (slope
gradient, altitude, etc.).

= number and total volume of landslides triggered by
an earthquake, and the area affected by landsliding
scale with earthquake magnitude

= recent strong earthquakes have triggered significantly
lower numbers and area affected by landslides than
expected (e.g, the 2002 Denali (Mw 7.9), the 2010
Haiti (Mw 7.0) and Yushu (Mw 6.8) earthquakes)

Gorum et a. 2011, geomorphology 33, p. 152467
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Coseismic landslide mapping

Pre- and Post-earthquake satellite image coverage
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197,481 landslides
Total area:1160 km?

Xu et al. (2013)
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60,104
landslides

828 individual
points in the

initiation part
of landslides,

586 caused

completely

damming of
rivers;

242 caused

partially

.§ damming;
&

landslides are
concentrated in a

zone up to 100 km
northeast of the
epicenter

70 percent of
landslides in area
with high vertical
displacements

Landslide density
increases in areas
where lithologies are
highly susceptible to
landslides, relatively
close to the fault
rupture, and with
high relief and slope
gradient.

2. UNIVERSITY OF TWENTE. Gorum et a. 2011, gomorpholoey 133, p. 152167

HORIZONTAL DISPLACEMENT
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Yinxiu Town: 92% of the building
T PR S

Beichuan County town before the quake

MNew beichuan middle
sechool landslide

L Beichuan county: 80% of the buildings collapsed

Controls of coseismic landslides

=Distance to seismic source; PGA; Intensity
=Slope response to seismic waves

=Fault type and slip rate

=Hanging-wall effect

=Locked fault-junction effect

=Slope, terrain roughness

Terrain factors =Internal relief

=Topographic position etc.

Geological fact =Lithology
E0I0GICAIRTACIONS =Geological structure
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HANGING WALL EFFECT WENCHUAN

Yingxiu-Beichuan Fault jiangyou-Guanxian
¢ Fault
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Seismic factors: Distance to epicenter
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Gorum et al. 2011, geomorphology 133, p. 152-167
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FAULT TYPE AND HANGING WALL EFFECT

Landslides
distributed in a
much wider zone
along the thrusting
part of the Yingxiu- ¢
Beichuan fault than *
the strike-slip part.

(Gorum et al., 2011)
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LITHOLOGY LITHOLOGY
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2010
HAITI (M, 7.0)

Gorum et al. 2013, geomorphology 184, p. 127-138
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Estimated MCU Observed  Hanging-wall Foot-wall Local relief
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1. asymmetric hanging-wall clustering of
landslides thrust earthquakes
2.ratio of coseismic hanging-wall to foot-wall
landslides is lower in blind rupture earthquakes
than in surface-rupture earthquakes
3.step in the ground motion from the hanging
wall to the foot wall for surface-rupture
earthquakes
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CONCLUSIONS

= Jack of sufficient earthquake-induced landslide inventories;
research on coseismic landslide susceptibility has less
progressed in comparison to other natural (rainfall) triggers

= Haiti earthquake revealed that 572 out of 1273 aseismic
landslides were re-activated -> pre/post landslides analyzed

= ground motion associated with non-vertical faults is asymmetric
to fault-slip direction -> not incorporated in any known
attenuation relation

= abundance and the spatial distribution of coseismic landslides
strongly vary with faulting styles.

= thrust/reverse faults induce more coseismic landslides than
normal and strike-slip faults

‘wve  UNIVERSITY OF TWENTE. 51
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Faulting style relates to number of coseismic landslides! ay
15 earthquake events worldwide
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Dip angle of fault, 8 (degrees)
Different faulting styles affecting rupture speed, slip distribution,
and peak ground motion.
Ground motion associated with non-vertical faults is asymmetric
with respect to fault-slip direction producing distinctly different
rupture dynamics than during strike-slip motion

Ze  UNIVERSITY OF TWENTE. Gorum et al. 2014, Quatenary Science Reviews 95, p.80-94 _

CONCLUSIONS CONT.

= fault geometry is a key control on the spatial distribution pattern
of the landslides

= coseismic landslide abundance and the spatial asymmetry
decrease with increasing dip angle of strike-slip faults

= number and the overall area affected by the coseismic
landslides increases with a decrease in dip angle for thrust and
reverse faults for a given magnitude

= large earthquakes break the surface, however small
earthquakes usually do not->rupture mechamism matters

= difference in ground motion between hanging walls and foot
walls is more pronounced for surface rupture-earthquakes
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DISASTER CYCLE

N
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NUMBER DISASTERS DUE TO NATURAL HAZARDS

== NUMBERS FOR EUROPE
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Debris flow modelling for the design of risk reduction
measures

9/29/2014
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IS THE CLIMATE CHANGING?

U.S. Average Temperature Projection:
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IS THE CLIMATE CHANGING?
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2007
CO; Contentrations and Temperature Have Tracked Closely Over the Last 300,000 Years

300,000
years ago

200,000
years ago

100,000
years ago

‘@ Temperature
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Temperature (in Antarctica, *F)
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IS THE CLIMATE CHANGING? Sea level height
Sea level height trends
from Topex-Poseidon (Jan.1993 - Oct.2001)
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ARE DISASTERS INCREASING? CLIMATE CHANGE; CLIMATE ALWAYS CHANGES
. Wi -l = Average global predictions are not very useful for disaster work, we
Driving fo_r_ces' climate change need detailed weather data that trigger hazardous events
= Vulnerability changes: * Tropical regions more
= population growth uncertain than temperate zones
= urbanization (coastal zones, floodplains) = Regional spatial predictions are
= occupation of marginal lands uncertain, large differences
= false security by believing in 100% protection between models
= Where will extreme
- events happen, more important
hydro-meteorological disasters flood / than when they will happen

1975 1986 2005
e Source: WWW.EM-DAT.NET, 2007

WE NEED NEW THINKING: EARTH AS A SYSTEM

2 OBSERVING EARTH FROM SPACE

Expanding European Earth Observation capability

"Earth System Science" acknowledges that changes in the solid
earth (land - lithosphere or geosphere) result from interactions
among the atmosphere (air), hydrosphere (water, including
oceans, rivers, ice), biosphere (life) and the lithosphere.
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USING DRONES FOR RAPID DAMAGE MAPPING
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UAV SCAN OF DESTROYED CHURCH AQUILA EARHTQUAKE

Drone scanning -> 3D point cloud -> create a building object
-> recognize damage and classify

wre  UNIVERSITY OF TWENTE.

CONCLUSIONS ?...

A
i

RECONASS

Thank you
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LANDSLIDE RESEARCH AT ITC: COMPLETED PHD
RESEARCH

= Models are a simplification of reality, models have uncertainties,
earth is a complex system with many unknown feedbacks.

= Large spatial uncertainty in models, leads to many possibilities:
with relatively little change in input, different results can be
predicted.

= Tools are based on “regular” functioning of the landscape, does
this system description apply to extreme events?

= Asian Development Bank (2003): “100% protection is impossible
and may lead to a false sense of security”
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= Xuanmei Fan (China, 2013): Earthquake induced landslide dam hazard and risk
modeling

= Tolga Gorum (Turkey, 2013): Analyzing the relationships between seismic
topographic and lithological factor on the distribution of earthquake induced
landslides

= Quan Luna, B., (Guatemala, 2012) Dynamic numerical run - out modelling for
quantitative landslide risk assessment.

= Martha, T.R. (India, 2011) Detection of landslides by object - oriented image
analysis

= Ghosh, S. (2011) Knowledge guided empirical prediction of landslide hazard.

= Jaiswal, P. (India, 2011) Landslide risk quantification along transportation
corridors based on historical information.

= Kuriakose, S.L., (India, 2010) Physically - based dynamic modelling of the
effect of land use changes on shallow landslide initiation in the Western Ghats of
Kerala, India

= Castellanos Abella, E.A., (Cuba, 2008) Multi - scale landslide risk assessment
in Cuba.

You can download these PhD theses from: www.itc.nl
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UNIVERSITY OF TWENTE.

THANK YOU
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