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This study had three aims. The first was to assess the performance of the weights-of-evidence (WofE) landslide
susceptibility model in areas that are very different in terms of size, geoenvironmental settings, and landslide
types. The second was to test the appropriate strategies to sample the mapped landslide polygon. The final aim
was to evaluate the performance of the method to changes in the landslide sample size used to train the
model. The method was applied to two areas: the Fella River basin (eastern Italian Alps) containing debris
flows, and Buzau County (Romanian Carpathians) with shallow landslides. The three landslide sampling strate-
gies usedwere: (1) the landslide scarp centroid, (2) points populating the scarp on a 50-mgrid, and (3) the entire
scarp polygon. The highest success rates were obtained when sampling shallow landslides as 50-m grid-points
and debris flow scarps as polygons. Prediction rates were highest when using the entire scarp polygon method
for both landslide types. The sample size test using the landslide centroids showed that a sample of 104 debris
flow scarps was sufficient to predict the remaining 941 debris flows in the Fella River basin, while 161 shallow
landslides was the minimum required number to predict the remaining 1451 scarps in Buzau County. Below
these landslide sample thresholds, model performance was too low. However, using more landslides than the
threshold produced a plateau effectwith little to no increase in the model performance rates.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The spatial prediction of landslides in the form of susceptibility as-
sessment studies have been applied now for the past 30 years with
new techniques continuously being developed and updated. An over-
whelming amount of literature has been published on the different
methods that have been used throughout the years. The extensive
guidelines, reviews, and overviews related to landslide hazard and risk
(Varnes, 1984; Soeters and van Westen, 1996; van Westen et al., 1997,
2008; Aleotti and Chowdhury, 1999; Guzzetti et al., 1999; van Westen,
2000; Dai et al., 2002; Crozier and Glade, 2005; Glade and Crozier,
2005; Wang et al., 2005; Fell et al., 2008; Corominas et al., 2013)
generally divide landslide susceptibility methods into qualitative
(e.g., heuristic, geomorphological analysis, expert-based index/
weighting) or (semi-) quantitative approaches (e.g., statistical and de-
terministic analysis). The quantitative statisticalmethods follow a single
important assumption, that slope instability factors causing landslides
in the pastwill statistically determine the spatial probability of landslide
occurrence in the future (Soeters and van Westen, 1996). According to
this assumption, the predictive capability of statistical susceptibility
methods relies on two input data: the inventory of past landslide events
and the landslide causative factor maps (also called landslide predispos-
ing factors, landslide conditional factors, or slope instability factors). The
way in which landslides are represented and sampled in a GIS deter-
mines how the causative factor information is extracted for susceptibil-
itymapping and is therefore a very important aspect in landslide hazard
zonation studies.

Landslides are generallymappedusing vector-based representations
of the landslide data, which are represented by points (Brenning, 2005;
Galli et al., 2008), polygons (vanWesten et al., 2000; Chung and Fabbri,
2005), and lines (Donati and Turrini, 2002). In some cases, slope failures
can be directly mapped as raster data, for example by semiautomated
mapping from remote-sensing imagery (Brenning, 2009; Mondini
et al., 2011). The mapping representation is determined by the type
and availability of data, the spatial scale of the analysis, the purpose of
the study, and the mapping methods used, among others (Soeters and
van Westen, 1996; Guzzetti et al., 1999; van Westen, 2004; Glade and
Crozier, 2005; vanWesten et al., 2008). All statistical landslide suscepti-
bility zonations require the selection of mapping units, which are the
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subdivisions that make up the susceptibility map. A variety of mapping
units are reported in the literature (Guzzetti et al., 1999; Van Den
Eeckhaut et al., 2009). The choice of themapping unit is crucial because
it also determines how landslides will be sampled to prepare the train-
ing and prediction (validation) subsets for the susceptibility modeling
that can be vector-based (Carrara et al., 1995; Guzzetti et al., 2005;
Galli et al., 2008) or grid-based (Carrara, 1983; van Westen, 1993;
Chung and Fabbri, 1999; Remondo et al., 2003).

In grid-based (also referred to as pixel or raster-based) susceptibility
assessments, landslide mapping representations are either overlaid in
their original format (e.g., points, polygons) on grid-cell causative factor
maps to directly extract data from the factor maps or are converted to a
rastermap and then used for data extraction. According to the literature
concerning grid-based landslide susceptibility mapping, four general
strategies are used to sample landslide pixels:

(1) The landslide is sampled as a single pixel (Atkinson and Massari,
1998; Van Den Eeckhaut et al., 2006; Thiery et al., 2007; Yilmaz,
2010; Piacentini et al., 2012). Usually, the pixel is the centroid
of the entire landslide or the scarp area. The single pixel can be
selected to represent the top-point of a landslide placed by an ex-
pert on the initiation area, which is not necessarily the centroid
(Qi et al., 2010; Gorum et al., 2011; Xu et al., 2014). The single
pixel is often applied if landslides have been mapped directly as
points or if the landslides in polygon format are not reliable for
the susceptibility analysis (e.g., data scarcity, size of the area,
scale-related issues, etc.). When selecting a single grid-cell to
represent a landslide, the rest of the mapping units (grid-cells)
that could still be located within a landslide polygon are consid-
ered nonlandslide areas.

(2) All the pixels within the entire landslide body or the scarp area
can be sampled as landslide pixels (Ayalew and Yamagishi,
2005; Poli and Sterlacchini, 2007; Blahut et al., 2010;
Sterlacchini et al., 2011; Regmi et al., 2013; Petschko et al.,
2014). In this case, all pixels located outside the landslide poly-
gons are considered as nonlandslide areas.

(3) The main scarp upper edge (MSUE) approach selects pixels on
and around the landslide crown-line (Donati and Turrini, 2002;
Clerici et al., 2006;Jurko et al., 2006), which basically is the
upper edge of the landslide scarp area. The MSUE method was
applied for the following reasons (Donati and Turrini, 2002;
Clerici et al., 2006): the upper edge of the scarp area was the
most identifiable feature in the landslidemapping, the entire de-
pletion zone (scarp area) was less visible owing to recovery of
the slope, and the scarp areawas often partly covered by the accu-
mulation zone, making the boundary between the two zones dif-
ficult to identify. Similar to the seed-cell methodology, the MSUE
method is able to represent the landslide using pixels in undis-
turbed morphological conditions by projecting an artificial crown-
line at a certain distance from the original crown-line,with the dis-
tance and length assigned by the expert (Clerici et al., 2006).

(4) The seed-cell approach (Süzen and Doyuran, 2004; Nefeslioglu
et al., 2008; Yilmaz, 2010; Demir et al., 2013; San, 2014) selects
pixels within a buffer polygon around the upper landslide scarp
area and sometimes part of the flanks of the accumulation zone.
The buffer distance, which determines the number of cells
representing the landslide, is defined by an expert. The purpose
of this method according to Süzen and Doyuran (2004) is to con-
sider ‘that the best undisturbed morphological conditions (condi-
tions before landslide occurrence) would be extracted from the
vicinity of the landslide polygon itself’. However, this could lead
to problems in cases where landslide boundaries coincide with
main morphological boundaries (e.g., top of the landslide at the
crest of a ridge).

A number of studies have compared the effect of different sampling
strategies applied to landslide susceptibility zonation. Poli and
Sterlacchini (2007) studied the landslide centroid and a selection of
points populating the polygon every 50 and 20 m. They found that
one point every 50 m within a landslide polygon performed better
than using the single centroid or the 20-m points. Yilmaz (2010) com-
pared the susceptibility using the scarp polygon, seed cells and a single
point. According to Yilmaz (2010), ‘validations of the obtainedmaps in-
dicated that the more realistic results obtained from the analyses were
obtained using the scarp sampling strategy, however, it was relative-
ly similar with the seed cells strategy. It can be evaluated that the
two strategies, such as scarp and seed cells considered, have relative-
ly similar accuracy’. The single point sampling had lower perfor-
mance rates. Simon et al. (2013) compared the extraction of slope
angle information between landslide polygons and their centroids.
They concluded that using centroid points could have some disad-
vantages, such as abstracting landslide causative information not lo-
cated at the actual initiation points but located in less significant
factor classes or even outside the actual polygon boundary because
of using the point of gravity.

Once the expert determines which grid-cells are considered land-
slides or nonlandslide areas, a selection procedure is required to define
the sampling size of pixels thatwill be exploited to train and validate the
susceptibility model. The modeler needs to decide not only the number
of landslide pixels but also the number of nonlandslide pixels to be used
in assessing the success and prediction capability of themodel. The ratio
between landslide and nonlandslide areas depends, among others, on
the type of statistical model used in the susceptibility assessment. As
Heckmann et al. (2014) summarized for logistic regression and other
types of regression analysis, the ratio often ranges between 1:1 and
1:10. However, larger ratios have also been used (Melchiorre et al.,
2008; Felicísimo et al., 2013; Heckmann et al., 2014), including in
other types of statistical techniques, such as the Bayesian approaches,
where sometimes all the nonlandslide pixels are applied in the analysis
(Blahut et al., 2010; Regmi et al., 2010).

Recent studies have been conducted to understand the effects of
landslide sample size on susceptibility mapping and prediction (Hjort
and Marmion, 2008; Heckmann et al., 2014; Petschko et al., 2014).
Hjort andMarmion (2008) assessed the effect of sample size on the sus-
ceptibility of geomorphological processes such as permafrost and soli-
fluction in an area of 600 km2 using model resolutions of 1 and 25 ha.
They found that for a sufficient model performance, producing AUC
values ranging between 0.80 and 0.95, 100 to 200 samples were re-
quired of a population of more than 1700 data points. Heckmann et al.
(2014) sampled 1000 nonlandslide subsets ranging the sample size
from 50 to 5000 pixels of 5-m resolution in two small areas of 7 and
19 km2, while sampling 81 landslide pixels. They recommended a min-
imum of 300–350 nonlandslide pixels, corresponding to a ratio of 1:3.7
to 1:4.3 (81:300–81:350) and obtaining an average area under the ROC
curve of 0.83. Petschko et al. (2014) applied a 1:1 ratio of landslide to
nonlandslide pixels of 5-m resolution in an area of 15,850 km2 and
found that as the sample size increased from 50 to 12,562 pixels (total
number of landslides), so did the AUC of the ROC curve from 0.76 to
0.84, with a slight plateauing at 3200 pixels or 25% of the landslide in-
ventory. The literature indicates that no ideal fixed percentage or ratio
exists between landslide and nonlandslide sample sizes and is further
dependent on the statistical technique used in the susceptibility
analysis.

Most of the research analyzing the effects of landslide sampling
strategies and landslide sample sizes on susceptibility mapping have ei-
ther used regression analysis techniques (e.g., logistic, linear, multivar-
iate regression, etc.) or machine learning methods (e.g., artificial
neural networks, generalized boosting method, etc.). Furthermore,
these works were conducted in single case study areas and mainly
using single landslide types. Despite theWofEmethod beingwidely ap-
plied, the influence of landslide sample sizes in training the model, and
the subsequent effect on performance and prediction rates, has rarely
been conducted.
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In this paper, we applied the widely used Bayesian bi-variate
weights-of-evidence (WofE) susceptibility model to carry out two
types of assessments. The former is focused on testing the susceptibility
success and prediction skill using three different sampling strategies of
the scarp area: (i) the centroid, (ii) points selected every 50 m, and
(iii) the entire polygon. The latter is an analysis of the performance of
theWofE susceptibility mappingwhen using different landslide sample
sizes. In order to study the applicability and compare our analysis in dif-
ferent areas, we applied our assessments to two study areas, completely
different in terms of size, geoenvironmental settings, and most impor-
tantly, different landslide types, namely debris flows and shallow land-
slides. The aim is to compare the performance of theWofEmodel in our
two tests sites, to findwhich of the three landslide sampling strategies is
the best suitable for each case study area, and to determine the mini-
mum number of landslides needed in each area for sufficient suscepti-
bility success and prediction results.

2. Case study areas

The first area is the Fella River basin, with a total size of ~760 km2

(Fig. 1), located in the eastern Italian Alps (province of Udine, Friuli-
Venezia Giulia region). The area borders Austria and Slovenia and is
part of an important corridor for international travel and logistics, win-
ter tourism, and a gas-pipeline route. Land cover consists of predomi-
nately forested areas (75%), with ~10% bare surface and 8% grasslands,
with the urban areas located along the valley bottoms and on alluvial
fans (Malek et al., 2014). The geology ismade up of Permian and Triassic
rocks covered by Quaternary deposits. The Permian rocks consist of the
Bellerophon unit with dolomite and black limestone, while the Triassic
rocks are made of theWerfen Formationwith calcareous-marls and the
Serla Formation consisting of dolomite and dolomitic limestone
(Calligaris et al., 2008). Quaternary deposits are found across the study
area in the form of debris screes and glacial and alluvial deposits.
Elevation ranges from 250 to 2750 m asl, with a mean slope value of
33°. The multiple systems of monoclines, bends, and faulting have
caused extreme fracturing of bedrocks and outcropping of calcareous
dolomitic sequences. This has led to the formation of very steep talus
and scree slopes producing large amounts of debris stored within
many secondary streams and debris flow channels flowing towards
the Fella River. The latest major debris flow event occurred in August
2003, where ~1 million m3 of debris was triggered by an extreme rain-
fall event and deposited downslope at the bottom of the valleys. This
event was also the cause of a major flood of the Fella River basin
Fig. 1. Location of landslides and relief map of the two case study areas. On the left the Fella R
(Tropeano et al., 2004). The area further regularly experienced shallow
and deep-seated landslides (Pasuto et al., 2000) and flash flooding
(Creutin and Borga, 2003; Borga et al., 2007, 2008).

The second study area is the northern part of Buzau County
(Romanian Carpathians) and has a total area of 3230 km2 (Fig. 1).
Buzau County consists partly of hilly and mountainous (sub-
Carpathians and Carpathians) areas, with the other half consisting of
lower-lying plains (Sarata-Buzau plain). The high-altitude, northwest-
ern half outlines two parallel regions with different morphological pro-
cess patterns. The internal part corresponds to the Buzau Carpathians, a
low- tomid-altitudemountainous sector built on Cretaceous and Paleo-
gene flysch, with packs of generally cohesive sandstones alternating
with schistose sandstones and clayey-marly schists. The Carpathians,
reach a maximum elevation of 1700 m. The slopes, usually covered by
relict landslide deposits, show inclinations of 15 to 45°. The external
Buzau sub-Carpathians are a low to high sector of alternating rounded
hills and large depressions. The area contains less cohesive and hetero-
geneous Mio-Pliocene molasse deposits, with a mix of marls, clays,
sands, gravels, and large salt massifs and diapire folds, including small
areas with loose schistose sandstones. The rounded hills extend from
250 to 900 m in altitude, while the dense river network is situated at
300–500 m. The slopes, intensely affected by active landslides, have in-
clinations ranging from 10 to 30°. Numerous relict or dormant landslide
deposits, show high reactivation potential, with a number of active de-
bris and rock slides featuring a high magnitude-low frequency pattern
(Micu and Bălteanu, 2013). The sub-Carpathian slopes are more fre-
quently affected by medium- and low-magnitude mudflows and shal-
low to medium-seated translational and rotational earth and debris
slides (Micu and Bălteanu, 2013).

2.1. Landslide inventories and thematic data

The debris flow inventory of the Fella River basin (Fig. 1) was pro-
duced through the analysis of historic archives and interpretation of ae-
rial and satellite imagery between 1999 and 2011 by the Italian
Landslide AVI and IFFI projects, the Geological Service of the Friuli–Ve-
nezia Giulia region (FVG) and landslide experts at University of Trieste.
The inventory consists of 1046 debris flow scarp area polygons, exclud-
ing the accumulation zone. The Buzau County contains 1612 shallow
landslide scarp areas (Fig. 1) mapped from image interpretation of aeri-
al orthophotos between 2005 and 2008 and integrated with informa-
tion obtained from the Romanian Emergency Situation Inspectorate
(ISU) and field observations.
iver basin (Friuli–Venezia Giulia region, Italy) and on the right Buzau County (Romania).



Table 1
List of the thematic data and area statistics for the Fella River basin and Buzau County.

Information Fella River basin Buzau County

Geoenvironmental factors
Lithology
Land-cover

Soil map
Land-cover

DEM-derived factors
Altitude
Plan curvature
Slope

Altitude
Internal relief
Slope

Landslide type Debris flows Shallow landslides
Study area size 764.75 km2 3230.57 km2

Landslide area 7.25 km2 9.76 km2

Pixel size 20 m 25 m
Total number of pixels 1,911,883 5,168,940
Number of landslide pixels 18,125 15,551
Number of landslides (centroid points) 1046 1612
Landslide (centroid) point density
per km2 1.368 0.499
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The digital elevation model (DEM) of the Fella River basin was ac-
quired from airborne laser scanning by the Civil Protection of the Friu-
li–Venezia Giulia region in 2003. The DEM has a pixel resolution of
20 m, which is the pixel dimension we used for all the causative factor
maps and the susceptibility zonation. According to a previous study
(Hussin et al., 2013), five causative landslide factor maps (lithology,
land-cover, altitude, plan curvature, and slope)were used for the debris
flow susceptibility zonation. The lithological map available at 1:150,000
scale was produced by the FVG Geological Service and originally con-
tains more than 35 classes, which were reclassified in 8 classes. The
land-cover map at 1:100,000 scale was developed by the CORINE land
cover project and later updated by the MOLAND project. The map
withmore than 30 classeswas generalized to 7 classes based on similar-
ities in land cover types. The three factors derived from the DEM were
classified into 10 quantile classes. The quantile classification has been
applied in several landslide susceptibility studies (Castellanos Abella
et al., 2008; Blahut et al., 2010; Martha et al., 2013) and is useful to pro-
portionately distribute rank-ordered data to better study the influence
of factors on landslide occurrence.

The Buzau County DEMwith a pixel resolution of 25 m was derived
from the contour-lines of a 1:25,000 scale topographicmap produced in
1984. The five landslide causative factor maps (altitude, internal relief
(m/ha), slope, land cover, and soil) used for the shallow landslide sus-
ceptibility analysis were selected in previous studies (Hussin et al.,
2013; Zumpano et al., 2013, 2014). The three DEM-derived factors
were classified into 10 quantile classes. The land cover map at 1:5000
scale was derived from aerial photo interpretation and contains 9 clas-
ses. The soilmap at 1:200,000 scale is classified in 11 classes andwas de-
rived from the Soil Maps of Romania updated from 1963 to 1994. The
soil map was used instead of the geology owing to the nature of the
shallow- to medium-seated landslides. Soil informationwas a better in-
dicator of landslide initiation because it better represented the unstable
shallowmaterial properties, while the lithological map represented the
bedrock. Preliminary tests were carried out using the lithological map,
resulting in poor prediction of landslides, which indicated that the lith-
ological data available was much less significant than the soil data
(Zumpano et al., 2014).

Table 1 summarizes the differences between the two case study
areas. They are significantly different in terms of size, geology, morphol-
ogy, and landslide types. Buzau County is more than four times larger
than the Fella River area but has a landslide (centroid) point density
half of the Fella River basin. The model pixel sizes are different due to
the difference in the DEM resolution, but the pixel dimensions (20
and 25 m) can be considered similar and comparable for the purpose
of the analysis.

3. Methodology

3.1. Weights-of-evidence (WofE) susceptibility model

To prepare the landslide susceptibility maps, we applied the statisti-
cal weights-of-evidence (WofE) method in both study areas. The WofE
technique was originally developed for quantitative mineral potential
mapping to predict the location of possible gold deposits (Bonham-
Carter et al., 1989). However, it has been successfully applied in many
landslide susceptibility assessments (van Westen, 1993; Lee et al.,
2002; Süzen and Doyuran, 2004; Neuhäuser and Terhorst, 2007;
Thiery et al., 2007; Blahut et al., 2010; Regmi et al., 2010; Ozdemir and
Altural, 2013) and is based on the assumption that factors causing land-
slides in the past will determine the spatial occurrence of future land-
slide initiation in areas currently free of landslides. A probabilistic
Bayesian approach is applied to determine the conditional probability
between the presence/absence of each causative factor and the pres-
ence/absence of a landslide. For every factormap (e.g., land cover, lithol-
ogy, etc.) a weighting table is produced that includes for each class
(e.g., grassland, bare rock) the positive weight (W+), which indicates
the importance of the presence of this class on the occurrence of land-
slides. The table also has the negative weight (W−), which evaluates
the importance of the absence of the class on landslide occurrence and
the contrast (W+ − W−). The contrast is considered a measure of the
overall importance of a factor map class on the conditions causing land-
slide occurrence. One of the main advantages of the WofE approach is
the capability of combining the subjective choice of the classified factors
by the expert with the objective data-driven statistical analysis of the
GIS. For details on theWofE methodology applied for landslide suscep-
tibility the reader is referred to Lee et al. (2002).

The calculation of weight tables for each factor and the subsequent
susceptibility mapping was carried out using the weights-of-evidence
Arc-SDM (spatial data modeller) (Sawatzky et al., 2009) geoprocessing
tools in ArcGIS 10. In order to directly comparemultipleWofE probabil-
ity maps, the maps were standardized by reclassifying the probabilities
using an area-based ranking (Chung and Fabbri, 2003; Lee, 2005;
Pradhan, 2011; Sterlacchini et al., 2011; Akgun, 2012; Galve et al.,
2014). We therefore classified the probability maps into 10 equal-area
classes, with 10 classes being a compromise between very few classes
with a lower descriptive power and the difficulty in interpreting too
many classes. Success rate curves (SRCs) and prediction rate curves
(PRCs) (Chung and Fabbri, 1999, 2003) were calculated to evaluate
the model performance and the predictive skill of the susceptibility
maps. The area under the curve (AUC), which is a value ranging be-
tween 0 and 1 or expressed as a percentage from 0 to 100%, was used
as a final assessment of the SRCs and PRCs (Chung and Fabbri, 1999,
2003; Carrara et al., 2008; Blahut et al., 2010).

3.2. Landslide sampling strategies and sizes

The sampling strategies and sizes exploited to prepare susceptibility
models in both test areas are summarized in Fig. 2. The vector-based
representation of the landslide inventory determines which pixels are
identified as landslide scarp areas. Once the landslide and nonlandslide
pixels are determined, they can be selected to prepare the subsets to
train the susceptibility model (training set) and to assess its predictive
capability (prediction set).

Two different sampling strategieswere exploited. The first consisted
of pixels corresponding to the scarp polygon centroid points. If the cen-
ter of gravity of the polygon was located outside the scarp area, an
ArcGIS operation was applied to force the centroid point to be located
inside the polygon boundary. The second inventory consisted of pixels
corresponding to points within the scarp polygon separated by a 50-m
grid. The third contained all the pixels corresponding to the landslide
scarp. The three inventories were randomly sampled into two subsets,
with each subset containing 50% of the pixels. The first subset was
used to train the susceptibility model to create the susceptibility map
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and produce the SRCs. The second subset was applied to test how well
the model was able to predict landslides using the PRCs.

The sensitivity of theWofE susceptibility model to landslide sample
size was tested using the centroid sampling method. As with the sam-
pling strategy test, all the nonlandslide (absence) pixels were consid-
ered in the sensitivity analysis. Different landslide (presence) pixel
samples were randomly sampled from the centroid inventory of each
study area. The 1046 debris flow scarp centroids of the Fella River
basin were randomly sampled into the following sizes: 31, 52, 104,
209, 523, 836, and 941 and correspond respectively to 3, 5, 10, 20, 50,
80, and 90% of the inventory. The Buzau County 1612 shallow landslide
centroidswere randomly sampled into sample sizes of 80, 161, 322, 806,
1290, 1451, which also corresponded respectively to 5, 10, 20, 50, 80,
and 90% of all shallow landslide centroids. These samples were used
as training subsets but also as prediction subsets. For example, when
10%was randomly sampled for training, the remaining 90%was consid-
ered as a prediction subset. However, the same 90% was also used to
train the model, while the same 10% was used for model prediction.
Therefore, every sample size between 10 and 90% had one chance to
be the training and prediction subset.

4. Results

Fig. 3 shows theWofE susceptibilitymodel contrast values of the fac-
tor map classes for the different landslide sampling strategies. Bare rock
areas in both case studies are a significant source of landslide scarps in
terms of land cover. The lithology most contributing to debris flow
sources in the Fella River Basin is dolomite and limestone, while the
soil types in Buzau County having the most influence on shallow land-
slide scarps are the Aquisalids and Erodisols. Fig. 3 also indicates that
in the Fella area the presence of debris flow sources is generally more
significant as the altitude, plan curvature, and slope increase. In Buzau
County, shallow landslides are mainly focused in areas in themiddle al-
titude and slope ranges.
Fig. 2. Flow chart showing the method used to prepare training
The WofE contrast values related to the sample size sensitivity test
are shown in Figs. 4 and 5 for the Fella River basin and Buzau County, re-
spectively. The overall trend in contrast values between the factor clas-
ses is similar to the ones in Fig. 3. However, for each class within a factor
map, different trendswere foundwhen increasing the landslide training
sample size for the susceptibility modeling. Fig. 4 shows that in the
mud- and sandstone class of the lithology map, there is an increase in
the negative contrast as the sample size increases, indicating that the
more landslides are used to train the model, the less that mud- and
sandstone has an effect on landslide occurrence. In some cases there is
not a clear trend. Fig. 5 also shows a negative contrast of slope class
35–38° when using 52 scarp centroid pixels. This same class shifts to a
positive contrast after using 104 landslide pixels to train the model.
An opposite trend can be seen in certain altitude classes, where an in-
crease in the sample size shifts the contrasts from positive to negative
or lower values (Figs. 4 and 5). This is possibly caused by a shift in dis-
tribution of landslide pixels to different altitude classes as the surface
area representing the scarp polygon increases. The largest shifts in con-
trast values for the Fella River basin (Fig. 4) are found in the forest class
of the land cover map, the 1037–1160 m class of the altitude map, and
the 31–35° class of the slope map. For Buzau County (Fig. 5) the largest
shifts are found in the altitude classes and the classes of the internal re-
lief factor map.

The susceptibilitymaps that were produced using landslide centroid
pixels and classified into 10 equal area classes are shown in Fig. 6. For
the Fella River basin, the AUC values for the SRC and PRC were 82.53%
and 81.26%, respectively. The Buzau County susceptibility map pro-
duced AUC values of 79.77% for the SRC and 79.49% for the PRC. The de-
bris flow source susceptibility in the Fella River basin is higher in areas
with high slope angles andwhere bare rocks aremost persistent.Where-
as the shallow landslide susceptibility in Buzau County is higher in the
middle altitude and slope angles and follows more or less the boundary
between the Carpathians and lower sub-Carpathians. These results also
correspond well with the contrast values previously shown in Fig. 5.
and prediction subsets for the WofE susceptibility model.



Fig. 3.Weights-of-evidence contrast values (W+−W−) of each factormap for the different sampling strategies in (A) the Fella River basin and in (B) the Buzau County. The acronyms of
the soil classes are taken from theRomanian Systemof Soil Taxonomy (RSST-2000, inRomanian) and translated according to theUSDASoil Taxonomy, 1999 (Florea andMunteanu, 2000):
AA=alluvial protosoil; AP=water; BD=brownargilloilluvial soil; BM=brown eu-mesobasic soil; BO=brownacid soil; BP=brown luvic soil (podzolite); BR=brown–red soil; CC=
cambic chernozem; CI = argilloilluvial chernozem; CN= gray soil; CZ = chernozem; ER = erodisoil; LC = hydromorphic soil; LS = litosoil; NF = black clinohydromorphic soil; NO =
black acid soil; PB=brown iron-illuvial soil (podzol); PD=podzol; PR=pseudo rendzine; PS=psamosoils; RP=brown-reddish luvic soils; RS= regosol; RZ= rendzina; SA=alluvial
soil; SC = aquisalids; SN= solonetzs; SP = albic-luvic soil (argilloilluval podzol).
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Fig. 7 shows sections of the susceptibility maps for each of the three
tested landslide sampling strategies. In both areas, there is a noticeable
increase in medium to high susceptible areas when comparing the cen-
troid method with the polygon strategy. The centroid method also
seems to showdifferent boundary conditions in the low tomedium sus-
ceptibility classes compared to the other methods. In Buzau County,
there is a slightly stronger shift in susceptibility to higher classes going
from centroid to 50-m points. Overall, the Fella River basin has more



Fig. 4.Weights-of-evidence contrast values (W+ − W−) for each factor map applied in the susceptibility assessments using the different sample sizes in the Fella River basin.
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changes in susceptibility mapping with the different strategies than in
Buzau County.

The WofE model SRCs and PRCs using different landslide sampling
strategies are presented in Fig. 8, which also includes the AUC values
in percentages. For the Fella River basin, AUC values for SRCs and PRCs
show a slight increasing trend in success and prediction as the number
of pixels representing the landslide scarp increases. The centroid meth-
od gives an AUC SRC of 82.53%, while modeling with the 50-m grid
points and the scarp polygons give AUC values of 83.81% and 84.64%, re-
spectively. The increase in success rate is less evident in Buzau County,
with the highest AUC SRC value given by the 50-m grid points. This in-
dicates that using Buzau County scarp polygons should be avoided due
to possible redundant information from oversampling of too many
points, causing fitting problems. This coincides with a similar finding
in a previous study conducted by Poli and Sterlacchini (2007). However,
the prediction rate in the Buzau County is highest when modeling with
the entire polygon, with an AUC PRC value of 80.66%. There is little dif-
ference between the AUC SRCs and AUC PRCs, with overall prediction
rates being only slightly higher.

Fig. 9 shows a section of the susceptibility maps producedwith sam-
ple size testing. By using 52 (5%) landslides to train the model in the
Fella River basin, some areas are highly underestimated, with general-
izations occurring at low to medium classes. Susceptibility maps made
with 52 (5%) to 104 (10%) landslides also show grainy pixelated maps
with boundaries between susceptibility classes being less continuous.
It seems thatwhen the landslide pixel sample is too small, the likelihood
of random sampling from a factor class that contains more landslide
pixels increases, causing a bias in the sample and possible conditional
dependence problems. The abrupt shifts in the susceptibility classes
that most likely follow the lithology also correspond to the very high
contrast found in the dolomite and limestone areas when using 5% of
the centroid pixel inventory (Fig. 4). Models using 50 to 90% perform
spatially better, predicting more landslide areas and having smoother
transitions from lower to higher susceptibility classes. The Buzau Coun-
ty susceptibility maps also show variation in medium to high suscepti-
bility classes when increasing the number of landslides used in the
WofE modeling. Some of the low to medium susceptibility classes pro-
duced with 5 to 20% of the landslides in Buzau County change to higher
classes when using 90% of the centroid pixels.

The SRCs and PRCs related to the landslide sample size sensitivity
analysis are shown in Fig. 10 for both study areas. The curves for the
Fella River Basin indicate that as the number of landslides used to
train the WofE model increases, the performance and prediction rates
also increase. The trend in success and prediction rates continues to in-
crease up to 83.87% and 82.79%, respectively, when using amaximumof
941 landslides for model training to predict the remaining 104 land-
slides. However, the strongest increase occurs when at least 104
(while 941 are used as a prediction subset) landslides are used to
train the model, producing an AUC SRC value of 81.45% and an AUC
PRC value of 81.73%. This indicates that when using the WofE
model in the Fella River basin, 104 landslides are enough to accurate-
ly predict the occurrence of the rest of the 941 landslides used as a
prediction subset. In Buzau County, the best success rates are obtain-
ed using at least 322 landslides to train the model, while the best
prediction is made using a 50/50% ratio between the number of
training and prediction landslides. Buzau County does not indicate
a clear increasing trend in success and prediction when compared
to the Fella River basin.



Fig. 5.Weights-of-evidence contrast values (W+ − W−) for each factor map applied in the susceptibility assessments using the different sample sizes in Buzau County.
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One of the limitations of this work is the use of only one random
sample of the landslide centroids used to train the WofE model for
each sample size. Therefore, in order to study the effect of the sampling
procedure, we took 10 random samples for each sample size in the Fella
River basin. The results of the success and prediction rates for the 10
random samples of all seven sample sizes is shown in Table 2. The
mean AUC values show an increase as the number of landslides are
Fig. 6. Best performing susceptibility maps modeled with landslide centroid pixels
increased to train the model. There is also a significant decrease in the
standard deviation of the 10 random samples when using 200 or more
landslides, decreasing the error substantially after using 20% or more
of the inventory for training the model. The AUC prediction rates
show a similar increase as the success rates. The overall trend in AUC
values with 10 random samples is still similar to using a single random
sample for each landslide sample size.
for (left) the Fella River basin and (right) the Buzau County case study areas.



516 H.Y. Hussin et al. / Geomorphology 253 (2016) 508–523
Fig. 11 graphically shows the AUC values related to the SRCs and
PRCs in Fig. 10 for Buzau County and the average values in Table 2 for
the Fella River basin. As the number of landslides used to train the
model in the Fella River basin increases up to 100, the AUC value rapidly
increases from 61 to 82%. After using 100 to 200 landslides, the increase
in AUC is very gradual with a plateau effect visible in the performance
and prediction rates. This effect is not visible in the AUC success rates
in Buzau County, with only a 5% increase in AUC prediction rate from
75 to 80% when increasing the training sample from 100 to 800 land-
slides. However, in Buzau County after training the model with more
than 1400 landslides, a drop in the prediction rate occurs from 79 to
76% when trying to validate the remaining 160 landslides.

5. Discussion

One of the limitations of this work was the problem of accuracy and
quality of the input data consisting of the landslide inventories and the
causative factormaps.Mapping errors are very commonwhenmapping
many landsides in an area, especially when the landslides in one area
have been mapped by different people or institutions. We have
attempted to reduce this error by removing landslides that we consid-
ered incorrectly mapped, but the errors cannot be completely avoided.
Another important point is the scale of the thematic maps
(e.g., geological, soil, and land cover) in comparison with the grid-cell
resolution selected for susceptibility mapping. Using small-scale maps
(e.g., 1:100,000 to 2:200,000) causes higher geographic inaccuracies,
where a few millimeters on the factor maps can translate into errors
of several grid cells of 20 or 25m in the GIS used in this study. This is es-
pecially the case at the boundaries between different thematic units and
when using maps of different scales for the causative factors. The effect
of these errors and inaccuracies on susceptibility mapping should be in-
vestigated in upcoming studies.

The weights assigned to each class within a causative factor map in
theWofEmodel is determined by the number of landslide pixels count-
ed in each class and the difference in the number of pixels between the
classes. The tests carried out using different sampling strategies basical-
ly increases the number of pixels that are assigned to each landslide for
susceptibility modeling, thereby increasing the landslide area in a caus-
ative factor class. The results in Fig. 8 show in the Fella River basin that
there is a slight increase in success and prediction rates associated with
the increase in pixels representing the landslide scarp polygons. This is
in agreement with findings in previous studies (Poli and Sterlacchini,
2007; Thiery et al., 2007; Yilmaz, 2010; Regmi et al., 2013). However,
this increase is not evident in Buzau County, where no change is found
inmodel performance between the use of centroids and scarp polygons
(Fig. 8). Despite a significant increase in the number of landslide pixels
to represent the entire landslide scarp polygon, there is little difference
in the overall model performance and prediction between the sampling
strategies.

In order to understand these results, Table 3 is required, which
shows the percentage increase in number of landslide pixels as the sam-
pling strategy changes for two causative factors in both case study areas.
These are land cover and lithology for the Fella River basin and land
cover and soil for Buzau County. The percentage increase formost factor
classes is very similar, particularly in the classes that have many pixels.
This similaritywill cause very little change in theweights of the individ-
ual factor map classes when increasing the pixels for different sampling
strategies. This is most likely caused by the scarp polygons having sim-
ilar sizes throughout the study area. If the landslide scarp polygons are
of similar size, the relative increase in the number of pixels to represent
each polygon will be similar for all the scarps. Changing the representa-
tion of a single scarp in a certain factor class from1 pixel to, for example,
Fig. 7. Sections of the susceptibility mapsmodeled using the three different types of landslide s
grid points and the landslide polygons.
10 pixels, will allocate a similar increase in pixels to a scarp polygon lo-
cated in a different class. The chances of this problem occurring can be
high because landslide susceptibility assessments are mainly carried
out using a single landslide type, without mixing landslides of different
types and therefore different sizes. The landslide sizes, including the
sizes of the scarps should be assessed statistically in more detail in fur-
ther studies in order to further analyze the limitation of using single
centroid points/pixels in susceptibility modeling.

Table 3 also gives us an indication why our model performs slightly
better in the Fella River Basin when we change the sampling strategy
compared to Buzau County. The average percentage increase in
the number of pixels in each factor class from the centroid strategy to
50-m points in the Fella River basin is 414%, while the average increase
from 50-m points to the polygon strategy (all pixels) is 527%. However,
in Buzau County, the percentage increases for the same tests are 102%
and 190%, respectively. In other words, the landslide area in Buzau
County increases 2 to 3 timesmorewhen using polygons instead of cen-
troids, while in the Fella River basin the area increases 5 to 6 times. This
much larger increase in landslide size in the Fella River basin will still
show some significance in success and prediction rates of the suscepti-
bility model compared to that of Buzau County. As the landslide sample
size increases with the use of different landslide sampling strategies, a
relationship is expected between landslide sampling strategy and land-
slide sample size in terms of the number of pixels that represent the in-
ventory and the training and prediction subsets. It is highly
recommended to assess this relationship in more detail in future
studies.

The sampling strategy tests show similarities between the area
under the SRCs and PRCs (AUC).When theWofEmodel has similar per-
formance values as the prediction values, this indicates that the training
and prediction subsets fit the model equally well. This is most likely be-
cause of the pixels being sampled from the same landslide polygon
causing both subsets to perform similarly. Training and prediction
pixels represent more or less the same causative factor combinations
that will produce similar success and prediction rate curves of the sus-
ceptibility model. This indicates that it is recommended to randomly
sample entire polygons into separate success and prediction subsets
so that pixels from a single polygon are not separated from each other
and thereby decrease the possibility of oversampling or overfitting.
This problem has been most recently described by San (2014) where
he indicates that ‘polygon-based random sampling is recommended
for collecting the training and testing data’ and, therefore, is preferred
over pixel-based random sampling as used in this paper. However, we
have avoided this problemwhen using only the centroids in the sample
size sensitivity tests.

Because one of the goals of this study was to give some recommen-
dations on the percentage of landslides (from the total inventory) need-
ed to train the WofE model, it is important to compare our work with
previous research. Most studies consider taking 50% of the inventory
to train the WofE model (e.g., Blahut et al., 2010; Regmi et al., 2013),
while others use higher values ranging from 65 to more than 80% of
the inventory (e.g., Neuhäuser and Terhorst, 2007; Pradhan et al.,
2010; Ozdemir and Altural, 2013). Rarely has the effect of training the
model with b50% been studied. In our work, the sample size testing to
train the WofE model shows that a minimum number of landslides
are needed to produce sufficient model performance and prediction re-
sults. Fig. 11 indicates that in the Fella River Basin, there is aminimumof
104 to 209 (10 to 20% of the inventory) out of a total of 1046 landslide
centroids required to produce SRCs and PRCs with AUC values above
80%. Using more than 104 centroid pixels slightly increases the AUC
for performance and prediction but starts to show a plateau with little
change in the overall values after using 200 ormore landslide centroids.
ampling strategies. From top to bottom: susceptibility modeledwith scarp centroids, 50-m
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Fig. 8. Success (SRC) and prediction (PRC) rate curves of the WofE susceptibility models using the three different landslide polygon sampling strategies.
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This plateau in performance corresponds well with recent previous
studies (Hjort and Marmion, 2008; Guns and Vanacker, 2012;
Heckmann et al., 2014; Petschko et al., 2014).

The Buzau County AUC SRCs do not show a clear trend as in the Fella
River basin, with a peak AUC SRC of 80.18% found when using 322 from
a total of 1612 landslide centroids (Fig. 11). However, the AUC PRCs in
the Buzau County do indicate that a minimum of 161 landslides are
needed for an acceptable prediction rate of 78.84%, while more training
landslides produce a similar plateau as seen in the Fella River basin. The
Buzau County susceptibility map trainedwith 80 landslides has difficul-
ty predicting the remaining 1531 landslides. As expected, the AUC
values of the SRCs in both areas are generally slightly higher than the
AUC values of the PRCs. It is interesting to note that in Buzau County,
when training themodel with 1531 landslides to predict the remaining
80, the prediction rate decreased from 79.35 to 76.93%. A possible rea-
son for this drop could be that themuch larger Buzau County has an un-
even distribution of mapped landslides, where the northern part of the
county is less represented in the mapping process. Furthermore, there
are also possible mapping inaccuracies and incompleteness in the land-
slide inventory in this area.

Another limitation in this work was the use of only one random
sample for each landslide sample size tested. For this reason, extra
random samples were conducted related to Table 2, which gave us
some indication of error estimates when more than one sample
was taken. These were, however, only 10 random samples. More
sample runs are required to properly study the effect of chance and
error of the random sampling procedure. The Fella River basin and
Buzau County success and prediction rates could be improved if
many random samples would have been conducted. We therefore
recommend to carry out many random samples for both areas in
the future, possibly up to 50, 100, or even 1000 model runs
(Brenning, 2005; Beguería, 2006; Van Den Eeckhaut et al., 2010;
Heckmann et al., 2014) to get a more accurate view on the effects
of sampling different landslide sample sizes on the success and pre-
diction rate of the susceptibility model.

By conducting the sample size tests, we have analyzed the perfor-
mance of the WofE model to changes in the ratio between landslide
training and prediction pixels. The analysis has shown that for two
areas with completely different sizes (~765 and ~3231 km2) and land-
slide types (debris flows vs. shallow landslides), a training to prediction
subset ratio of 1:9 (10%:90%) produces sufficient model performance
and prediction, with both areas containing more than 1000 landslide
centroid grid points (pixels). The use of 10% of the landslide inventory
is equal to 161 landslide pixels in Buzau County and 104 pixels in the
Fella River basin. This corresponds with a landslide to nonlandslide
pixel ratio of 1:32,105 and 1:18,208, respectively.

TheWofE landslide susceptibility model has performed slightly bet-
ter with the debris flows in the Fella River basin than with the shallow
landslides of Buzau County. As the landslide pixel sampling strategy in-
creased from a single centroid to the entire polygon, so did the success
and prediction of the debris flow source areas slightly increase, with
most debris flow sources also significantly increasing in the number of
pixels. In Buzau County, the shallow landslides did not show this signif-
icant increase in pixels representing the scarp areas. This could indicate
that the scarp areas of the shallow landslides are too small for the given
mapping unit of 25 m. Furthermore, because of the small scale and the
difference in scales of the factormaps, the quality and accuracy of suscep-
tibility is negatively affected. Thus, the scale and resolution of the



Fig. 9. Sections of the landslide susceptibility maps in both study areas modeled with dif-
ferent sample sizes. From top to bottom: sample size percentages used were 5, 10, 20, 50,
80, and 90%. Black polygons indicate the original scarp area, with the black points indicat-
ing the centroids.
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mapping unit are a very important issue in landslide susceptibility map-
ping and prediction (Catani et al., 2013). Othermapping unit sizes should
also be assessed, considering the factor maps with the smallest scales.

The maximum obtained success and prediction rates using different
landslide centroid sample sizes were higher for the Fella River basin
than Buzau County. The increase in the model performance when in-
creasing the number of landslides used for model training were much
more significant for the debris flows than the shallow landslides. How-
ever, in the future, more susceptibility models should be run in Buzau
County for smaller sample sizes (b100 landslides) to better study the
significance of possible sample size thresholds in larger areas that
have been known to occur in previous studies (Hjort and Marmion,
2008; Heckmann et al., 2014).

Overall, the WofE model in Buzau County does not perform as well
as in the Fella River basin. One of themain reasons for this is that the in-
ventory of the shallow landslides was mainly mapped for the southern
part, with the northern part not well represented (Fig. 1). This is be-
cause the Romanian Emergency Situation Inspectorate (ISU) were
more interested in the higher populated areas in the south. The shallow
landslides in the south affectedmore roads and farm land, with the area
considered a higher risk zone. After taking a closer look and conducting
further discussions on the Romanian landslide data, more mapping er-
rors were found, also indicating that the experts did not have much ex-
perience in mapping landslides.

Evenwith similarities inmodeled success and prediction rates found
in the landslide sampling strategies, there are still some visible differ-
ences in the classified susceptibility maps. This indicates that the spatial
variationbetween the similar performing susceptibilitymaps can be dif-
ferent. A susceptibility map trained with 100 landslides can give similar
performance rates (AUCvalues) as amapmade using 500 landslides but
still looks very different after classifying themaps using the samemeth-
od. A spatial agreement analysis (Sterlacchini et al., 2011) can be carried
out in future studies in order to determine the best susceptibility classi-
fication by taking into consideration all maps that show similar perfor-
mance and prediction rates but different predicted patterns. This is
important in order to communicate to decision makers, land use plan-
ners, and responsible authorities the rightmaps to assess landslide haz-
ard and risk.

6. Conclusions

The weights-of-evidence landslide susceptibility model was applied
in the Italian Alps using debris flow scarps and in the Romanian
Carpathians using shallow landslides. Three different landslide sam-
pling strategies were tested in the susceptibility analysis: (i) the cen-
troid scarp point, (ii) points located every 50 m within the scarp, and
(iii) the entire scarp polygon. The shallow landslides in Buzau County
(Romanian Carpathians) gave better success rates when sampled
using the 50-m grid point method, while the scarp polygon method
was better in predicting the shallow landslides. The susceptibility
model assessing the debris flow scarps in the Fella River basin (Italian
Alps) had better success and prediction rates when using the entire
scarp polygon compared to the other strategies. Overall, the model per-
formed better using debris flows scarps than the shallow landslides. The
number of landslides was similar for both case studies; however, the
Romanian site was four times larger with some areas being underrepre-
sented in terms of mapping and quality of the data.

The effect of the landslide training sample size on the susceptibility
performance rates was assessed. In the Fella River basin, a training sub-
set threshold of 104 debris flow scarps was sufficient to predict the re-
maining 941 scarps, giving success and prediction rates (AUC values)
above 81%. Buzau County required a training subset of at least 161 shal-
low landslide scarps to predict the remaining 1451 scarps with success
and prediction rates above 79%. Both case study areas needed at least 10
to 20% of the landslide inventory to train the model and produce ade-
quate success and prediction rates. When training subsets were used



Fig. 10. SRCs, PRCs, and AUC values for susceptibility maps modeled with different landslide sample sizes.
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that contained landslide numbers below these thresholds, model per-
formance was significantly lower. However, using more landslides
above the thresholds caused success and prediction rates to plateau
Table 2
Weights-of-evidence susceptibility success and prediction rates for 10 random samples of each
statistics of the success and prediction rates, including the mean value of the 10 models for ea

Number of landslides used
for model training

% of all landslides Area under the success rate curve

1 2 3 4

31 3 60.4 59.5 61.8 59
52 5 75.2 75.5 75.9 72
104 10 81.5 79.9 79.2 77
209 20 82.1 81.9 82.0 82
523 50 82.5 83.2 82.0 82
836 80 83.8 83.2 83.3 83
941 90 83.9 84.8 83.5 83

Number of landslides used
for model prediction

% of all landslides Area under the prediction rate cu

1 2 3 4

1015 97 61.3 59.1 59.9 62
994 95 74.0 71.2 74.0 70
941 90 81.7 82.0 81.2 81
836 80 81.1 81.2 81.1 81
523 50 81.3 80.8 81.9 81
209 20 82.4 82.6 82.0 81
104 10 82.8 83.8 83.4 83
with only a slight increase in model performance. This threshold was
more obvious with the Italian debris flows than the Romanian shallow
landslides.
landslide sampling size in the Fella River basin study area; the table has information on the
ch sampling size and the standard deviation.

(SRC) (%) Statistics for
the 10 model
runs

5 6 7 8 9 10 Mean Std

.3 59.1 59.8 59.8 61.4 59.1 60.7 60.1 0.96

.3 75.3 74.7 74.4 73.1 76.6 73.5 74.7 1.34

.8 82.3 80.6 78.3 80.5 80.9 79.0 80.0 1.43

.6 82.3 81.8 82.4 81.8 82.7 82.9 82.3 0.39

.5 83.0 82.4 82.2 83.0 82.1 83.1 82.6 0.44

.9 83.8 83.7 82.9 82.6 83.9 83.3 83.4 0.45

.9 84.2 83.0 84.6 83.0 84.4 84.7 84.0 0.66

rve (PRC) (%)
Statistics for
the 10 model
runs

5 6 7 8 9 10 Mean Std

.3 60.8 59.3 60.5 60.5 60.3 59.1 60.3 1.02

.7 75.0 76.0 70.7 75.9 70.3 74.6 73.2 2.27

.8 81.1 80.7 81.9 80.5 80.1 80.7 81.2 0.66

.1 81.4 81.6 80.7 81.8 81.5 80.4 81.2 0.42

.8 81.0 81.5 80.9 81.9 81.2 81.8 81.4 0.43

.6 82.4 82.8 82.3 82.0 82.4 82.4 82.3 0.34

.9 83.4 83.7 83.2 83.7 82.9 82.9 83.4 0.41



Fig. 11. TheAUC values of the success rate (SRCs) and prediction rate (PRCs) curves for susceptibilitymodels trainedwith different number of landslides from the available inventories. The
red curves indicate the model success rates for different landslide training sizes, and the blue curves indicate the model prediction rates using different landslide prediction sample sizes.

Table 3
Number of landslide pixels located within the geoenvironmental factor map classes; the factors are land cover and lithology for the Fella River basin and land cover and soil for Buzau
County (the last two columns on the right indicate the percentage increase in the number of pixels when changing the strategy from centroid to 50-m grid points and from 50-m grid
points to using the entire scarp polygon considering all pixels within the polygon, respectively).

Fella River basin

Land cover Centroid pixels 50 m grid point pixels All scarp pixels
Percent increase
Centroid → 50 m

Percent increase
50 m → all scarp pixels

Human infrastructure 0 0 0 – –
Agriculture 0 0 0 – –
Flood plain 2 3 17 50% 467%
Woodland 44 148 922 236% 523%
Grassland 70 365 2279 421% 524%
Forest 157 729 4535 364% 522%
Bare rock 80 1485 9199 494% 519%

Lithology Centroid pixels 50 m grid point pixels All scarp pixels
Percent increase
Centroid → 50 m

Percent increase
50 m → all scarp pixels

Alluvial deposits 0 10 53 – 430%
Intrusive rocks 0 6 30 – 400%
Mud- and sandstones 1 10 56 900% 560%
Conglomerates 4 9 77 225% 756%
Marls 11 49 318 345% 549%
Debris and scree deposits 23 147 933 539% 534%
Dolomitic marls 45 327 2149 627% 557%
Dolomite and dolomitic limestone 439 2172 13,336 395% 514%

Buzau County

Land cover Centroid pixels 50 m grid point pixels All scarp pixels
Percent increase
Centroid → 50 m

Percent increase
50 m → all scarp pixels

Vineyards 0 0 1 – –
Bushes 1 7 35 600% 400%
Roads 7 7 21 0% 200%
Orchards 12 13 36 8% 176%
Houses/households 18 26 40 44% 54%
Wetlands and waters 24 32 75 33% 134%
Degraded land and bare rocks 36 104 331 189% 218%
Forest 206 330 1011 60% 206%
Pasture and hayfields 497 713 1988 43% 179%

Soil Centroid pixels 50 m grid point pixels All scarp pixels
Percent increase
Centroid → 50 m

Percent increase
50 m → all scarp pixels

AP 0 0 0 – –
SN/BR/RP 3 3 7 0% 133%
PD/SP 4 4 13 0% 225%
BD/CI 6 6 16 0% 167%
SC 7 10 30 43% 200%
SA/AA 23 41 85 78% 107%
CN/NF/LC 41 68 240 66% 253%
BP/PB 80 142 408 78% 187%
BO/CC/CZ/NO 112 187 628 67% 236%
BM/RS/LS/PS 246 361 1013 47% 181%
PR/ER/RZ 279 413 1106 48% 168%
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The comparison of the classified susceptibility maps produced using
different sampling strategies and sample sizes indicated that there are
significant differences in the lower to medium susceptibility classes de-
spite having similar success and prediction rate values. It is therefore
recommended in the future to combine the maps in order to assess
where they spatially agree and how they can be used for decision
makers.
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